
Proceedings of the 2004 Winter Simulation Conference
R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

THE HATS SIMULATOR

Paul R. Cohen
Clayton T. Morrison

Center for Research on Unexpected Events (CRUE)
USC Information Sciences Institute

4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292-6601, U.S.A.
ABSTRACT

The Hats Simulator is designed to be a lightweight proxy
for many intelligence analysis problems, and thus a test
environment for analysts’ tools. It is a virtual world in
which many agents engage in individual and collective
activities. Most agents are benign, some intend harm. Agent
activities are planned by a generative planner. Playing
against the simulator, the job of the analyst is to find
harmful agents before they carry out their plans. The
simulator maintains information about all agents. However,
information is hidden from the analyst and some is expensive.
After each game, the analyst is assessed a set of scores
including the cost of acquiring information about agents, the
cost of falsely accusing benign agents, and the cost of failing
to detect harmful agents. The simulator is implemented
and currently manages the activities of up to one hundred
thousand agents.

1 INTRODUCTION

The Hats Simulator was designed originally to meet the needs
of academic researchers who want to contribute technology
to Homeland Security efforts but lack access to domain
experts and classified problems. Most academic researchers
do not have security clearances and cannot work on real
data, yet they want to develop tools to help analysts. In any
case, real data sets are expensive: They cost a lot to develop
from scratch or by “sanitizing" classified data. They also
are domain-specific, yet much of the domain expertise is
classified. Because data sets are expensive, many that have
been made available to researchers are relatively small and
the patterns to be detected within them are fixed, few, and
known, so working with these data sets is a bit like solving
a single “Where’s Waldo" puzzle. Sometimes there also
is the problem that real data sets model “signal” (terrorist
activities) not “noise” (everything else) yet extracting signal
from noise is a great challenge. Data sets in general are
static, whereas data become available to analysts over time.
It would be helpful to have a data feed, something that
generates data as events happen. To validate analysts tools,
it would be helpful to have a generator of terrorist and non-
terrorist activities. The generator should be parameterized
for experimental purposes (e.g., varying the distinctiveness
of terrorist activities, to make them more or less easily
recognizable as such); and it should come up with novel
activities, requiring analysts and their tools to both recognize
known patterns and reason about suspicious patterns.

Hats is home to thousands of agents (ÒhatsÓ) which
travel to meetings. Some hats are covert terrorists and a
very few hats are known terrorists. All hats are governed
by plans generated by a planner. Terrorist plans end in the
destruction of landmarks. The object of a game against the
Hats simulator is to find terrorist task forces before they
carry out their plans. One pays for information about hats,
and also for false arrests and destroyed landmarks. At the
end of a game, one is given a score, which is the sum of these
costs. The goal is to play Hats rationally, that is, to catch
terrorist groups with the least combined cost of information,
false arrests, and destroyed landmarks. Thus Hats serves
as a testbed not only for analysts’ tools but also for new
theories of rational intelligence analysis. Hats encourages
players to ask only for the information they need, and to
not accuse hats or issue alerts without justification.

The Hats simulator is very lightweight: Agents have
few attributes and engage in few elementary behaviors;
however, the number of agents is enormous, and plans
can involve simultaneously many agents and a great many
instances of behaviors. The emphasis in Hats is not domain
knowledge but managing enormous numbers of hypotheses
based on scant, often inaccurate information. By simplifying
agents and their elementary behaviors, we de-emphasize the
domain knowledge required to identify terrorist threats and
emphasize covertness, complex group behaviors over time,
and the frighteningly low signal to noise ratio.

The Hats Simulator consists of the core simulator and
an information broker. The information broker is respon-
sible for handling requests for information about the state



Cohen and Morrison
of the simulator and thus forms the interface between the
simulator and the analyst and her tools (see Figure 1).
Some information has a cost, and the quality of information
returned is a function of the “algorithmic dollars” spent.
Analysts may also take actions: they may raise beacon alerts
in an attempt to anticipate a beacon attack, and they may
arrest agents believed to be planning an attack. Together,
information requests and actions form the basis of scoring
analyst performance in identifying terrorist threats. Scoring
is assessed automatically and serves as the basis for analytic
comparison between different analysts and tools. The sim-
ulator is implemented, manages the activities of up to ten
thousand agents, and is a resource to a growing community
of researchers.

