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ABSTRACT 

In this paper, we conduct a simulation study to evaluate 
linear control theory models applied to the management 
and coordination of a two-stage customized service supply 
chain. Linear models that were proposed in previous re-
search are compared against more general nonlinear mod-
els for three different levels of coordination: centralized, 
decentralized, and no information sharing. Using simula-
tion and regression analysis, we show that the linear mod-
els yield results that are off by an average of six percent or 
less for parameter values observed in practice. 

1 INTRODUCTION 

Over the past fifteen years there has been a great deal of 
work, both industrial and academic, devoted to improving 
supply chain management through better information shar-
ing and improved coordination of supply chain activities. 
This paper focuses on the evaluation of models used to as-
sess different levels of coordination and information shar-
ing in two-stage customized service supply chains. Exam-
ples of such supply chains are found in oilfield services; 
outsourced engineering and technical services; consulting; 
financial services such as mortgages and insurance; com-
mercial construction; mobile workforces such as home 
health care providers; and even make-to-order manufactur-
ers such as capital equipment producers.  

Figure 1 provides an example from oilfield services. 
The first stage, called evaluation, involves exploration to 
find and characterize an oil and gas reservoir. At the second 
stage, the reservoir is developed for production. While Fig-
ure 1 provides a very high level view an oilfield services 
supply chain, it is a perspective around which the major 
companies involved in oilfield services such as Schlumber-
ger (<www.schlumberger.com>), Halliburton (<www. 
halliburton.com>), and Baker-Hughes (<www. bak 
erhughes.com>) organize their businesses.  
 

Figure 1: A High Level View of an Oilfield Services 
Supply Chain 

 
Anderson and Morrice (2000, 2002) and Anderson et 

al. (2004a, 2004b) analyze coordination and information 
sharing in customized services supply chains using simula-
tion and control theory. In particular, Anderson et al. 
(2004a) formulate and solve optimal linear control prob-
lems that approximate more general optimal non-linear 
control problems of centralized, decentralized, and no in-
formation sharing management strategies in a two-stage 
customized service supply chain. In this paper, we assess 
these linear approximations relative to their non-linear 
counterparts  using simulation. We show that the linear ap-
proximations can perform quite well especially in light of 
the model parameter settings in practice across many dif-
ferent industries.  

It is important to note that simulation and control the-
ory have been used to analyze manufacturing supply 
chains. Towill  (1995, 1996) use simulation and filter the-
ory to study supply chain dynamics. Dejonckheere et al. 
(2003) proposes a control theoretic approach to measure 
and avoid the bullwhip effect (i.e., order quantity variance 
amplification at progressively higher stages of the supply 
chain away from the original demand signal). Perea-Lopez 
et al. (2001, 2003) use dynamic modeling and a model pre-
dictive control strategy for performance improvement and 
optimization of a supply network. They compare the per-
formance of  the supply network under centralized and de-
centralized management approaches. Kempf (2004) pro-
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poses a model predictive control approach to supply chain 
management in semiconductor manufacturing. 

Section 2 describes the control problem results from 
Anderson et al. (2004a). Section 3 contains the simulation 
results. In Section 4, we discuss the simulation results in 
light of empirical data available on several industries. 

2 THE CONTROL PROBLEMS 

Let the index t  represent time. To formulate optimal con-
trol problems for the supply chain in Figure 1, Anderson et 
al. (2004a) assume that end customer demand, ( )r t ,  is 
Gaussian with mean r and standard deviation rσ . The 
Gaussian demand is used because it is assumed that there is 
a great deal of aggregation in the demand at the supply 
chain level. Further, for i=1,2, let 

( )iC t  = the capacity at stage i at time t. The productivity of 
( )iC t  is assumed to be unity without loss of generality. 

( )iP t  = the processing rate at stage i at time t. 
Note, ( ) ( )i i iP t C tλ≤  for all 0t ≥  and ( ) ( )0P t r t= . 

( )iW t  = the net rate of change in capacity (or net hiring) at 
stage i at time t. This is the control variable at stage i. 

