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ABSTRACT 

Decision trees are one of the most easy to use tools in deci-
sion analysis. Problems where decision tree branches are 
based on random variables have not received much atten-
tion. This paper introduces a successful application of a 
Special Purpose Simulation (SPS) program in developing a 
Decision Tree module that is part of a unified Decision 
Support System (DSS) template. The DSS template con-
sists of three modules: Decision Tree (DT), shortest and 
longest path Dynamic Programming (DP) Network, and 
Cost / Time (CT) Estimate network. The DT module inte-
grates with other modules and allows users to model deci-
sion trees with variables that are based on probabilistic 
random numbers. This paper introduces the DSS-DT mod-
ule and shows its advantages. 

1 INTRODUCTION 

Decision trees are one of the most attractive and easy to use 
tools in decision-making. They analyze decision alternatives 
in a systematic, chronological way and provide an easy to 
read graphical presentation to decisions under consider-
ations. However, solving DT’s using single number estimate 
has several disadvantages that limit the DT’s applications. 
With the use of computer-based simulation programs, 
additional features are added to the DT’s to increase their 
usefulness and enhance their use. 

SPS programs provide a unique solution to modeling 
methodologies. They provide tools that can be used by 
non-expert simulation users. SPS program allows an ex-
perienced simulationist to build a template that can model 
problems of general nature and that can be used by inexpe-
rienced user. This paper presents an application of a SPS 
program in producing a reusable DT template that can be 
easily used by non-experienced simulation users.  

 

 

The paper has two objectives: 

 
• to present a successful application of a SPS pro-

gram in modeling DT’s 
• to contribute to the body of knowledge by intro-

ducing the added features of the DT’s built under 
a SPS platform. 

 
The template is created using Simphony, a SPS com-

puter program developed by the University of Alberta. For 
more information about Simphony, readers may refer  to 
AbouRizk & Hajjar (1998) and Hajjar & AbouRizk (2002). 

 The paper starts with highlighting the DT conven-
tional concept including a brief introduction on the utility 
theory. Then, an introduction to stochastic DT’s is pro-
vided. Finally DSS-DT Module and  its advantages are 
presented. 

2 DECISION TREES 

A DT is “a graphical presentation of expected value (EV) 
calculation” (Schuyler 2001) – it is “an attempt to explicitly 
determine the alternatives available … the expected costs, 
payoffs and probability of success associated with each 
alternative” (Mock 1972). The DT’s show the sequence of 
decisions and their consequences with the objective to select 
the best course of action. By solving the DT the analyst/ 
decision-maker is seeking the optimum solution based on the 
maximum (or minimum) Expected Value (EV).  

A DT can also be an analysis tool by examining the 
outcomes under wide range of input variables. The latter is 
best modeled using stochastic values i.e. inputs are based 
on probabilistic distribution estimates.  
 Hespos & Strassmann (1965) distinguish between 1) 
DT‘s where single number estimates are used and 
decisions are made based only on the EV criterion; and 2) 
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DT’s where probabilistic values are used i.e. where the 
concept of risk/utility is used in selecting decisions. They 
named the former a “conventional DT” and the latter a 
“stochastic DT;” same distinguish is used in this paper.   

2.1 Conventional Decision Trees 

Conventional DT’s are covered in wide range of publica-
tions (Raiffa & Schlaifer  1961; Meredith et al. 1973; Rev-
elle, Whitlatch, and Wright 1997; Taha 1997; Moore & 
Weatherford 2001; Hillier & Lieberman 2001). A brief ex-
planation on the DT components and computational proce-
dure is provided below for easy reference. A conventional 
DT consists of five main components: 

 
• Decision Nodes: represented by squares that pre-

cede variables or actions that the decision-maker 
control 

• Chance Event Nodes: represented by circles that 
precede events that cannot be controlled 

• Terminal / End Nodes: End points where outcome 
values (payoff’s) are attached 

• Decisions: branches out-coming from Decision 
Nodes; they represent alternative decisions avail-
able to decision-makers  

• Chance Events: branches out-coming from 
Chance Event nodes; they represent possible out-
comes of decisions; they are assigned probability. 

