
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

DEVELOPING FEDERATION OBJECT MODELS USING ONTOLOGIES

Tarun Rathnam
Christiaan J.J. Paredis

Systems Realization Laboratory,

George W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology,

Atlanta, GA 30332, U.S.A.

ABSTRACT

The reuse of existing simulations in multiple federations is
an important goal of distributed simulation frameworks.
However, in order to reuse a federate, its simulation code
often has to be modified so as to comply with the object
and interaction representations defined in a corresponding
Federation Object Model (FOM). Such modifications im-
ply added time and effort, which diminishes the efficacy of
reuse in federation development. In this paper, we present
an ontology-based framework for modeling federates and
supporting their reuse in multiple federations. Ontologies
are used to specify the semantics of objects and interac-
tions in federate domains in a formal, computer-sensible
fashion. Using these formal semantics the relationships be-
tween federate simulation concepts are described in a reus-
able fashion. In doing so, a suitable federation representa-
tion for a set of related federate concepts and the required
set of transformations between federate and federation rep-
resentations are automatically derived.

1 INTRODUCTION

The use of federate simulations in multiple federations is
an important goal of distributed simulation frameworks
such as the High Level Architecture (HLA). The HLA
Federation Development and Execution Process (FEDEP)
model (Defense Modeling and Simulation Office 1999)
prescribes the reuse of existing FOM components in fed-
eration development. This helps to reduce the overall time
and effort invested to achieve interoperability between fed-
erate simulations. However, changing the composition of a
federation requires some changes to the corresponding
FOM. In turn, this almost always implies changes in the
participating federates. All federates have to conform to
the common representation for the full set of exchangeable
information defined in a FOM. To ensure such consistency
throughout the federation, each federate simulation’s code
may have to be modified and extended. Therefore, the effi-
cacy of implementing reuse in HLA is marred by the fact

that cost and time to achieve reuse are strongly affected by
the uniformity of the federate representations (Nance
1999). The ability to reuse federates in federations with
disparate FOMs without having to modify their individual
representation will significantly simplify the federation de-
velopment process.

In this paper, we present an ontology-based framework
for modeling federates and supporting their reuse in multi-
ple federations. Our approach improves federate reusability
by formalizing the semantics of concepts (objects and in-
teractions) defined in federate simulations. Using these
formal semantics, the relationships between federate simu-
lation concepts are described in a reusable fashion. In order
to allow a federate to participate in several federations
without modification, procedures to transform Simulation
Object Model (SOM) information representations into
those of the target FOM are requisite . Our framework ap-
plies the knowledge of the relationships between federate
simulation concepts (captured in an ontology) to generate a
suitable FOM and the required set of transformation proce-
dures for a given federation. In this manner, we facilitate
reuse in federation development by way of semantically
rich information models.

2 RELATED WORK

Significant research and development is already underway
to enable the participation of federates in multiple federa-
tions in a seamless fashion. The current practice is to stan-
dardize FOM representations through the use of reference
FOMs and an Object Model Data Dictionary (Bouwens,
Miller, Scrudder and Lutz 1998). This approach only partly
solves the problem because it imposes restrictions on the
ability of federate developers to specify their own informa-
tion representations.

An Agile FOM Framework (AFF) has been developed
to allow federates with disparate SOM representations to
participate in multiple federations (Macannuco 1998). The
AFF provides a federated simulation with a set of classes
that automatically map the internal SOM representations to

Rathnam and Paredis

the external FOM representation. This framework uses
converter objects to manipulate data between FOM and
SOM representations. Converters are application level
code, defined by extending a base converter class. A set of
basic converters is included to perform unit and enumer-
ated type conversions.

The AFF is conceptually similar to the framework pre-
sented in this paper. Both frameworks are based on the no-
tion of federate reuse through the definition of transforma-
tions between SOM and target FOM representations. Our
approach using ontologies offers the key advantage of cap-
turing the relationship between representations in a formal,
declarative fashion that enables automation to a greater de-
gree. The AFF assumes that federation developers specify
a FOM representation for a given federation; whereas our
framework supports automated FOM generation based on a
given set of SOM representations and relationships be-
tween them. Further, in the AFF the specification of cus-
tom converters is not automated. In the approach presented
in this paper, the required transformation routines are in-
ferred based on existing knowledge of relationships in the
federation domain, prompting federation developers for
additional knowledge as required.

Another approach to support reuse in federation de-
velopment has been implemented in Base Object Models
(BOMs) (Gustavson 1998). BOMs are meant to serve as
building-blocks that enable engineers to design compo-
nent-based federations. A BOM is a component of a simu-
lation that can encapsulate objects, their attributes, interac-
tions involving those objects and an associated set of
parameters. BOMs include meta-data that define their fo-
cus, intent and origin. BOMs may be developed for indi-
vidual domains and reused to simplify and speed-up SOM
and FOM construction.

