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ABSTRACT 

The genesis of a research effort to develop a Java-based 
process-oriented simulation framework is described. A key 
enabler to the framework is an efficient co-routine mecha-
nism implemented within the context of a single Java 
thread. A design for such a co-routine mechanism is de-
scribed and some initial results of an implementation 
within the IBM Jikes Reference Virtual Machine are given. 

1 INTRODUCTION 

The history of languages and environments for discrete 
event simulation is a rich one (Nance 1993). Debates on the 
suitability of general-purpose languages for the simulation 
task gave rise to the birth of special-purpose simulation lan-
guages in the 1960s and 1970s. These languages proliferated 
and flourished during the 1970s and 1980s. During this pe-
riod, the notion of holistic programming environments 
emerged in the software engineering community with the 
Ada Programming Support Environment (Oberndorf 1988), 
and a shift from language-focus to environment-focus also 
occurred in the simulation community (Balci 1986; Balci et 
al. 1990) and has continued for the past two decades. That’s 
at least one way to look at our history as a community. As 
Nance points out, though, histories are rarely quite as tidy as 
historians would like them to be. 

In reality, the application of general-purpose pro-
gramming languages to the simulation task has persisted 
since the earliest days of simulation. Simulation packages 
based on Pascal (Barnett 1986; Malloy and Sofa 1986; 
Seila 1986; Uyeno 1980), Ada (Samuels and Speigel 
1987), Modula-2 (L’Ecuyer and Giroux 1987), C and C++ 
(Bagrodia 1991; Fishwick 1992; Lomow and Baezner 
1990; Schwetman 1986 and 1994), Smalltalk (Drolet at al. 
1991; Knapp 1986) and Prolog (Adelsberger 1984; El-
maghraby 1988; Le 1993), for example, have all appeared. 
Many of these packages were developed within the aca-
demic community as pedagogical aids. But several of the 

 

commercial simulation tools you see in the vendor spaces 
at the Winter Simulation Conference (WSC) are based on 
general-purpose languages. Within the military simulation 
domain, most of the larger systems contain a mixture of 
languages, as one might reasonably expect. Our informal 
survey of systems currently under development suggests 
that the use of general-purpose languages is dominating the 
use of simulation languages. 

With the appearance of the Java programming lan-
guage circa 1995, it wasn’t long before Java-based simula-
tion packages also began to appear. A large number of 
Java-based simulation packages have been developed, in-
cluding: SimKit (Buss 2000, 2001), JSIM (Miller, Ge and 
Tao 1998), J-Sim (Tyan 2002), DESMO-J (2004), Silk 
(Kilgore 2000), SimJava (Howell and McNab 1998; Page, 
Moose and Griffin 1997), PsimJ (Garrido 2001; Garrido 
and Im 2004) and SSJ (L’Ecuyer, Meliani and Vacher 
2002) to name only a few.  

In this article we discuss a MITRE Sponsored Re-
search project to develop a Java-based simulation frame-
work. The primary goal for the project is not to create yet-
another-Java-based-simulation-language. The primary 
goal of the project is to develop technology that supports 
the construction of large-scale simulation systems by small 
teams. This primary goal is enabled by a number of secon-
dary objectives:  

 
1. Apply and evaluate open-source technologies to 

develop the simulation framework. 
2.  Create a simulation-specific application pro-

grammer’s interface that supports the construction 
of efficient simulation while retaining access to all 
existing Java language features.  

3. Develop an efficient co-routine mechanism for 
Java.  

4. Shepherd the integration the framework into the 
Java language standard through the Java Commu-
nity Process, and  

5. Apply the framework to realistic problems within 
the military and civil domains.  
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The focus of this article is on the third objective—

developing an efficient co-routine mechanism for Java. 
The remainder of the article is organized as follows. Sec-
tion 2 provides background and motivation for working 
within Java. Section 3 presents an initial study of Java 
thread performance. Section 4 describes our approach and 
design for a Java co-routine mechanism. Our initial im-
plementation within the IBM Jikes Reference Virtual Ma-
chine, and some preliminary performance results are dis-
cussed in Section 5. Conclusions and directions for future 
work appear in Section 6. 