( )iB t = the backlog and work-in-progress at stage i at time t. 
iB%  = the target backlog and work-in-progress at stage i. 
2
iϕ  = the per unit cost of excess or insufficient backlog at 

stage i. 
2
iψ  = the per unit cost of changing capacity at stage i. 

iυ   = the fraction of jobs at stage i that proceed to the next 
stage. 

iλ  = the average fraction of capacity that can be utilized 
in production at stage i. 
Assume ( )iW t is continuous for i=1,2 and t≥0.  Given 

the initial backlogs ( )0iB  and capacities ( )0iC  for i=1,2 
at time t=0, a closed-loop optimal control problem for cen-
tralized control of the two stages simultaneously is, for t≥0, 
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 ( )( ), 0i iB t C t ≥ , for i=1,2. (5) 
By “closed-loop” we indicate that the determination of the 
value of all control variables ( )iW t  will incorporate the 
values of ( )iB t , ( )iC t , and all r(u) for 0≤ u≤ t, where for 
i=1,2 and t≥0. 

For the decentralized control problem, each stage op-
timizes its own objective function subject to its local con-
straints on backlog and change in capacity. Therefore, un-
der the same assumptions, a decentralized closed loop 
control problem for stage i (i=1,2) and for t≥0, is  
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The objective functions in (1) and (6) balance varia-

tion in backlog and net hiring about targets. The former is a 
measure of service quality (consistency) and the latter is a 
measure of resource management. Equations (2) and (7) 
are balance of flow constraints on the change in backlog. 
Expressions (3) and (8) limit a stage’s processing rate by 
its capacity or what flows in from a previous stage. Con-
straints (4) and (9) define the control variables. Finally, (5) 
and (10) are non-negativity constraints. 

In order to generate approximate solutions to the opti-
mal control problems, Anderson et al  (2004a) make the 
following simplifying assumption: the target backlogs and 
work in are high enough that backlog rarely, if ever, drops 
to zero. Hence, processing is always determined by capac-
ity. Under this assumption, the centralized optimal control 
problem can be approximated by the following linearly re-
laxed formulation for t≥0:  
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where ( ) ( )0C t r t= . Similarly, for stage for stage i (i=1,2) 
and for t≥0,  the decentralized control problem can be ap-
proximated by linear relaxation model: 
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Note that the survival rates iυ  and the fraction of pro-
ductive capacity iλ  will have no dynamic effect on the 
models if the costs and productivities at the each stage are 
scaled appropriately.  Hence, without loss of generality, we 
will set all iυ  and iλ  equal to unity and suppress them to 
simplify exposition. 

The linearly relaxed control problems can be solved to 
yield control rules that are functions of the backlog and ca-
pacity. In particular, , the control rules for the centralized 
control problem are of the form: 
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where the coefficients are (complicated) functions of the 

2
iϕ  and the 2

iψ  and have the following (intuitive) signs 
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The superscripts on the coefficients refer to the stage of the 
control rule. The subscripts denote whether or not the coef-
ficient is associated with a term that contains capacity or 
backlog and at what stage. To illustrate, (1)

2CQ  is the coeffi-
cient in the first stage control rule associated with second 
stage capacity. With everything else fixed, if second stage 
capacity is higher than the first stage capacity (i.e., 

( ) ( )2 1C t C t> ), then net hiring ( )1W t will be positive at 
the first stage (because (1)

2 0CQ > ) in order to move ( )1C t  in 
the direction of ( )2C t  and bring the two back into balance. 
As another example, consider the coefficient in the second 
stage control rule associated with the first stage backlog, 
i.e., (2)

1BQ . If the backlog at the first stage exceeds it target, 
then (with everything else fixed), net hiring at the second 
stage will increase (because (2)

1 0BQ > ) in anticipation of an 
increase of demand that will eventually flow through to the 
second stage. For the purposes of this paper, we do not 
provide the complete expressions for the coefficients be-
cause they are large and complicated functions of 2

iϕ  and 
the 2

iψ . The interested reader is referred to Anderson et al. 
(2004).  
 Similarly, the control rules for the decentralized prob-
lem are 
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where the coefficients are (complicated) functions of the 

2
iϕ  and the 2

iψ  and have the following (intuitive) signs 
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 Note that (1)