While the BOM framework facilitates reuse in the de-
velopment of a FOM, the issue of reusing federates without
modification is not addressed. However, the BOM frame-
work can potentially be used to implement rapid integra-
tion of federate simulations through the definition of
BOM-level mappings between SOMs and FOMs. Such
mappings could be specified by identifying similar “pat-
terns” in the structure of the SOM and FOM (Base Object
Model Study Group 2001). To achieve this mapping func-
tionality in an automated fashion, a richer set of BOM
meta-data (semantics) would be required. The ontology
based framework presented below enables the capture of
such semantics, thereby supporting the automated mapping
of SOM and FOM concepts.

3 ONTOLOGY-BASED FOM DEVELOPMENT
FRAMEWORK

An ontology is an explicit specification of a conceptualiza-
tion i.e. the objects, concepts, and other entities that are as-
sumed to exist in a domain and the relationships that hold
among them (Gruber 1993). The key ingredients that make
up an ontology are a vocabulary of basic terms, a precise
specification of what those terms mean and how they relate
to each other. By organizing knowledge in a discrete layer
for use by information systems, ontologies enable commu-
nication between computer systems in a way that is inde-
pendent of the individual system technologies, information
architectures and applications (Berners-Lee, Hendler and
Lassila 2001; TopQuadrant 2003). This is why we turn to
ontologies to alleviate the difficulties faced in federate re-
use. We use ontologies to model federate and federation
domains (analogous to current HLA SOM and FOM) based
on a common set of concepts and relationships between
them. This enables the inference of relationships between
individual federate representations of shared objects, at-
tributes, interactions and parameters.

A high-level illustration of the framework for ontology
based federation development is provided in Figure 1. The
major components involved are the simulation (federate)
ontologies (SONT), a target federation ontology (FONT)
and a meta-model that corresponds to the OMT, called the
World Ontology. The SONT specifies the object-attribute
architecture corresponding to a given federate simulation.
The FONT specifies a common representation for all ob-
jects and interactions that are shared among different fed-
erates, and captures the relationships between the federate
and common representations. The World Ontology con-
tains meta-data and specifies the structure of objects, at-
tributes, interactions, parameters and data types. It also in-
cludes data structures to capture the relationship between
these. Finally, this ontology includes a set of primitive data
types and defines the relationships between them.

SONT A
ObjectsObjects

AttributesAttributes

World Ontology

SONT B
ObjectsObjects

AttributesAttributes

SONT A SONT B

Common Schema

Transformations

ObjectObject RelationshipRelationship AttributeAttribute

Meta data

FONT

SONT A
ObjectsObjects

AttributesAttributes

SONT A
ObjectsObjects

AttributesAttributes

SONT A
ObjectsObjects

AttributesAttributes

World Ontology

SONT B
ObjectsObjects

AttributesAttributes

SONT B
ObjectsObjects

AttributesAttributes

SONT B
ObjectsObjects

AttributesAttributes

SONT A SONT B

Common Schema

Transformations

ObjectObject RelationshipRelationship AttributeAttribute

Meta data

ObjectObject RelationshipRelationship AttributeAttribute

Meta data

FONT

Figure 1: Ontology-Based FOM Development Frame-
work

Based on the structure provided in the World Ontology,

SONTs are specified by domain experts who play a major
role in the development of a given simulation model. This
process is analogous to documenting a SOM in current HLA
practice. However, a SONT captures concepts and relation-
ships between them in a formal, computer-sensible fashion
that is much richer than the unstructured text that comprises
a SOM. Unlike a SOM, a SONT contains knowledge that a
computer can use to make inferences. Once a SONT has
been specified, it does not have to be changed when it par-
ticipates in different federations.

Rathnam and Paredis

According to the FEDEP model, the federation devel-
opment is centered on the specification of a FOM. Once
the FOM has been specified, the individual federates are
modified to be consistent with the FOM representation.
Contrary to this approach, we propose the extraction of the
FONT based on the representation of the objects in the par-
ticipating SONTs and the relationship between them.
When the federation developers reach the point in the
FEDEP process where they have decided on a set of feder-
ates, they may access the corresponding SONTs and spec-
ify which objects and interactions relate to each other (in
terms of attribute and parameter relations). Once this in-
formation has been specified, a suitable common represen-
tation for the related entities is derived automatically based
on their individual federate representations.

Along with automated FONT generation, the required
transformation mechanisms to convert data to and from
federate to common representations are created. This task
amounts to representing the relationship between two rep-
resentations of a shared entity in a procedural format. Ar-
riving at this relationship is where knowledge reuse comes
into play. The World Ontology provides a common con-
ceptualization of terms as well as a set of data types and
relationships between them. SONTs and FONTs are de-
fined using the vocabulary defined in this common concep-
tualization. Therefore the relationship between shared enti-
ties can be derived based on the relationships defined at a
higher level of abstraction (in the World Ontology). That
is, the transformation routine between two representations
of a given entity is inferred from knowledge about the rela-
tionships between their data types.