Figure 1: Information Broker Interface to Hats Simulator

The following sections outline the Hats domain, in-
cluding how we generate populations of hats and how the
planner schedules meetings for hats to attend. We describe
the information request framework, the actions the analyst
may take, and scoring. We conclude with a discussion of
the future of the Hats Simulator.

2 THE HATS DOMAIN

The Hats Simulator is a virtual world in which agents move
around, go to meetings, acquire capabilities, do business,
and, for a small subpopulation of agents, do harm. Agents
move on a two-dimensional board which has only two kinds
of locations: Beacons are high-value places that terrorist
agents would like to destroy, other locations have low value.
All beacons have a set of attributes, or vulnerabilities, cor-
responding to the capabilities that agents carry. To destroy
a beacon, a task force of agents must be in possession of a
set of capabilities that match the beacon’s vulnerabilities, as
a key matches a lock. In general, these sets of capabilities
are not unique to terrorists, so one cannot identify a terrorist
task force from its constituent capabilities, alone.

Henceforth, agents are called hats and identified as
benign and terrorist; overt and covert are subcategories
of terrorist hats. (The “hats” name is an allusion to the
classic spaghetti western, in which the villain and hero are
identifiable by the color of their hat.) In general, benign
hats outnumber terrorists by orders of magnitude.

Some agents are known, a priori, to intend harm – they
are “known terrorists” – others are covert. This is modeled
easily by assigning each agent a true and an advertised hat
class, as in Table 1. The Hats Simulator knows the true class

Table 1: Assignments of True and Advertised Hat Classes

True Hat Class Adv. Hat Class
Benign Benign Unknown
Known Terrorist Terrorist Terrorist
Covert Terrorist Terrorist Unknown

of each hat, and it plans agents’ activities accordingly, but
analysts must infer hat class from how agents behave. While
agents that advertise terrorist hats are “known terrorists,”
a very small fraction of agents that advertise an unknown
class are also terrorists. They are the ones to worry about.

2.1 Organizations and Population Generation

Hats populations consist of known terrorist hats, covert
terrorist hats and benign hats. All hats are members of at
least one organization; some belong to many. There are two
types of organizations. Terrorist organizations are made up
of only known and covert terrorists. Benign organizations,
however, may contain any kind of hat – that is, while
known and covert terrorists must be members of at least
one terrorist organization, they may also be members of
benign organizations.

Hats populations may be built by hand or gener-
ated by the Hats Simulator. Because the constitution of
a population affects the difficulty of identifying covert
terrorists, population generation is parameterized. The
organization-overlap parameter, a real number be-
tween 0 and 1, determines the percentage of hats in each
organization that are members of other organizations. For
example, if organization-overlap is 0.4, then 40%
of the members of each organization are also members
of other organizations, but the remaining 60% are only
members of their native organization. The number of orga-
nizations an overlapping hat may belong to is determined
by an exponential random number (thus, overlapping 3
organizations is rare, 4 is very rare, 5 is extremely rare,
etc., ...). The population generator manages overlap so that
the organization-overlap percentage is as close as
possible to its parametric value.

The total numbers of known terrorist, covert terrorist
and benign hats in the population are determined by the
num-terrorists, num-coverts and num-benigns
parameters, respectively. Known and covert terrorists must
be members of at least one terrorist organization and may also
be members of benign organizations. Benign hats, on the
other hand, may only be members of benign organizations.



Cohen and Morrison
Not all organizations have the same number of members.
The variable covert-org-members-ratio represents
the ratio of covert terrorist hats assigned to each terrorist
organization and benign-org-members-ratio repre-
sents the ratio of benign hats to each benign organization.

Assignments of hats to organizations (respecting the
parameters for organization-overlap, organization members
ratios, and the numbers of hat types) takes place before
any actual hats are created. Once assignments have been
determined, the hats themselves are generated and given
their organization assignments. At this time, each hat is
also assigned a native capability, which the hat will carry
throughout the simulation, and a set of “traded” capabilities
which are temporary, expiring after some number of ticks
(e.g., within 40 ticks). Hats are also assigned random
locations in the Hats world game board.