2 MOTIVATION 

A primary stimulus for this research was the experience of 
the first author as Chief Engineer for the Joint Simulation 
System (JSIMS) (see USJFCOM 2004) during the period 
2000-2003. This experience revealed a number of challenges 
in the construction of large-scale simulation systems: 

 
• First, traditional systems engineering and govern-

ment acquisition processes are ineffective in this 
domain—staging requirements definition, then de-
sign, construction, and system integration. The in-
herent flexibility of simulation invites requirement 
inflation, especially when the cost of a requirement 
is not considered in the overall design.  

• Second, large developer teams are expensive and 
unresponsive—teams of a hundred developers ad-
just slowly to changes in requirements or design.  

• Third, the current infrastructure for building dis-
tributed simulations is too complex for the aver-
age developer. 

 
One approach to resolving these problems uses small, 

responsive teams of developers to create significant simu-
lations. Not only are small teams less expensive and more 
agile, but their speed and agility allows iterative develop-
ment of simulations. Thus requirements can be refined as 
their cost becomes evident. But how can we enable small 
teams to build very large simulation systems quickly?  

Large-scale simulation systems typically involve a great 
deal more than a core simulation. Such simulation systems 
require graphical user interfaces, database connections, 
XML and other data parsers, map displays and other visuali-
zation, and communication with other computers. Access to 
these ancillary functions is not provided to any real degree in 
extant discrete event simulation programming languages. 
Most of the large-scale military and civil simulation systems, 
therefore, are constructed using general-purpose program-
ming languages. And with the rising popularity of Java, 
many of these systems are being built in Java. 

Java, like other “mainstream” programming lan-
guages, has a variety of development tools, including inte-
grated development environments (compilers, debuggers, 
build tools), and code profiling and optimization tools. The 
range of tools available to Java programmers exceeds that 
available to programmers in most simulation languages. 
Theoretically, at least, these tools make it easier to con-
struct large systems of any sort—including simulations. 
Java literature and training are extensive. Java is the domi-
nant teaching language for Computer Science in the U.S., 
which ensures a steady stream of graduates comfortable 
with the Java platform. 

However, Java tends to scale poorly as a simulation 
language, especially in the context of the process interaction 
world view. The primary reason for this is a simple one: 
within standard Java Virtual Machines, Java threads are tied 
to underlying operating system threads. In Java-based proc-
ess-oriented simulations, each object (or logical process) is 
typically assigned its own thread. On commodity Windows 
and Linux platforms, this limits the number of logical proc-
esses to a few thousand (see Section 3). Large-scale military 
and civil simulations, on the other hand, can require hun-
dreds of thousands of logical processes.  

One way to support very large numbers of logical 
process is to use multiple physical processors (i.e. parallel 
or distributed simulation).  Another approach to provide an 
efficient co-routine mechanism for Java—one that does not 
rely on operating system threads. 

3 A QUICK LOOK AT JAVA THREAD 
PERFORMANCE 

To establish a baseline for the number of concurrent 
threads supportable in the Sun Microsystems Java Virtual 
Machine (JVM), we constructed a simple benchmark that 
creates logical processes until a java.lang.Out Of Mem-
ory Error: unable to create new native thread er-
ror is generated. The benchmark creates a “main” entity 
that advances time in equal steps. At each timestep, the 
main entity creates a new instance of a “null” entity. The 
null entities each execute an indefinite wait.  

The benchmark was run on two platforms. The first is 
a Dell D600 (1.3 Ghz processor, 1 Gb RAM) running 
Windows XP and Java HotSpot(TM) Client VM 1.4.2_03-
b02. The second is a Dell 4300 (two 2-GHz processors, 2 
GB of RAM) running Linux kernel 2.4.20-24.9smp 
(Redhat 9) and Java HotSpot(TM) Client VM 1.4.2_02-
b03 (a slightly older version of the JVM).  