The ontology-based federation development process
can be summarized in the following steps:

• Define World Ontology (one-time task)
• Define SONTs based on World Ontology
• Generate FONT

• Determine common representation
• Generate transformation routines.

The following sub-sections detail the above-mentioned

steps in the context of our implementation of this frame-
work in the Protégé ontology development software tool.
A simple example federation development is also pre-
sented in support of the discussion.

3.1 Defining the World Ontology

The world ontology is analogous to the HLA Object Model
Template (OMT) (IEEE 2000): it defines the information
schema for specifying objects, attributes, parameters and in-
teractions. This meta-model is defined in terms of the frame-
based representation supported by Protégé (Noy, Fergerson
and Musen 2000), which is similar to the table architecture
defined in the current OMT specification. Concepts in Pro-
tégé are specified as frames (classes), defined in terms of
their slots (attributes). Individual entities are represented as
instances of these classes. Finally meta-classes and meta-
slots can be defined as templates for specifying specialized
classes and attributes. Figure 2 is a graphical illustration of
the world ontology implemented in Protégé.

Datatype_MetaClass

Name
Has_relationship

Direct-Slots
Direct-Instances

Datatype_MetaClassDatatype_MetaClass

NameName
Has_relationshipHas_relationship

Direct-SlotsDirect-Slots
Direct-InstancesDirect-Instances

Attribute_MetaSlot

Name
Has_datatype
Has_relationship
cardinality

.

.

.

Direct-Instances

Attribute_MetaSlotAttribute_MetaSlot

NameName
Has_datatypeHas_datatype
Has_relationshipHas_relationship
cardinalitycardinality

.

.

.

Direct-InstancesDirect-Instances

Value is an instance of

KEY

Class
Slot

Value is an instance of

KEY

Class
Slot

Object_MetaClass

Name
Version
Date
Purpose

.

.

.

Direct-Slots
Direct-Instances

Object_MetaClassObject_MetaClass

NameName
VersionVersion
DateDate
PurposePurpose

.

.

.

Direct-SlotsDirect-Slots
Direct-InstancesDirect-Instances

Relationship

to

Function_to

Function_from
Direct-Instances

from

Relationship

to

Function_to

Function_from
Direct-Instances

RelationshipRelationship

toto

Function_toFunction_to

Function_fromFunction_from
Direct-InstancesDirect-Instances

fromfrom
FunctionFunction

routineroutine

Is_lossyIs_lossy

Figure 2: Information Schema in the World Ontology

Templates for HLA objects and interactions are speci-

fied using meta-classes. Therefore, individual objects and
interactions are defined as classes (instances of the Object/
Interaction meta-classes). This allows SONT developers to
specify a hierarchy of objects and interactions, thus captur-
ing the equivalent information specified in HLA object and
interaction class structure tables in an ontology. The meta-
class for objects includes slots that correspond to all fields
specified in the HLA Object Model Identification Table.

Along the same lines, templates for HLA attributes
and parameters are specified using meta-slots. This enables
the instantiation of attributes as slots of individual Objects.
These meta-slots are composed of their own set of slots
corresponding to the HLA attribute/ parameter table fields.

The world ontology also includes a relationship class
to hold the required information about the relationship be-
tween attributes or parameters in a FONT. The relationship
between a particular attribute and its common representa-
tion is represented as an instance of this class. Every at-
tribute has the slot has_relationship whose value is an in-
stance of the relationship class. This class consists of the
following slots:

• to: whose value is the target attribute or parameter,
• from: whose value is the subject attribute or pa-

rameter,
• function_to: whose value is an instance of the

function class and holds information about the
transformation routine from the subject attribute
or parameter to the specified target,

• function_from: which is analogous to function_to,
except going from the target attribute or parameter
to the subject.

The function class consists of two slots: routine and

is_lossy. The routine slot contains the procedure to convert

Rathnam and Paredis

instances of one attribute or parameter to the other.
Is_lossy has a Boolean value that indicates whether the
transformation from one representation to the other leads to
a loss of information. In Section 3.3, we discuss the use of
is_lossy to determine the FONT representation for a set of
related SONT attributes or parameters.

 The data type of a given HLA attribute indicates the
class of which that attribute is an instance. Since data types
are classes, a template for data types is provided as a meta-
class. This meta-class includes the has_relationship slot to
capture the relationship between custom data types.

Finally, we instantiate a set of data types that are ex-
pected to be used consistently across all SONTs and FONTs.
As an example, we have defined a set of units data types to
enable individual SONTs to specify their own unit of meas-
ure for different quantities. The relationship between two
units of a certain measurable quantity is of multiplication or
division by a constant conversion factor. A certain system of
measurement is chosen as a reference to which all conver-
sion factors are determined. Novak (1995) has shown that
with the knowledge of the conversion factors relating a set
of simple units (Meter, Second, Kelvin etc.), the conversion
factor for any composite unit (a product or quotient of sim-
ple units, such as meter per second) can be derived. Hence,
we include a slot conversion_factor in the definition of sim-
ple unit data types and capture the representation of compos-
ite units as a product of simple units. The algorithm for de-
riving a procedural conversion between different units is
implemented as part of the system that generates transforma-
tion routines. Note that since units are predefined data types,
we do not have to specify a value for their has_relationship
slots; that is reserved for specifying relationships between
custom data types in a FONT.