2.2 Meeting Generation

Hats act individually and collectively, but always planfully.
In fact, the actions of hats are planned by a generative
planner. Benign hats congregate for commerce and pleasure
at locations including beacons. Terrorist hats meet, acquire
capabilities, form task forces, and attack beacons. Several
hats might plan to visit a beacon, and might collectively
have the capabilities to destroy the beacon, yet are benign.
Or, one covert terrorist might plan to visit three known
terrorists in succession, acquiring from each a capability
that threatens a beacon; and yet might remain dormant,
approaching no beacon, for a time.

Each organization has a generative meeting planner
associated with it that plans tasks for its members. A task
is a set of meetings planned to deliver a set of capabilities to
some goal location in the Hats World. Hats that participate
in a task are reserved. Hats not part of a task are free.
At each tick each organization has a chance of beginning
a new task according to the probability specified by the
p-start-new-task parameter. When a new task is
started, the Hats meeting planner selects a subset of hats
from the free hats of the organization. This subset of hats is
called a taskforce. The size of the taskforce is determined by
the num-in-meetings parameter. The meeting planner
also selects a coordinate in the Hats World game board as the
target location of the task. With probability specified by the
p-beacon-meeting parameter, the planner will select a
beacon location as the task target. Otherwise a random Hats
World coordinate is selected. If a beacon is the task target,
then the set of vulnerabilities of the beacon determines the
set of capabilities the taskforce must bring to the target. If
the target is not a beacon, then a random set of capabilities
is selected – the size of the set of random capabilities is
determined by the num-requirements parameter. The
set of capabilities the taskforce must bring to the task target
is referred to as the taskforce’s required capabilities. The
taskforce members may or may not already possess the
required capabilities.

In fact, if the taskforce members generally do not have
all these capabilities, then the meeting planner can construct
an elaborate “shell game" in which capabilities are passed
among hats at a long sequence of meetings, culminating
in the fatal meeting at the target. By moving capabilities
among hats, the planner can mask its intentions. It certainly
is not the case that, say, half a dozen hats with required
and known capabilities march purposefully up to a beacon.
Instead, the hats with the required capabilities pass them on
to other hats, and eventually a capable task force appears
at the beacon.

Figure 2: Example Meeting Tree

Once the taskforce, target location, and required ca-
pabilities have been chosen, the meeting planner creates a
set of meetings designed to ensure that the taskforce ac-
quires all of the required capabilities before going to the
target location. The meeting planner accomplishes this by
constructing a meeting tree. Figure 2 shows an example
meeting tree, where the contents of each box represent the
hats participating in a meeting. The tree is “inverted” in
the sense that the root is the last meeting, with branches
from the root representing parent meetings that take place
prior to the target meeting – Figure 2 depicts the temporal
ordering of meetings by directed arrows. At this point, the
meeting planner incrementally fills-out the meeting tree,
starting with the final meeting. The final, root meeting
takes place at the target location and involves all of the
taskforce hats. The parent meetings of the final meeting
each have one taskforce member. The locations of all other
meetings added to the meeting tree are selected randomly.

The meeting planner selects a second set of hats (from
the organization’s free hats) that carry required capabilities
that the taskforce does not currently carry; these hats are
called resource hats. Each of the resource hats are randomly
assigned to taskforce members. Meetings between resource
hats and taskforce members are called resource meetings.
Resource meetings are added to the meeting tree as follows.
The planner traverses a branch of the meeting tree which a
taskforce member originates from (initially, these are just



Cohen and Morrison
the direct parents of the final, root meeting). With probabil-
ity p-required-resource-meeting-origin, the
meeting planner adds a new meeting as a parent of
the current meeting, which initially contains only the
taskforce member. The planner traverses to that meet-
ing and checks the probability again. With probability
1−p-required-resource-meeting-origin, the
current meeting becomes a resource meeting between the
resource hat and the taskforce member. In a resource meet-
ing, capability trades are planned to transfer the required
capabilities to the taskforce members. This process is re-
peated until all of the resource hats have been assigned to
taskforce members.