We examined the effects of varying the thread stack 
size (-Xssn argument to the JVM) and the memory alloca-
tion area (-Xmxn argument to the JVM). In each case, 
when varying one of these parameters, the other was left at 
its default value. The results, which appear in Table 1, in-
dicate a limitation of, roughly, 8000 threaded entities for 
Windows and 4000 for Linux. 
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Table 1:  Upper Bounds for Thread Creation in Sun JVM 
Platform JVM argument #entities created 
Dell, Windows -Xss5k 7240 
 -Xss10k 7240 
 -Xss20k 7240 
 -Xss50k 7240 
 -Xss400k 1847 
 -Xss10m 176 
 -Xmx8m 7386 
 -Xmx16m 7386 
 -Xmx32m 7366 
 -Xmx64m 7240 
 -Xmx128m 6987 
 -Xmx256m 6481 
 -Xmx640m 4963 

Dell, Linux -Xss5k Stack size too 
small 

 -Xss96k Stack overflow 
error 

 -Xss100k Stack overflow 
error 

 -Xss200k 3459 
 -Xss400k 3459 
 -Xss10m 178 
 -Xmx32m 3459 
 -Xmx100m 3459 
 -Xmx400m 2985 

4 DESIGN OF A CO-ROUTINE  
MECHANISM FOR JAVA 

Within our framework, recently dubbed Tortuga, interact-
ing processes are created by extending class Entity, creat-
ing instances of those extended classes, and registering 
those instances with the simulation executive. Each entity 
has an agenda() method. The agenda is where simulation 
developers place code to model the proactive aspects of en-
tity behavior. The Tortuga framework provides the usual 
set of services to allow an entity to sense the simulated en-
vironment and control the advance of simulation time. 

The simple entity depicted in Figure 1 illustrates the 
major points in the control of interacting processes. When, 
at time t, an instance of class MyEntity is registered with 
the simulation executive, the executive invokes the 
agenda() method. Computation at lines 3 and 4 takes place 
at time t. In line 4, the entity requests a delay of 5.0 simula-
tion time units using framework method waitForTime(). 
Method waitForTime() transfers control to the simulation 
executive. After simulation time advances 5.0 time units, 
the executive transfers control back to line 5 where code at 
that point experiences a simulation time value t + 5.0. 
When the agenda() code is complete, control returns to the 
simulation executive. The executive then excludes the en-
tity from future scheduling consideration and makes it 
available for garbage collection. 
 
1 class MyEntity extends class Entity { 
2    public void agenda() { 
3      // time is now t 
4      waitForTime(5.0); 
5      // time is now t + 5.0 
8    } 
9  } 

 

Figure 1:  Simple Entity 
 
The interaction between the simulation executive and 

the entities that comprise a simulation can be generalized 
to four operations. These operations are defined below: 

 
• Elaborate(p) - Invocation of the agenda() method 

of entity p. This is done by the executive after the 
entity is registered. 

• Yield to Executive – Used by an entity to transfer 
control to the simulation executive when the en-
tity needs to wait for the passage of time or some 
other change in the environment. 

• Yield to Process(p) – Used by the simulation ex-
ecutive to transfer control from the simulation ex-
ecutive to entity p when some specified conditions 
are met. 

• Terminate(p) – Used by the simulation executive 
or by an entity to remove entity p from further 
consideration by the simulation executive. This 
operation takes place implicitly after the agenda() 
method is complete. 

 
All Java-based process oriented frameworks have op-

erations similar to those above.  In all cases some sort of 
thread manipulation is needed to achieve the co-routine 
semantics required by Yield to Executive and Yield to 
Process. Typically, a unique Java thread is assigned to the 
simulation executive and to each of the entities. The thread 
manipulation needed to implement the four operations are: 

 
• Elaborate(p) – Create a new thread for entity p. 

Let the new entity thread begin execution of the 
entity agenda() method. Suspend the executive 
thread while this is taking place. 

• Yield to Executive – Suspend the thread of the 
entity that invoked the Yield to Executive op-
eration. Awaken the simulation executive thread. 

• Yield to Process(p) – Suspend the simulation ex-
ecutive thread and awaken the thread for entity p. 

• Terminate(p) – Awaken the simulation executive 
thread if needed and destroy the thread for entity p. 

 
Given an understanding of how threads are used to co-

ordinate the interaction between the simulation executive 
and a group of entities, we can make the following obser-
vations. Threads are a more capable, and unfortunately 
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more complex and expensive, control mechanism than is 
really needed to support the four operations defined above. 
Specifically, there is no need for true parallelism as pro-
vided by threads. Additionally, as used by the four opera-
tions, all threads are awakened explicitly by executive or 
entity code. One of the powerful, and again expensive, fea-
tures of threads is their ability to link awakening to asyn-
chronous events such as hardware interrupts. But this ca-
pability is not needed to implement the four operations. 