2 0CQ =
)

 and (1)
2 0BQ =

)
 because in the decen-

tralized model, stage 1 optimizes it own stage myopically 
and is not influenced by stage 2’s backlog or capacity. On 
the other hand, even though stage 2 optimizes its own stage 
myopically, it is assumed to have knowledge of stage 1’s 
backlog and capacity because the output for stage 1 is the 
input for stage 2. In order to reflect the reality found in 
many supply chains, Anderson  et al. (2004a) propose a 
third non-optimal control rule in which it is assumed that 
stage 1’s backlog is not known to stage 2 (stage 1 capacity 
can always be inferred at stage 2 because it is equivalent to 
stage 2 demand). This control rule is a simple modification 
of  (22) in which (2)

1BQ
)

 is set equal to zero. This third con-
trol rule is referred to as the “no backlog information” or 
simply “no information” case.  

The remainder of this paper is devoted to evaluating the 
efficacy of the linear relaxation models for the centralized, 
decentralized, and no information cases using simulation.  

3 SIMULATION RESULTS 

Anderson  et al. (2004a) provide a preliminary simulation 
analysis in which they simulate the results of the general 
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closed loop control problems in (1) – (5) and (6) – (10) us-
ing the linear optimal control rules for centralized, decen-
tralized, and no information sharing cases  and compare 
them against linear relaxation model results described in 
Section 2. The comparison is based on Z (i.e., the objective 
or penalty function for the entire supply chain). We extend 
that simulation analysis to a full two-level factorial design 
and formally analyze it using regression analysis (Box and 
Draper 1987). 

The experimental design depends on the factors 
1 2 1, 2, ,ϕ ϕ ψ ψ  because, except for demand variance rσ , 

these factors completely characterize the solutions to the 
control problems. We do not include rσ in the experimen-
tal design because it appears is a scaling factor in Z. This 
was verified mathematically in the linear relaxation models 
and via simulation for the more general models. Hence, rσ  
is set to one.  Without loss of generality, 1ϕ is also set 
equal can be set equal to one and the other factors are de-
fined as relative costs in order to simplify the experimental 
design by one dimension. In order to simplify the mathe-
matical analysis in Anderson et al. (2004a), the factor  

2

1

ψδ
ψ
 

=  
 

 is used in place of 2ψ . Hence we will use δ in 

place of 2ψ as well. The high and low values for 
1 2, ,  and ψ δ φ  are 2 and 0.5, respectively. These values 

were chosen to represent relative costs that are two times 
(or four times when the parameters are squared) the other 
relative costs in any combination. 

Two other factors are used in the experimental design: 
a common target backlog B%  and a common target capacity 
C%  for both stages. Common targets suffice because results  
for the linear relaxation models are expected to degrade as 
B%  and C%  decrease regardless of the stage because con-
straints such as (3) and (5) or (8) and (10) are more likely 
to be violated. Since average demand and supply must 
match in this model, C%  determines the average level of 
demand so the latter does not need to be considered as a 
separate factor in the design.  

The high and low values for B%  and C% are 1.645 and 
1.96 respectively. Assuming Gaussian white noise demand, 
backlog and capacity would hit zero 5 percent and 2.5 per-
cent of the time breaking the linearly relaxation assumption 
that neither of these fall to zero. Hence, we believe that this 
is a region over which the assumptions of the linear relaxa-
tion models might be stressed. From other pilot simulation 
runs, we found that when target values are above 1.96, the 
results from the linear relaxation models correspond very 
closely to the results from the general models.  

We perform a separate regression analysis for central-
ized, decentralized, and no information cases. The regres-
sion response is the percentage by which the simulation re-
sults for a general model differ from the analytical results 
from a linear relaxation model. The experimental design 
contains 32 points (5 factors at 2 levels). At each design 
point, 30 simulations of 1000 periods are made. The 1000 
time periods are chosen based on visual inspection of the 
simulation sample paths (similar to Welch’s procedure – 
see Law and Kelton 2000) to ensure convergence of the Z. 
The average of the percentage differences from the 30 
simulation runs is used as the regression response in an at-
tempt to satisfy the regression assumption of normally dis-
tributed random error.   