  
 A tree has one root, normally a decision node, drawn 
chronologically from left to right; branches (decisions & 
outcomes) are radial lines originated from the nodes. Figure 
1 shows a simple DT with two decisions and three chance-
events resulting from each decision. To solve a conventional 
DT, the analyst calculates the expected value (EV) by: 

 
1. identifying alternative decisions and their cost. 
2. identifying possible outcomes of each decision 
3. estimating the probability of the outcomes; if 

there are subsequent decisions or outcomes steps 
1 to 3 are to be repeated  

4. drawing the tree chronologically from left to right 
and calculating the payoffs at end of each branch  

5. folding-back the tree to calculate the EV and tak-
ing the decision that has the optimum EV. 

 
The EV is calculated so that: 
 

• at chance events the EV equals the sum of the val-
ues of the chances multiplied by their probability: 

 

 EV = )
1

( i
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i
i XPX∑

=

=

 (1) 

 
 n is the number of chance events i’s at the Node 
• at the decision node the EV equals the optimum 
EV at the node (minimum or maximum as per the 
optimization criteria required).  

 
A DT is constructed from the bottom up (from time zero up), 
analyzed from the top down, and finally implemented from 
the bottom up (Revelle, Whitlatch, and Wright 1997). Val-
ues in the tree should be discounted to the net present value.  
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Figure 1: Decision Tree Presentation – Main Com-
ponents 

 
 Taking decisions based on the EV alone and using 
single values in estimating future events have been subject 
to several criticism(Schuyler 2001; Hespos & Strassmann 
1965; Smith, Hinton, and Lewis 1983; Hartman 2000; 
Ferrara & Hayya 1970; Durrenberger 1999). A summary of 
these criticisms are given below. 

 
1. The EV assumes repetitive decisions and does not 

take into consideration the one-time decision. De-
cisions based on the EV do not take into consid-
eration the risk attitude of the decision-maker and 
do not show the risk involved with decisions.  

2. In conventional DT’s, the number of branches can 
get larger in complex problems. It assumes no 
feedback to previous decisions, and hence if feed-
back is required, the tree gets larger. 

3. The use of single number estimate assumes knowl-
edge of future events with certainty and gives no 
information on the range of possible outcomes or 
the probability associated with these outcomes. 

 
 The conventional DT is unable to reflect the underly-
ing uncertainty in decisions related to future events. To 
overcome the problem of the EV, analysts may use the util-
ity function of the decision-maker to solve the tree. Utility 
function measures the relative preference of the decision-
maker and the value of payoffs to him/her (Smith, Hinton, 
and Lewis 1983). By measuring the utility of the decision-
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maker, the payoffs are translated to reflect this utility, the 
DT can then be solved using the utility converted factors 
(Smith, Hinton, and Lewis 1983). In other words, instead 
of taking the decision that reveals the optimum Expected 
Monetary Value (EMV), the decision can be for the maxi-
mum Expected Utility (EU). The utility theory considers 
the risk attitude of the decision-makers, and hence by using 
the utility function, the tree can be suitable for the one-time 
decision. For more information on methods of measuring 
the utility function readers may refer to Hillier & Lieber-
man (2001), Revelle, Whitlatch, and Wright (1997), and 
Taha (1997). The Utility concept is considered a theoreti-
cal concept more than a practical one (Wideman 1992): 

 
• Measurement of utility is difficult   
• In case of several decision-makers – the tree 

should be solved for each utility function; it can’t 
be used as a communication tool among several 
decision-makers 

• Utility method still doesn’t not provide informa-
tion about the range of possible outcomes and as-
sociated probability. 

2.2 Stochastic Decision Trees 

Stochastic trees are “extension of DT’s that facilitate the 
modeling of temporal uncertainties” (Hazen & Pellissier 
(1996). Stochastic DT’s permit the use of probability esti-
mates or frequency distributions for some or all factors 
affecting decisions (Hespos & Strassmann 1965). Appli-
cations of stochastic trees can be found in Hespos & 
Strassmann (1965) and in Hazen & Pellissier (1996), and 
Hazen (2000). A stochastic DT is defined in this paper as a 
tree whose:  

• decisions (branches from decision nodes) may be 
estimated as density distribution function values 

• chance events  (branches from chance-nodes) may 
be estimated as density distribution function values 

• nodes my be connected to branches with probabil-
istic or/and constant values. 

• chance events problaity may be estimated as a 
range of the likely probability. 