The relationship between data types is the primary
knowledge that is reused to determine the required trans-
formation routines. From the relationship between the data
types of two attributes that are otherwise equivalent, the
procedure for transferring values between these two attrib-
utes can be inferred with no further input from the federa-
tion developer.

Like the OMT, the world ontology is defined once and
for all, and every SONT and FONT definition must con-
form to it. The following section discusses SONT devel-
opment based on the world ontology.

3.2 Defining a Simulation Ontology (SONT)

The ontologies for individual simulations are defined using
the information constructs defined in the world ontology.
That is, we represent objects as classes—instances of the ob-
ject meta-class defined in the world ontology. Similarly, at-
tributes are represented as slots of object classes. To enable
this instantiation, the world ontology must be included as
part of each SONT domain, so that a consistent definition of
the terms object, interaction, attribute, parameter and data
type exist. Objects and interactions in a SONT are arranged
in a hierarchy, such that subordinate objects and interactions
inherit the attributes/parameters of their parents.

As an example SONT specification, consider the
specification of a SONT for a simple traffic simulation
(Figure 3). The object vehicle is created with the attribute
position, whose data type is 2-D coordinate. Each of these
entities is specified as an instance of its respective meta-
class. The data type 2-D coordinate consists of two mem-
bers: x and y of the unit data type meter. The ontology
automatically captures the relationships between the three:
attribute position is a member of class vehicle and its value
is an instance of class 2-D coordinate. At this stage, the
has_relationship slot of position and 2-D coordinate have
not been assigned values, i.e. the relationship class has no
instances. Obviously, this information will not be specified
for a stand alone federate; it is provided in a FONT when
different federate objects (and data types) are related to
their common counterparts.

Object_MetaClass

Position

Vehicle

Attribute_MetaSlot

Datatype_MetaClass

meter
Conversion_factor

2-D coordinate

X
Y

Object_MetaClass

Position

Vehicle

Attribute_MetaSlot

Object_MetaClassObject_MetaClass

Position

Vehicle

PositionPosition

VehicleVehicle

Attribute_MetaSlotAttribute_MetaSlot

Datatype_MetaClass

meter
Conversion_factor

2-D coordinate

X
Y

Datatype_MetaClassDatatype_MetaClass

metermeter
Conversion_factorConversion_factor

2-D coordinate

X
Y

2-D coordinate2-D coordinate

XX
YY

Has datatype

KEY

Instance of
Has datatype

KEY

Instance of
Figure 3: Traffic Simulation SONT Specification

3.3 Generating a Federation Ontology (FONT)

A federation ontology (FONT) serves as a common repre-
sentation to and from which federates can convert shared
information. Therefore the FONT consists of (its own rep-
resentation of) all shared objects, interactions, attributes
and parameters in a federation. Further, this ontology must
include the definition of the relationships between the
SONT and common representations of shared concepts. In
order to specify a relationship between two entities, both
entities must be defined in the same ontology. Therefore,
the FONT includes all SONTs plus a common schema that
is a liaison between individual SONT representations of
shared concepts (Figure 1). The overall FONT generation
process model, illustrated in Figure 4, is discussed below.

The first step in FONT generation is creating a new
ontology that includes all the SONTs that are part of the
federation. Following this, the federation developers must
specify the knowledge as to which SONT objects relate to
(publish or subscribe to) each other. When a relationship
between two or more SONT objects is specified, a common
or shared representation for those objects is created. Ulti-
mately, all relationships are defined between federate and
common representations of shared concepts. However, the
federation developer specifies relationships directly be-
tween objects in any two SONTs.

Rathnam and Paredis

Include all SONTs in the FONT

Specify SONT-SONT relationships

Determine Common Representation

Generate Transformation Routines

Approve or Revise inferred lossy transformations

USER

Figure 4: FONT Generation Process Flow

Given the relationships specified by the user, new rela-

tionships can be inferred automatically by composing ex-
isting relationships together. The complete set of relation-
ships are used to determine the appropriate common
representation (Section 3.3.1). Following this the proce-
dural transformations associated with these inferred rela-
tionships are also composed automatically (Section 3.3.2).
During these steps, the user is prompted to provide addi-
tional knowledge about transformations as required. Hav-
ing completed these steps, the user is presented with the set
of inferred relationships and transformations, so as to ei-
ther approve them or revise them if an available direct rela-
tionship is preferable. If revisions are made, the common
representation, and the associated transformations are re-
computed. In this manner, the process of defining relation-
ships in a FONT is an iterative process that employs feed-
back from the user to refine automatically generated
common representation and transformation routines.