At this point, the meeting tree has all of the necessary
meetings with trades to ensure that the taskforce will ar-
rive at the task target with all of the required capabilities.
The meeting planner then fills out the tree with additional
meetings, participants, and capability trades. The additional
meetings and trades are referred to as “decoys” because they
are not directly involved in the task completion. The param-
eter p-produce-decoy-meeting is used to determine
whether a decoy meeting should be added to a leaf meeting
of the current meeting tree.

Once a meeting tree has been completely filled-out,
it is added to a queue of current tasks and it will start
to be executed at the next step of the simulation. Dur-
ing execution, the current leaves of each meeting tree are
added to the currently-executing-meetings list
and the Hats engine starts moving currently executing meet-
ing participants toward their meeting locations. Once all
of the meeting participants have arrived at a meeting loca-
tion, the meeting lasts for two ticks, after which all hats
not participating in more meetings are set “free” (and thus
available to participate in new planned tasks). All other
hats still reserved for meetings then begin moving to their
next meeting.

The meeting trees created by this meeting planner typ-
ically have a depth ranging from 2 to 5. The frequency of
tasks planned depends on both p-start-new-task and
the number of hats in each organization (which comprise
the resources available to the planner).

The Hats Simulator is designed to accommodate any
meeting planner that adheres to a planner API. We are
developing the API and anticipate using other planners. For
example, a variation on the above planner would plan tasks
that relate meetings as directed acyclic graphs (DAGs) as
opposed to trees. This allows taskforce members to meet
with one another repeatedly before the final meeting. We
are also exploring other meeting topologies in conjunction
with researchers in social network theory.
3 THE INFORMATION BROKER

Think of the Hats Simulator as a society in a box and your
job, as an analyst, is to protect the society against terrorist
taskforces. Specifically, you need to identify terrorist task
forces as such before they damage beacons. To do so, you
require information about the hats in the box. Information is
acquired from an Information Broker, as shown previously in
figure 1. The Information Broker will respond to questions
from you, such as, Where is Hat27 now? and it will also
provide information by subscription to analysts’ tools (which
in turn make requests for information). For example, a tool
might issue a request like, Identify everyone Hat27 meets
in the next 100 steps, or, Tell me if Hat27 approaches a
beacon with capabilities c1, c7 or c29.

Information comes at a price. Some is free, but in-
formation about states of the simulator that change over
time is costly. The quality of the information obtained is
determined by the amount paid. The following two sec-
tions describe the two central components to the request
framework: the cost of information and noise. Together,
these components make the Hats simulator an experimental
environment in which to study the economics of the value of
information in the task of identifying malevolent behavior
in the Hats domain.

3.1 The Cost of Information

Three kinds of information are available from the Informa-
tion Broker for free: (1) information about the population
assumed to be available to the user (e.g., who the known
terrorists are), (2) information about the Hats simulated
world (e.g., the world-map dimensions, the list of beacons
and their names, and the list of all of the capabilities that
exist), and (3) some event bookkeeping (an event history,
list of currently arrested hats, etc.). Information types 1
and 2 are determined when the simulation is initialized and
do not change over time; type 3 is updated at each step of
the simulation.

For Information Broker requests that require payment,
the amount paid (a real number) will determine a base
probability, which in turn determines the accuracy of the
requested information. In the current implementation, in-
creased accuracy requires exponentially more “algorithmic
dollars.” The payment function, shown in Equation 1, maps
payment to probability.

probability = 1 − 1

log2

(
payment

5 + 2
) (1)

The same function is applied to every payment-based request.



Cohen and Morrison
3.2 Noise Model

The development of a suitable noise model and the schemes
for how noise is applied to requested information is, itself,
an entire field of study. We list here three approaches, in
increasing order of complexity:

1. The analyst may only request a particular piece
of information once and must choose the level of
payment for (and therefore quality of) the informa-
tion at the time of request. No additional requests
may be made. The analyst must decide at the time
of request the value of that piece of information.