 
Branches with density distribution values are analo-

gous to large number of branches in a conventional DT 
(Hespos & Strassmann 1965). Stochastic DT’s overweigh 
the conventional method in that information about deci-
sions and outcomes are estimated in ranges rather than in 
single numbers reflecting the real-life uncertainty in esti-
mating values of future events. Results from stochastic 
DT’s can be obtained in a probabilistic form; the informa-
tion can then be analyzed using the concept of utility and 
risk (Hespos & Strassmann 1965).   
3 DECISION SUPPORT SYSTEM (DSS)  
UNDER SIMPHONY PLATFORM 

Simphony, a SPS program, has been used in several 
applications including earth-moving, tunnel construction, 
range estimating, and PERT time estimate; see Hajjar & 
AbouRizk (2002) and Ruwanpura et al. (2001).   

Developers use the Simphony editor to develop a SPS 
template. A template is a collection of modeling elements 
that are targeted for a single domain (Hajjar & AbouRizk 
2002). The user builds a simulation template in Simphony 
by creating modeling elements that resemble real compo-
nents of a model/system and linking them together. Sim-
phony provides a hierarchical modeling feature. A system 
can be represented by an abstracted model at a level; at a 
lower level, each of the model elements can have its own 
child model, which represents the sub-system inside that 
element (Hajjar & AbouRizk 2002 and Simphony User’s 
Guide 2000). 

The DSS template includes the elements required to 
model the three modules. The template consists of 16 mod-
eling elements, which are colour coded so that elements 
with similar colours are used by one module. The DT 
module uses 10 modeling elements (see Table 1) which are 
required to model a stochastic DT.  
 

Table 1: DT Modeling Elements 
Element Name Function  

Root Element # 1 The higher level element of a  
network 

Start Node # 2 The first element in a DT or any  
other network 

DT Decision Node # 3 Decision node in a DT; precedes  
decisions alternatives 

DT Chance Node # 4 Chance node in a DT; precedes  
chance events 

DT Terminal # 5 Terminal of a DT branch 
DT Branches Sum # 6 Sums values of DT Terminals.  

Combines risk values of any  
decision or combination of  
decisions. 

Resource # 13 Represents resources / costs  
associated to a decision. 

Probability Relation  
Parent # 14 

The parent element for chance  
events (Probability Relation  
Child # 15).  

Probability Relation  
Child # 15 

An event. Child of a Probability  
Relation Parent.   

Link/Branch # 16 A decision. 
 
Figure 2 shows the DSS template with the DT elements 
marked.  

Figure 3 shows a DT using the DSS notations. As seen 
in Figure 3, the DSS has additional elements not in the 
conventional DT’s (see Figure 1). The “DT Branches 
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Figure 3: DT Using DSS Notations 

 
Sum” collects the payoffs of realized branches and pro-
duces the risk/utility profile of any decision or any combi-
nation of decisions. The “Start Node” creates the required 
entities for the simulation (initiates the simulation). 

4 DSS TEMPLATE - DECISION  
TREE MODULE   

A DT using DSS should be constructed in the lower level 
of the “Root Element # 1” (See table 1). Figure 4 shows a 
conceptual graph showing the relationship between the 
“Root Element” and the DT. This section describes the fea-
tures of the DT-DSS and shows how these features en-
hance DT applications. 

4.1 DT - DSS Template Features  

The DT- DSS template has the following features: 
 
• Each decision and chance-event can be estimated 

using the cost and/or benefit values; cost indicates 
spending (e.g. cash-out); benefit indicates income 
(e.g. cash-in).  
• For each cost/benefit of a decision or of a chance-
event, users have the option to input the values ei-
ther as constant value (single number) or as a den-
sity distribution function (Uniform, Beta, Expo-
nential, or Normal distribution).  

• A node in DT-DSS (a decision node or a chance-
node) may be connected to a branch with prob-
abilistic (density distribution) value, a constant 
value, or both.  

• Cost may be estimated using detailed estimate 
rather than based on one lump sum estimate 
(whether it is constant or probabilistic estimate). 
With the “Resource” modeling element, users can 
assign any number of resources to a decision. Re-
sources may represent labour, materials, money 
allocation, etc. The cost of each resource is a 
function of the quantity of the resource and the 
unit rate. Both resource quantity and unit-rate can 
be either constant or density distribution function. 
The number of resources assigned to a decision is 
limited by the computer capacity.  Assigning re-
sources to decisions provides the modelers a 
flexibility in estimating the cost based on different 
combination of density distribution estimates. 