Having presented the overall FONT generation proc-
ess flow, the specifics of automatically arriving at a com-
mon representation and associated transformations is dis-
cussed in greater detail in the following sub-sections.

3.3.1 Determining the Common Representation

As mentioned above, the relationship between SONT ob-
jects is captured in the FONT as a relationship between
each object and a corresponding common object. To de-
termine the attributes of this common object, the federation
developer must specify which attributes of the individual
SONT objects relate to each other. For every set of relating
SONT attributes, a common attribute is automatically in-
stantiated. While it makes sense for this common attribute
to correspond directly to one of the SONT attribute repre-
sentations (this ensures that at least one of the transforma-
tion routines will be trivial), it is important to choose a rep-
resentation that avoids any unnecessary loss of information
when exchanging data in a federation. The importance of
this choice may not be evident when there are only two re-
lated attributes; in fact it is irrelevant in this case. How-
ever, this choice becomes significant when three or more
SONT attributes in a federation relate to each other. For
example, if the SONT attribute position of data type 2-D
coordinate relates to attribute location (in another SONT
domain) of type 3-D coordinate, and attribute point also of
type 3-D coordinate, the corresponding common attribute
must be of type 3-D coordinate. If it is selected to be of
type 2-D coordinate, then there is an avoidable loss of in-
formation. Both attributes location and point have three
coordinates, yet when location subscribes to point (or vice-
versa), the value is converted from 3-D to 2-D (common
representation) and back to 3-D, resulting in a loss of the
third coordinate’s value. To avoid this scenario, the com-
mon representation of a set of related attributes should
have a representation that does not lead to any avoidable
loss of information.

In order to determine which SONT representation of a
shared attribute is the appropriate common representation,
we introduce the notion of lossiness. A transformation
from one representation to another is lossy if any informa-
tion is lost in that transformation. In the example above,
the transformation from attribute location to position is
lossy (while the inverse is not). The information about
lossiness is captured in the is_lossy slot of a given func-
tion. In a relationship where from = position and to= loca-
tion, the value of function_to (an instance of the function
class) has is_lossy = true, while that of function_from has
is_lossy = false. The common representation for a set of
related attributes is determined as the representation that
leads to the fewest number of lossy transformations. In the
event that there are several SONT representations that lead
to the same number of minimal lossy transformations, any
of them may be picked as the common representation.

The lossiness in a transformation between two attrib-
utes is determined in terms of the lossiness in the transfor-
mation between their respective data types. Therefore, in
order to determine if information is lost in a transformation
between two SONT entities, the transformation procedures
between their data types have to be derived first. The com-
plexity of determining data type transformations depends
on whether those data types are primitive or custom, lead-
ing to the following two cases:

Case 1: Both data types are primitive. The knowledge
of the relationship between primitive data types is already
encoded into the software system that extracts transforma-
tion routines. Therefore, the required transformation rou-
tines are easily created in such cases. For example the
transformation from data type meter relates to data type
foot is:

foot meter_to_foot (meter input) {
foot output;
output=(input/foot.conversion_factor
*meter.conversion_factor);
return output;}

The knowledge of lossiness between primitive classes

is already encoded in the software system. Hence, no input

Rathnam and Paredis

is required from the user to determine that a valid trans-
formation between unit data types is never lossy.

Case 2: One or both data types are not primitive. If the
relationship involves transformation between custom data
types, then the knowledge about the relationship between
these data types does not preexist. This knowledge cannot
be created automatically; it must be defined by the user. If
all the individual fields of the related custom data types are
primitive data types, then with knowledge as to which
fields relate, the required relationship can be derived auto-
matically. For example, consider that the data type 3-D co-
ordinate has fields (x, y and z of unit data type foot). The
relationship between 3-D coordinate and 2-D coordinate (x
and y in meters) can be derived automatically if the user
specifies that the respective x and y fields equate to each
other. Since these fields have primitive unit data types, the
transformations between the custom data types can be de-
rived automatically, such as:

3D 2D_to_3D (2D input) {
3D output;
output.x = meter_to_foot(input.x);
output.y = meter_to_foot(input.y);
output.z= 0; // user specified default
return output; }

In general, if one or more fields are not primitive or

the relationship between them is not that of equivalence,
the user must explicitly define the relationship between the
custom data types. At the same time, the lossiness in the
data type transformation routines must also be specified.

Note that the user is not compelled to specify relation-
ships between all data types involved in a relationship. The
relationship between two data types can be inferred transi-
tively as a chain of relationships. That is, if a transforma-
tion from data types A to B and B to C exist , the transfor-
mation from A to C can be derived from these. In such a
case, it is possible that the derived transformation is lossy
when in theory it can be defined in a non-lossy form. The
user is made aware of such lossiness in derived transforma-
tions and given the option of explicitly specifying a less
lossy transformation (Figure 5).