Note also that there are n + 1 threads needed to im-
plement a simulation with n entities. Effectively, only one 
thread is actually executing at any given time even if more 
than one physical processor is available. This means that 
there will be n + 1 execution stacks in the JVM but only 
one of them will be changing at a time. 

These observations led us to investigate a single thread 
approach. Given that it is not possible in “pure” Java to 
implement the four operations above without using multi-
ple threads, the research goal became the isolation, defini-
tion, and implementation of the smallest set of JVM exten-
sions needed to support co-routines. The experimental 
vehicle for the investigation is the IBM Jikes Reference 
Virtual Machine (RVM) (2004). The IBM RVM was cho-
sen because it has good performance, is written in Java, 
was designed for experimentation, is available as open 
source, and is self hosting. This last point is significant as 
Jikes may be the only JVM written in Java that runs on it-
self and does not require a second JVM. 

The essence of the project is to convert a single thread 
with its single method invocation stack into a cactus stack 
(see Sardesi, McLaughlin and Dasgupta 1998) without ad-
versely effecting the operation of the RVM. The left side 
of Figure 2 shows the normal situation where each thread 
has a conventional, linear frame stack. As one method in-
vokes another, a new frame is pushed onto the top of the 
stack and the frame pointer (FP) is advanced upward to 
keep track of the currently executing method. Each frame 
contains references to the method code for that invocation, 
the saved instruction pointed for the method that invoked it 
(the one beneath it), a pointer to the stack frame beneath it, 
and other saved state such as hardware registers. 

 

FP
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FP2

FP3

FP
FP1

FP2
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Figure 2: Conventional and Cactus Stacks 

 
In a cactus stack, as seen on the right of Figure 2, there 

are multiple arms at a single level and a common base. The 
cactus stack data structure allows arbitrary levels of 
branching but only one level is needed for this design. 
Each arm has its own frame pointer, FPi, and is used to 
manage the execution of a single entity. The common base 
contains the frames created by the runtime environment to 
start the thread and those of the simulation executive. 

The four operations needed to coordinate the interac-
tion between the simulation executive and the entities, de-
fined above, also govern the major cactus stack actions. 
When the simulation executive uses Elaborate(p) to create a 
new entity, a new arm is added to the stack. Symmetri-
cally, operation Terminate(p) removes the arm on which en-
tity p was executing. Operation Yield to Executive, 
when invoked within arm i, causes execution at FPi to stop 
and execution at the top frame of the common stack base to 
resume. Yield to Process(p) is always called from the 
simulation executive, the top frame of common stack base, 
and causes execution to resume at frame FPi where arm i is 
the stack for entity p. 

5 IMPLEMENTATION AND RESULTS FOR THE 
IBM JIKES REFERENCE VIRTUAL MACHINE 

Most of the work within the Jikes RVM focused on creat-
ing the cactus stack semantics within the context of the 
single conventional stack organization expected by the 
RVM design. Our approach swaps the cactus stack arms on 
and off the conventional thread stack in a way that does not 
disturb normal RVM function.  

5.1 Elaborate(p) 

Creating a new entity does not require any special stack 
manipulation. The simulation executive uses Elabo-

rate(p) to start the execution of an entity for the first time. 
This eventually results in the invocation of the agenda() 
method on entity p. Figure 3 shows the state of the stack 
after the simulation executive invokes Elaborate(p) 
which in turn has invoked the agenda() of entity p. The 
frame pointer, FP, points to the agenda() frame showing 
that the agenda() is currently executing. 
 

Executive

system

Elaborate(p)

FP
Entity p agenda()

Executive

system

Elaborate(p)

FPFP
Entity p agenda()

 
Figure 3: Initial Invoca-
tion of an Entity Agenda 
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5.2 Yield to Executive 

The left side of Figure 4 shows the continued execution of 
entity p. The agenda() code invoked framework method 
waitForTime(5.0) indicating that entity p should be sus-
pended until 5.0 units of simulation time have passed. 
Framework method waitForTime() does the necessary 
bookkeeping to schedule the reactivation of entity p and 
then uses the coordination operation Yield to Executive 
to pass control to the simulation executive. 
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Figure 4: Saving Entity Execution State 

 
Yield to Executive searches the stack from the point 

of its invocation downward until it finds the stack frame 
for the simulation executive. It then copies the stack frames 
from the top of the stack downward to the frame just above 
the simulation executive to a holding pool elsewhere in 
memory. Finally, Yield to Executive repositions the 
frame pointer, FP, to the simulation executive stack frame. 
As shown on the right side of Figure 4, this movement of 
the FP makes it appear to the simulation executive that its 
invocation of Elaborate(p) has returned. 