 
Decisions’ cost may also be estimated as a function of  

the cost of another network. The DSS template supports a 
hierarchal structure that allows networks to be modeled in 
a lower level of some modeling elements. The hierarchical 
characteristic facilitates integration among the modules i.e. 
the output of a network may be the input of another net-
work. For example, the cost of a decision in a DT problem 
may be estimated as the cost of a project resulting from a 
cost range estimate modeled by the CT network module.  

The first element in any network is the “Root Ele-
ment”, the DT is constructed at a lower level of the “Root 
Element”. The “Root Element” collects the network infor-
mation. The “Root Element” may be constructed in a lower 
level of another element. In such case, the information col-
lected by the root element is used as input to the element in 
the higher level.  

Figure 5 shows a conceptual diagram that illustrates 
the hierarchal relationship in the DT–DSS modules. The 
first element in the hierarchy is the “Root Element.” It in-
cludes the DT network in its lower level. A decision in the 
DT network has another “Root Element” in its lower level. 
The latter “Root Element” has a project network in its 
lower level. Similarly more/other networks may be linked 
to other elements. The tree is calculated from down-up i.e. 
networks at the lower levels are calculated first. 
 This feature allows the user to estimate the cost of a 
decision based on the cost of another stochastic network. 
Such network may be another DT, a DP or a CT network 
with or without probabilistic realization of nodes, probabilis-
tic values, and/or resources and networks in a lower level.  
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Figure 4: Decision Tree – DSS Screen 
 
Figure 5: Decision Tree Integration Example 
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The user may use any combination of the three meth-
ods to input values in the model i.e. cost of a decision may 
be a result of resource costs, a network cost, or/and a direct 
estimate. Such flexibility provides the modeler the chance 
to model DT’s whose costs do not necessarily fit into a 
standard probability distribution. (For the importance of 
using a correct distribution refer to AbouRizk, Halpin, and 
Wilson (1994)).  
 

• probability at the chance events may be estimated 
as single numbers (i.e. the total estimate of chance 
events at each chance node should be 100%) or as a 
range of the likely probabilities. The range of the 
likely probability allows using range of estimates. 
For example, in a three chance-events-node, the 
user may specify the probability of outcomes as 30-
40% for the first event, 60-75% for the second 
event, and 5-10% for the third event. Such flexibil-
ity provides users a more realistic approach in es-
timating the likelihood of events’ occurrence.  

• The DSS permits feedback to previous decisions 
or event nodes and accepts loops (cycles) based 
on probabilistic estimate.  it also accepts  

• Optimization of the EV can be with either mini-
mum or maximum EV as specified by the user . 

4.2 DT- DSS Template Calculation and Results  

During each simulation run, the DSS assigns independent 
random values to each of the tree variables based on the 
specified distribution and parameters. Variables include 
the costs, the benefits, and the probability ranges at 
chance event nodes. If there are resources or networks at 
the lower level of any decision, the DSS calculates these 
resources and networks first; then adds such costs to any 
other costs input directly into the decision. The tree is 
then calculated through:  

 
• forward path calculation: the DSS calculates the 

probability of realization at each node and the 
payoffs at the terminals. At each chance-node the 
DSS generates an independent random number 
based on which one branch is realized. The util-
ity/risk at each realized terminal is calculated as 
the payoff at this terminal. Utility/risk of unreal-
ized terminals is zero. The program collects the 
statistics of utility/risk at each terminal. The stat-
istical results provide the probability and the 
range of payoff’s resulting from each decision or 
a combination of decisions. Assessment of  the 
risk/utility is later explained in section 4.3. 