Derived transformations

Lossy

KEY

Non Lossy
Lossy

KEY

Non Lossy

Datatype ADatatype A
Field 1Field 1
Field 2Field 2

Datatype CDatatype C
Field 1Field 1
Field 2Field 2

Datatype BDatatype B

Field 1Field 1

Datatype ADatatype A
Field 1Field 1
Field 2Field 2

Datatype CDatatype C
Field 1Field 1
Field 2Field 2

Datatype BDatatype B

Field 1Field 1

User Specified

Figure 5: Transitively Derived Transformations
With the knowledge of lossiness in data type trans-
formations for a set of related SONT attributes or parame-
ters, the common representation for those attributes or pa-
rameters can be determined. Consider the example
relationship between the attributes position, location and
point. Based on lossiness in transformations between 2D
and 3D coordinates, it is automatically determined that the
transformation from location or point to position is lossy
(while the reverse is not) and that from location to point
and back is not. The smallest number of lossy transforma-
tions occurs when the common attribute corresponds di-
rectly to either location or point (Figure 6). Note that when
reusing FONTs, the representation that is deemed fitting
for a given common attribute is subject to change if one or
more federates are added to or leave the federation. At all
times, the common attribute’s representation should lead to
the smallest number of lossy transformations.

Position PointLocation

Common_attribute

Common attribute = location or point

PositionPosition PointPointLocationLocation

Common_attributeCommon_attribute

Common attribute = location or point

PositionPosition PointPointLocationLocation

Common_attributeCommon_attribute

Common attribute = position

Lossy

KEY

Non Lossy
Lossy

KEY

Non Lossy

Figure 6: Selecting a Common Representation that
Leads to the Fewest Number of Lossy Transforma-
tions

Once the common representation for all shared objects,

interactions (and their respective attributes and parameters,
respectively) have been instantiated, they must be arranged
in a hierarchy. This step is vital to facilitate inheritance in
publication and subscription of federate objects or interac-
tions. That is, if a certain object subscribes to another
SONT’s parent object, it should be notified of all updates to
the children of that parent object. The set of common objects
and interactions are arranged into a hierarchy based on Clas-
sification—the process of constructing a concept hierarchy
in which more general concepts are located above more spe-
cific ones according to the subsumption order . The sub-
sumption relationship between two objects in a schema is
defined such that an object B subsumes an object A if the set
of attributes that comprise B includes the set of attributes
that comprise A. In this case, object B is a refinement of ob-
ject A, or A is the parent of B. Algorithms to perform sub-
sumption tests have been developed by Schmolze and Lipkis
(1983) and can be leveraged to arrange common representa-
tions of shared objects and interactions in a hierarchy. Note
that object-by-object comparison and subsumption testing
can become time-consuming when the number of shared en-

Rathnam and Paredis

tities in a federation is large. To avoid this problem, a more
complex, but efficient parallel classification algorithm (Kim
93) can be employed to arrange the automatically generated
objects and interactions.

3.3.2 Generating Transformation Routines

At this point, a common representation between all shared
SONT objects, interactions, attributes and parameters in a
federation is generated and ordered. The last piece of the
puzzle is creating the procedural knowledge of the rela-
tionships between the federate and common attributes or
parameters. These routines are represented as a chained 2-
step procedure: one to convert between data types and the
other to convert between the related concepts. As an exam-
ple, consider that a federation developer specifies a rela-
tionship between the attribute radius of type meter in one
SONT and diameter of type foot in another. Clearly, these
two concepts are related, but they are not the same. The
user must specify the knowledge as to how these two con-
cepts relate. Ideally, we would like the user to specify this
relationship in a declarative fashion, from which the trans-
formations in either direction can be derived (e.g. radius
– (diameter/2) = 0). However, a declarative relationship
between two entities can be converted into two procedures
(to perform transformations in either direction) only if that
relationship is analytically invertible. Hence we assume
that whenever the user explicitly specifies a relationship,
he or she does so in a procedural form (e.g. radius = di-
ameter/2; and diameter = radius*2;). The transfor-
mation from radius to diameter is derived as:

Function_to.routine:

 foot radius_to_diameter (meter radius) {
foot diameter;
diameter= (meter_to_foot(radius))*2;
return diameter;}

Note that the user is not constrained to always specify

a relationship between a SONT representation and what
ends up being the common representation in a set of related
attributes. He or she may specify the relationship between
any two SONT relationships. Just as with data types, rela-
tionships to and from the common representation can be
derived transitively from existing relationships, if a suffi-
cient set of relationships exists.