2. The analyst may request information multiple
times. However, in order to receive information
beyond previous request(s), the analyst must pay
more than previous requests (according to the pay-
ment scale). Repeated requests at or below the
same level will return precisely the same informa-
tion, but paying more returns less noisy versions
of the original request.

3. The analyst may request information multiple
times, paying varying amounts. This approximates
the existence of multiple information sources (for
example, acquiring information from multiple wit-
nesses of an event). Such multiple information
sources might be made explicit, introducing the
potential of modeling sources of trust relationships.

Many other schemes are possible, but these provide some
indication of the wide variety of approaches to modeling
noise.

The current implementation of the information broker
employs the first scheme. The payment the analyst spec-
ifies determines the base probability p of whether, and to
what degree, the information requested will be noisy: with
probability p, the information requested is returned in its
entirety, otherwise the noise model is applied.

Although the basic noise application scheme is simple,
there still is a variety of types of information each of
which requires a different noise model variant. The table
in Figure 3 summarizes how different types of requested
information are made noisy. Following the noise application
scheme, analysts may only request each piece of information
once. Some information, such as the capabilities currently
carried by a hat (ib-hat-capabilities), is updated
at each tick, so the analyst may request that information
once each tick. Other information does not update, such
as information about the members of a meeting that took
place (ib-meeting-participants) – here the analyst
is allowed only one request of this information. The column
labeled “Request Frequency” shows the frequency with
which an analyst may request information.
Figure 3: Noise Model

The table is split into two groups based on whether the
requested information is a single element (bottom portion
of the table) or a list of elements (top portion of the table).

3.2.1 Lists

Noise is applied to lists in two stages: first, noise affects the
length of the list to be returned, and then noise is applied
to each element of the list. The two main columns on the
right-hand side of the list portion of the table indicate how
noise is applied to list-length and to each element; in either
case, noise is applied differently depending on whether or
not the request is for information about entities that exist
or events that occurred – true, non-noisy information about
entities that do not exist or events that did not occur is
returned as NIL.

List length is determined by sampling a random value
from a normal distribution with a standard deviation of 1.0
and a variable mean. (The sampled value is rounded to
make it a valid list length.) The “Mean List Length”
column describes how the mean for the normal sam-
pling distribution is set. For example, if the analyst re-
quests the current contents of a Hats world location (using
ib-location-contents), and there are in fact 3 hats
at that location, then the length of the potential return in-
formation (3) determines the mean; subsequently, the noisy
length of the list of hats that will be returned as a result of
the request will be a random number selected from a normal
distribution with mean 3, standard deviation 1. If, on the
other hand, no hats exist at that location, then the mean of
the normal distribution is 2 (as specified in Figure 3). These
means have been chosen because they resulted in reason-
able values during experimentation. If the analyst requests
information involving a list and the selected random value



Cohen and Morrison
rounds to 0 or lower, then the return value will be an empty
list (or NIL).

Next, assignments are made for each element slot in
the list to be returned. For each element, the noise model
again uses the base probability p to determine whether the
element slot will be noisy. If it is to be noisy, an element
of the requested information type is uniformly randomly
selected (with replacement) from the set of all elements of
that type. For example, a random hat would be selected
from all existing hats. In the case of trades, a noisy trade
consists of two randomly chosen hats and one randomly
chosen capability. With probability 1 − p the element will
not be noisy. In this case, the element will be uniformly
selected, without replacement, from the list of elements that
would be returned if the information was uncorrupted; if
the request is for information that does not exist, then that
element of the list will be empty.

3.2.2 Elements

The elements portion of the table describes noise applied
to information consisting of single elements. Random lo-
cations are selected when noise is applied to location in-
formation. A random location is chosen by selecting two
random numbers, one for each coordinate component (x, y).
The random numbers are selected from a standard normal
distribution (mean 0, standard deviation 1.0). The value
selected is then multiplied by the entire range of the x or
y axis of the Hats World game board and divided by 10.
This heuristic returns reasonable distances relative to the
size of the game board dimensions. The adjusted value is
then added to the true coordinate component. If the ad-
justed coordinates exceed the boarders of the game board,
the amount exceeded is “reflected”. For example, if a hat
is at x-coordinate 3 and the adjustment is -5, then rather
than returns an x-value of -2, the value is “reflected” to x
= 2. If, on the other hand, the Game World maximum x
size is 10 and the adjusted value is 12, then the value is
“reflected” to x = 8.