The regression results for the three cases are shown in 
Tables 1, 2 and 3. They were generated using a stepwise 
regression procedure implemented in StatPro (Albright et 
al. 2003) in which all main and two-way interactions ef-
fects are considered for entry into the model. At each step, 
a variable with p-value for the t-value (i.e., the t-statistic 
for a regression coefficient) of less than 0.05 enters and 
any variables with p-values for the t-values greater than 
0.10 exit from the model.   

The three models fit the data very well (as measured 
by R2 and Adjusted R2 statistics). Additionally, the four 
main regression assumptions or normality, linearity, homo-
scedasticitiy, and independence were found to hold (i.e., 
none were rejected) using standard utilities in Statpro  for 
testing these assumptions (see Albright et al. 2003). 

All these models  yield remarkably similar results. In all 
cases, increasing target backlog (denoted by T_Backlog) or 
target capacity (denoted by T_Capacity) decreases the dif-
ference between the general and linear relaxation models. 
Additionally, a very slight reinforcing interaction effect ex-
ists between B%  and C% . These results for B%  and C% are ex-
pected because the farther the targets are from zero, the less 
chance there is of backlog and capacity falling to zero violat-
ing the main assumption of the linear relaxation models. 
Target backlog turns out to be the most significant factor, 
having regression coefficients that are roughly an order of 
magnitude greater than target capacity coefficients. In other 
words, a low backlog target (or a greater possibility of the 
backlog falling to zero) is more detrimental to the perform-
ance of the linear relaxation models than the low capacity 
target level. In addition, target backlog has coefficients with 
magnitudes that are at least twice the size of the coefficients 
associated with the next most significant factor. 

Increasing per unit capacity costs ( 1,ψ δ ) increases the 
average of the differences between the general model and the 
linearly relaxed model. This correlates with the sensitivity of 
the results to the backlog. If the capacity costs are high, then 
variations in the demand are absorbed by the backlog making 
the backlog more likely to hit zero. An analogous explanation 
exists for the fact that increasing per unit backlog costs ( 2φ ) 
decreases the average of the differences between the general 
model and the linearly relaxed model.  

All other interaction effect terms are relatively small 
and less intuitive. Hence, their impact on the regression re-
sults will not be discussed for the sake of brevity. 

It is important to note that these regressions results 
confirm that with a target backlog of 1.96 percent, the lin-
ear relaxations models yield results that, on average, are 
within about six percent of the results generated by the
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Tab1e 1: Regression Results for the Average of the Percentage Difference be-
tween General Model Simulation Results and the Linear Relation Model Ana-
lytical Results for the Centralized Case  

Summary measures     
Multiple R 0.9997    
R-Square 0.9994    
Adjusted R-Square 0.9991    
StErr of Est 0.0008    
     
Regression coefficients     
 Coefficient Std Err t-value p-value 
Constant 0.0908 0.0001 616.5891 0.0000 
T_Backlog -0.0266 0.0001 -180.8077 0.0000 
Psi1 0.0066 0.0001 44.9900 0.0000 
Delta 0.0045 0.0001 30.7225 0.0000 
Phi2 -0.0022 0.0001 -14.7420 0.0000 
Phi2*Delta -0.0018 0.0001 -12.5199 0.0000 
T_Capacity -0.0016 0.0001 -10.8214 0.0000 
T_Capacity*Phi2 0.0007 0.0001 5.0278 0.0001 
T_Capacity*Delta -0.0007 0.0001 -4.6290 0.0001 
T_Backlog*Delta 0.0005 0.0001 3.2497 0.0038 
T_Capacity*T_Backlog -0.0004 0.0001 -2.4013 0.0257 
Tab1e 2: Regression Results for the Average of the Percentage Difference 
between General Model Simulation Results and the Linear Relation Model 
Analytical Results for the Decentralized Case  
Summary measures     
Multiple R 0.9985    
R-Square 0.9971    
Adjusted R-Square 0.9957    
StErr of Est 0.0019    
     