3.3.3 Example FONT Development

We conclude the discussion on FONT and transformation
generation with an example FONT development scenario.
Consider that a federation of simulations is to be developed
that includes the previously defined traffic simulation (sec-
tion 3.2) and a wireless network simulation. The goal of
this federated simulation is to simulate traffic behavior
when vehicles can communicate with each other using
wireless and GPS technologies. The SONT for the wireless
network simulation contains the object Node having the at-
tribute location, whose data type is 3-D coordinate. The
federation developer wishes to relate the traffic simula-
tion’s vehicle object to Node, in terms of a relationship be-
tween position and location attributes. To do so, the fol-
lowing steps are undertaken:

• The set of SONTs that are part of the federation

(traffic and wireless network SONTs) are speci-
fied. These SONTs are then automatically in-
cluded in the FONT being developed

• The user indicates the existence of a relationship
between vehicle and node objects in terms of their
attributes position and location. A corresponding
common_object is created in the FONT

• The federation developer specifies that the rela-
tionship between attributes position and location
is that of equivalence. Since the fields of custom
data types 2-D coordinate and 3-D coordinate
have primitive data types, the user is prompted to
specify the relationship between these fields

• An equivalence relationship between the x and y
fields of the data types is specified. A relationship
instance is automatically created between 3-D and
2-D coordinate data types. The function_to and
function_from slots’ values are automatically de-
rived as discussed in Case 2. The is_lossy values
for these functions are specified by the user

• Since only two attributes are being related, the
choice of the common representation is inconse-
quential. Assume that the attribute com-
mon_attribute is created with data type 3-D coor-
dinate

• The function_to slot’s value for a relationship in-
stance from position to common_attribute is
specified as:

Function_to.routine:
3D position_to_common (2D input){
3D output;
output = 2D_to_3D (input);
return output;}

• The function_from slot for this relationship is also

derived in a similar fashion, as are the functions
for the relationship between location and com-
mon_attribute. The resultant FONT information
structure is depicted in Figure 7.

Having defined all required transformation routines,

the FONT contains the complete set of information re-
quired to enable consistent data exchange in a federated
simulation. The routines defined here are in pseudo-code;
in general the federation developer will specify an object-
oriented programming (OOP) language syntax in which the

Rathnam and Paredis

Relationship_ClassRelationship_Class

To = common_attribute

Function_to
Function_from

From = position
To = common_attributeTo = common_attribute

Function_toFunction_to
Function_fromFunction_from

From = positionFrom = position

Position

Vehicle
Common_attribute

Common_object
Location

Node
PositionPosition

VehicleVehicle
Common_attributeCommon_attribute

Common_objectCommon_object
LocationLocation

NodeNode

To = common_attribute

Function_to
Function_from

From = location
To = common_attributeTo = common_attribute

Function_toFunction_to
Function_fromFunction_from

From = locationFrom = location

2-D coordinate

X
Y

2-D coordinate2-D coordinate

XX
YY

3-D coordinate

X
Y
Z

3-D coordinate3-D coordinate

XX
YY
ZZ

To = 3-D coordinate

Function_to
Function_from

From = 2-D coordinate
To = 3-D coordinateTo = 3-D coordinate

Function_toFunction_to
Function_fromFunction_from

From = 2-D coordinateFrom = 2-D coordinate

Instance of

KEY

has_relationship
Figure 7: Example FONT Information Structure

transformation routines are to be represented. The FONT
can be passed to the RTI as a set of classes and functions in
the specified OOP language.

4 CONCLUDING REMARKS

The ontology-based framework presented in this paper fa-
cilitates simplified reuse of federates in multiple FOMs.
Ontologies allow us to capture knowledge about object and
interaction representations (and the relationships between
them) in a formal manner. Applying this knowledge, we
have defined a process for automatically arriving at a fed-
eration object model and a set of procedures to transfer
data between federate and federation representations. The
end-result is a semantically rich model that spans the entire
federation and contains all the information required to en-
able consistent data transfer. This approach to federation
development offers considerable benefits when one or
more federates are being reused in a new federation. In
federations where reuse is not prominent, this approach of-
fers a simplified way of specifying complex relationships
between a large number of entities.

Using ontologies as simulation information models,
the process of FOM development has been significantly
trivialized. However, there is still room to simplify the
FEDEP process via ontology-based modeling, given the
constantly advancing state of art in ontology management.
Specifically, systems to automatically specify mappings
between various ontologies have been developed to sup-
port information processing across the widely-distributed
semantic web. For example, GLUE uses machine-learning
techniques to automatically identify matches between simi-
lar concepts in two or more ontologies. By applying such
systems to ontology-based federation development, rela-
tionships between SONTS could conceivably be deter-
mined completely autonomously, resulting in the ultimate
simplification of the FOM development process.

An important aspect of this framework that has not yet
been addressed is the interface between the federation de-
veloper and the underlying software. Given the iterative
nature of the FONT generation process, this interface (cur-
rently being developed) should provide an intuitive method
by which users can specify knowledge and provide feed-
back to the system. Finally, there is still the issue of using
the information in a FONT to actually manage consistent
data transfer at run-time. In this paper, we have not focused
on the implementation of an RTI that can avail of the rela-
tionships defined in the FONT. The development of a next-
generation architecture that uses the transformations cap-
tured in a FONT to provide real-time conversions between
disparate representations is on going research at Georgia
Tech (Fitzgibbons and Fujimoto 2004).