• backward calculation: the program calculates the 
EV at each node using the payoff values calcu-
lated in the previous step; the DSS also calculates 
the optimality index for each decision (the prob-
 
ability for a decision to fall on the path that yields 
the optimum EV); the optimality index = the 
number of times a decision falls on the tree solu-
tion path / number of iterations. (tree solution path 
is the combination of decisions that  yield the tree 
optimum EV) 

 
Once all simulation iterations are is complete, the program 
collects the statistical results: 

 
• for input values so that the user may review the 

estimates provided – this is particularly important 
if the input values are delivered from another 
network or from the costs of allocated resources  

• for calculated results: 1) EV ‘s at any node, 2) 
Payoff’s at terminals, and 3) Risk/utility for any 
decision and  any combination of decisions at the 
“DT Terminal” and “DT Branches Sum” nodes 

4.3 Assessment of Utility and Risk  
Using the DSS-DT Module 

The DT-DSS may be used for any decision tree application. 
We provide a hypothetical example to explain how the DT-
DSS may be used in supporting the decision process. As-
sume that a company must select between two projects: Pro-
ject A and Project B (see Figures 1 and 3). Inputs (estimated 
costs of projects and estimated outcomes) are estimated as 
density distribution values. After simulating the model for a 
large number of iterations (here 1000 runs), the outputs 
show the range of possible outcomes from each project. 

Figure 6 shows the simulation results for projects A 
and B. For project A, the optimality index (chances that the 
project provides the maximum EV) is 59.5% while that for 
project B is 40.6%. The maximum, the  minimum, the av-
erage and the standard deviation of the EV can be retrieved 
and the users can examine the cumulative density distribu-
tion (CDF) graph for the EV of each decision (Figure 7) 
(x-axis=$, y-axis=probability). 

 

 
Project A 

 
Project B 

Figure 6: Output Screen Decision A and B 
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Figure 7: Project A Statistics Screen and the EV – CDF  

 
The risk/utility of the projects A and B is provided 

through  statistics of the “DT Branches Sum” (Figure 8). 
Figures 9 and 10 show the CDF graph for each decision. 
The “DT Branches Sum” collects the value of the payoffs 
for the realized chance-event branches; hence, the statis-
tical results reflect the possible range of outcomes for 
each decision.  

 

 
Project A 

 
Project B 
Figure 8: Outputs Results – Utility/Risk at Branches 
Sum Example 

 

 
Figure 9: CDF Graph Decision A 
 

 
Figure 10: CDF Graph Decision B 

 
By analyzing the outputs of the utility/risk shown in 

figure 8, the decision maker can take the proper decision 
for his/her problem. Recognizing the larger loss of project  
“A” (-$3,801 for “A” versus -$2,765 for “B”) and the small 
difference of EV optimality (59.5% versus 40.6%), a risk-
averse decision-maker may select decision B. Also, from 
Figures 9 and 10 (CDF graphs of the information shown in 
figure 8), the decision-maker may consider that the chance 
of loss in “A” is about 29% while in “B” is about 23%. 
Another decision-maker may look at the possible outcome 
at a specific probability – for example at 70% chance of 
success. At such probability, project “A” yields $1,000 or 
less while “B” yields $700 or less. A risk-taker may take 
decision “A” for the higher income. 

The decision-maker is now more informed about the 
range of possible outcomes of each decision alternative and 
the probability associated with any value and is in a posi-
tion better than that of using the EV alone. In case of re-
petitive decisions, where the EV is argued to be an ade-
quate decision criterion, the decision-maker is able to get 
the possible range of EV’s for each decision (Figure 7) and 
the value at any specific probability. 
 Similarly any node can be examined. Also the results 
of each run can be obtained in a database file for more 
analysis if required. In case of sequential decisions, the 
“DT Branches Sum” may connect to any terminal repre-
senting any decision or to several terminals representing a 
combination of decisions. Figure 11 shows a sequential 
decision tree where the “DT Branches Sum” (marked with 
arrows) were used to collect information about the 
risk/utility of several decisions. 

5 CONCLUSION  

Decision Trees (DT’s) provide powerful methodology to 
visualize and analyze decisions. Conventional methods of 
solving DT’s do not provide information about the risk 
involved in decisions and are not suitable for one time 
decisions. We introduced an application to DT’s by using a 
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Figure 11:  Sequential DT - “DT Branches Sum” 
Decision Support System (DSS) template that is developed 
under Simphony – a Special Purpose Simulation (SPS) 
program. The DSS-DT module accepts constant and den-
sity distribution values and integrates with other modules 
in the DSS template. Decisions’ costs can be estimated di-
rectly by inputting values in the elements or by detailed es-
timate. The DSS-DT Module accepts loops (feedback to 
previous decisions), allows estimating probability of events 
based on range estimate, provides the optimality index for 
each decision, and provides the utility/risk profile for any 
decision and any combination of decisions.    
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