Regression coefficients     
 Coefficient Std Err t-value p-value 
Constant 0.0884 0.0003 261.9282 0.0000 
T_Backlog -0.0252 0.0003 -74.6733 0.0000 
Psi1 0.0076 0.0003 22.5677 0.0000 
Phi2 -0.0074 0.0003 -21.9403 0.0000 
Phi2*Delta -0.0057 0.0003 -16.9538 0.0000 
Delta 0.0046 0.0003 13.5698 0.0000 
T_Capacity -0.0034 0.0003 -10.1317 0.0000 
T_Capacity*Delta -0.0022 0.0003 -6.4980 0.0000 
T_Backlog*Delta 0.0015 0.0003 4.4829 0.0002 
T_Capacity*T_Backlog -0.0009 0.0003 -2.5477 0.0187 
Phi2*Psi1 0.0008 0.0003 2.4310 0.0241 
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Tab1e 3: Regression Results for the Average of the Percentage Difference be-
tween General Model Simulation Results and the Linear Relation Model Ana-
lytical Results for the No Information Case  

Summary measures     
Multiple R 0.9981    
R-Square 0.9961    
Adjusted R-Square 0.9946    
StErr of Est 0.0024    
     
Regression coefficients     
 Coefficient Std Err t-value p-value 
Constant 0.0986 0.0004 236.3290 0.0000 
T_Backlog -0.0259 0.0004 -61.9909 0.0000 
Delta 0.0134 0.0004 32.0451 0.0000 
Psi1 0.0087 0.0004 20.8641 0.0000 
Phi2 -0.0054 0.0004 -12.8982 0.0000 
T_Capacity -0.0048 0.0004 -11.5965 0.0000 
T_Capacity*Delta -0.0028 0.0004 -6.7895 0.0000 
Phi2*Psi1 0.0016 0.0004 3.8862 0.0008 
Phi2*Delta -0.0014 0.0004 -3.3063 0.0032 
T_Capacity*T_Backlog -0.0012 0.0004 -2.8572 0.0092 
general optimal control models when the linear optimal 
control rules are used. Additionally, Anderson et al. 
(2004a) conduct relative comparisons of the centralized, 
decentralized, and no information cases using the results of 
the linear relaxation models. Since the regression models 
in this paper are so remarkably similar across all three 
cases (results degrade from the linear relaxation model in a 
similar fashion), their relative comparisons are robust  even 
in the part of the nonlinear region that we have explored. 

4 DISCUSSION 

The simulation results indicate performance of the linear 
relaxation results are most sensitive to the assumption of 
positive backlog. They also indicate that the linear relaxa-
tion model objective functions are only about six percent 
lower than the general model objective functions  when the 
target backlog is only 1.96 standard deviations from zero. 
So how does this square with reality? In other words, do 
average backlogs tend to be higher than this target in prac-
tices making the linear relaxation models viable predictors 
of reality.  

We conducted an empirical study of 11 service indus-
tries. Days of backlog data were gathered from the 
Compustat Industrial Annual Database (Compustat Indus-
trial Annual Data 2004). The results are presented in Table 
4. The first column lists the industry designation. The sec 
ond lists the number of companies for which there is more 
than five years of annual data (the lower bound of five was 
chosen to get a reasonable estimate of the mean and stan- 
 

 
 

Table 4: Industry Averages of the Number of Standard De-
viations Average Days of Backlog is Away From Zero 

 
Industry 

# of 
Companies 

Industry 
Average 

Standard
Error 

Business Services 6 2.75 0.26 
Construction 12 4.05 0.80 
Services to 
Dwellings 1 3.28 - 

Management 
Services 3 3.67 1.57 

Computer Integrated 
System Design 66 2.95 0.32 

Engineering 
Services 40 4.26 0.47 

Hazardous Waste 
Management 13 3.60 0.66 

Education Services 4 4.74 0.91 
Help Supply 
Services 1 1.56 - 

Oil Services 23 2.90 0.42 
Special Industrial 
Machinery 52 2.47 0.15 

 
dard deviation of days of backlog for each company) be-
tween 1990 and 2003. This time range was chosen because 
it covers the period in which companies have been apply-
ing more modern supply chain management principles. The 
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third column lists the industry average of the number of 
standard deviations average days of backlog is away from 
zero. The fourth column lists the standard error of the data 
in column 3. Note that in almost every industry, these ser-
vices hold average days of backlog at 2.5 standard devia-
tions or higher away from zero. Thus, it appears that results 
generated by the linear relaxation models would have effi-
cacy in these industries. 
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