5.3 Yield to Process(p)  

This operation resumes entity p execution after is has been 
suspended by the Yield to Executive operation. It lo-
cates the stack segment for entity p in the holding pool and 
copies it back to the frame stack where it will then resume 
execution. In the Jikes RVM, stack frames contain absolute 
memory pointers to other frames in the stack. This means 
that when a segment is moved out of the holding pool and 
back onto the frame stack it must be replaced in exactly the 
same memory locations from which it was found. This 
leads to a collision between the stack frame supporting op-
eration Yield to Process(p) and the Elaborate(p) stack 
frame in the stack segment being restored. Said another 
way, the Yield to Process(p) operation will overwrite 
its own stack frame while coping the entity p stack seg-
ment back on to the frame stack. 

A solution to the problem is to divide the restoration 
of the stack segment into two parts. In the first part, Yield 
to Process(p) determines where the top of the frame 
stack will be when the entity p segment is restored. At this 
position it creates the stack frame for the invocation of 
method Restore Segment. This is shown on the left side of 
Figure 5. In the second part, Restore Segment copies the 
stack segment to the memory that has been reserved be-
neath itself. It safely overwrites the Yield to Process(p) 
stack frame in the process because the active part of the 
frame stack is at Restore Segment and above. 
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Figure 5: Restoring Entity Execution State 

 
Once the entity p stack segment is copied into place, 

the FP is moved down three stack frames. This is shown in 
the middle of Figure 5. Control leaves Restore Segment 
and enters waitForTime(5.0) which itself returns. From 
the perspective of the entity p agenda(), the method wait-
ForTime(5.0) has just returned and the next statement in 
the agenda() can be executed. 

5.4 Terminate(p) 

This operation is used when the simulation executive de-
termines that an entity will never need to be restored. Usu-
ally this occurs when the entity agenda() is complete. Ter-
minate(p) does not require extraordinary frame stack 
manipulation. It simply removes the entity p stack segment 
from the holding pool. 

5.5 Initial Results 

Initial results confirm the potential power of the cactus 
stack approach. Controlled benchmarks are able to create 
and manage up to 42,000 entities using as little as 100MB 
of memory. This compares favorably with the modest 
numbers of entities (less that 8,000) that can be created us-
ing conventional thread-based implementations. Before a 
robust implementation of the cactus stack can be consid-
ered for practical use, more work must be done on the in-
terface to the garbage collection system. 

Support for garbage collection is a powerful feature of 
Java. The essence of garbage collection is to separate por-
tions of memory that are reachable by program reference 
from memory that has been allocated but is no longer 
reachable. Memory that is no longer reachable is garbage 
and can be collected and made available for future 
reallocation. Garbage collectors may examine the frame 
stack in the process of locating all the reachable memory in 
a program. The cactus stack manipulation adds an 
additional step to conventional garbage collection. After 
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step to conventional garbage collection. After the garbage 
collector examines the frame stack it must also examine all 
the stack segments in the holding pool. This is needed be-
cause a stack segment may contain the only reference to an 
object that, if not taken into account, could be mistaken for 
garbage. The segment may also have references to objects 
that are moved by the garbage collector and need to be up-
dated with the new object location. This also includes ref-
erences to code objects, such as saved instruction pointers, 
that must also be updated if a code object moves.  

6 CONCLUSIONS AND FUTURE WORK 

Work to extend one of the Jikes RVM garbage collectors 
has been fruitful. The extended garbage collector success-
fully includes saved stack segments in its analysis and 
properly updates references to relocated objects. Work re-
mains to improve the efficiency of the stack segment hold-
ing pool and the overall implementation robustness. 

Once the IBM Jikes implementation of the single 
thread simulation executive is made robust enough for pro-
duction use, attention will turn to the Sun JVM. It is hoped 
that similar success with the Sun JVM will support the ar-
gument that co-routines would be a useful extension to the 
Java language and a useful tool to the growing Java-based 
simulation market. 
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