ACKNOWLEDGMENTS

We would like to acknowledge the members of the Sys-
tems Realization Laboratory and the Parallel and Distrib-
uted Simulation Group at the Georgia Tech for their com-
ments and feedback on this work. This work is supported
by Sandia National Laboratories under contract A0356-
253878. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company for the
United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-
94AL85000.

REFERENCES

Base Object Model Study Group. 2001. BOM Methodol-
ogy Strawman (BMS) Specification. Simulation Inter-
operability Standards Organization, Orlando, FL.

Berners-Lee, T., J. Hendler and O. Lassila 2001. The Se-
mantic Web. The Scientific American Magazine (279).

Bouwens, C., R. Miller, R. Scrudder and R. Lutz. 1998.
Object Model Development: Tools and Techniques.
Simulation Interoperability Workshop.

Defense Modeling and Simulation Office. 1999. High
Level Architecture: Federation Development and Exe-
cution Process (FEDEP) Model.

Doan, A., J. Madhavan, P. Domingos and A. Halvey. 2002.
Learning to Map Between Ontologies on the Semantic
Web, In Proceedings of the International Word Wide
Web Conference, Hawaii.

Fitzgibbons, J. and R. Fujimoto. 2004. IDSim: An Extensi-
ble Framework for Interoperable Distributed Simula-
tion, In Proceedings of the International Conference
on Web Services, San Diego, CA.

Gruber, T. 1993. Toward Principles for the Design of On-
tologies Used for Knowledge Sharing. International
Workshop on Formal Ontology, Padova, Italy.

Gustavson, P. L., J. P. Hancock and M. McAuliffe 1998.
Base Object Models (BOMs): Reusable Component
Objects for Federation Development, Simulation In-
teroperability Workshop.

IEEE 2000. Std 1516.2-2000, Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA) -
Object Model Template (OMT) Specification.

Rathnam and Paredis

Kim, J.-T. 1993. Classification and Retrieval of Knowl-

edge on a Parallel Marker-Passing Architecture. In
IEEE Transactions on Knowledge and Data Engineer-
ing, 5(5): 753-761.

Macannuco, D., B. Dufault and L. Ingraham. 1998. An Ag-
ile FOM Framework. Simulation Interoperability
Workshop.

Nance, R. E. 1999. Distributed Simulation With Federated
Models: Expectations, Realizations and Limitations. In
Proceedings of the 1999 Winter Simulation Conference,
ed. P.A. Farrington, H.B. Nembhard, D.T. Sturrock and
G.W. Evans, 1026-1031. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers.

Novak, G. S. 1995. Conversion of Units of Measurement.
In the IEEE Transactions on Software Engineering,
21(8): 651-661.

Noy, N., R. Fergerson and M. Musen. 2000. The Knowl-
edge Model of Protege 2000: Combining Interopera-
bility and Flexibility. Stanford Medical Informatics
Technical Report, Stanford University, Stanford, CA.

Schmolze, J. G. and T. Lipkis. 1983. Classification in the
KL-One Knowledge Representation System. In Pro-
ceedings of the 8th International Joint Conference on
Artificial Intelligence, Karlsruhe, Germany.

TopQuadrant. 2003. Semantic Integration: Strategies and
Tools. TopQuadrant Inc. Whitepaper, Beaver Falls, PA.

AUTHOR BIOGRAPHIES

TARUN RATHNAM is a graduate research assistant at
the Systems Realization Laboratory at Georgia Tech,
where he is working towards his Master’s degree in Me-
chanical Engineering. His research is focused on the appli-
cation of semantic technologies to support information
management in engineering design and analysis. His email
address is <gtg378k@prism.gatech.edu>.

CHRIS PAREDIS Ph.D., is an Assistant Professor in the
G.W. Woodruff School of Mechanical Engineering at
Georgia Tech. He received his M.S. degree in Mechanical
Engineering from the Catholic University of Leuven (Bel-
gium) in 1988, and his M.S. and Ph.D. in Electrical and
Computer Engineering from Carnegie Mellon University in
1990 and 1996, respectively. From 1996 to 2002, he was a
Research Scientist at the Institute for Complex Engineered
Systems at Carnegie Mellon University. Dr. Paredis has a
broad, multidisciplinary background. In his research, he
combines aspects of information technology, simulation,
and systems theory to support the design of mechatronic
systems. The goal of his current research is to develop an
integrated IT framework for simulation-based design. He
is also still active in the robotics and mechatronics areas in
which he did his Ph.D. research. His email address is
<chris.paredis@me.gatech.edu>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1054
	02: 1055
	03: 1056
	04: 1057
	05: 1058
	06: 1059
	07: 1060
	08: 1061
	09: 1062