4 ACTIONS

In addition to requesting information, the analyst playing
the Hats game can also change a beacon’s alert level and
arrest hats. These actions affect the analyst’s performance
score (described in the next section).

4.1 Beacon Alerts

Each beacon can be set, by the analyst, to be in one of
three alert levels: off (default), low or high, indicating
no threat of an impending attack, a chance of an attack,
and a likely attack, respectively. The Hats Simulator keeps
track of beacon alert levels, including the amount of time a
beacon alert is elevated (low or high) and whether actual
attacks actually occur during elevated alerts. These statistics
include counts of “hits” and “false positives,” where “hits”
≡ occurances of an attack while alert is elevated (above
off), and “false-positives” ≡ elevated alerts that begin and
end with no beacon attack occurring. These scores are
kept for both low and high alert levels. In general, the
goal is to minimize the time beacon alerts are elevated, and
high alerts are deemed “more costly” than low alerts. On
the other hand, if an attack does occur on a beacon, it is
generally better to have a higher alert level.

4.2 Arresting Hats

Analysts can also issue an arrest warrant for hats in order
to prevent beacon attacks. A successful arrest results when
the arrested hat is currently a member of terrorist taskforce.
Arrests of any other hats, including hats that are terrorists
but not currently part of a terrorist taskforce, result in
arrest failure and are equivalent to a false arrest (a false
positive). This is an important aspect of the semantics of
“being a terrorist” in the Hats model: one can be a terrorist
but not be guilty of any crime. Under this interpretation,
“being a terrorist” is a matter of having a propensity to
engage in terrorist acts. A terrorist act in the Hats domain
is participating in an attack on a beacon. Thus, terrorist
hats must be engaged in an ongoing terrorist activity to
be successfully arrested. According to this model, if a hat
previously committed a terrorist act but is not currently part
of a terrorist taskforce, it cannot be successfully arrested.

Successful arrests do not guarantee saving beacons.
As noted, a beacon is only attacked when some subset of
members from a taskforce carry the requisite capabilities
that match the target beacon’s vulnerabilities engage in
a final meeting on said beacon. Thus, it is possible to
successfully arrest a terrorist taskforce member but the
other terrorist taskforce members still have the requisite
capabilities to attack the beacon. If, on the other hand,
the analyst successfully arrests a terrorist taskforce member
carrying required capabilities that no other taskforce member
carries, then the taskforce meeting will take place on the
beacon, but it will not be attacked. This is counted as a
“beacon save.”

In the present version of Hats, the successful arrest of
a hat does not remove it from the game – the hat will still
behave as if it had not been arrested. It will still move
toward goals and go to meetings. However, it will not
be able to trade any of its capabilities nor contribute to
enabling a beacon attack – it will be as though the hat were
not present.

Currently, the statistics on beacon alert “hits,” “false
positives,” “successful arrests,” and “false arrests” are not
combined into a uniform cost model. They are simply



Cohen and Morrison
reported as additional measures of comparative player per-
formance.

5 SCORING ANALYST PERFORMANCE

The Hats Simulator and Information Broker together provide
an environment for testing analystsÕ tools. Recall that the
object of the game is to identify terrorist task forces before
they damage beacons. Three kinds of costs are accrued:

• The cost of acquiring and processing information
about a hat. This is the Ògovernment in the bed-
roomÓ or ÒintrusivenessÓ cost.

• The cost of falsely identifying benign hats as ter-
rorist

• The cost of harm done by terrorists

The skill of analysts and the value of analystsÕ tools can
be measured in terms of these costs, and these are assessed
automatically by the Hats simulator as the analyst plays the
Hats game. The final report generated by the Hats Simulator
after terminating a simulation run is divided up into four
categories, as described in the following list:

• Costs: the total amount of “algorithmic dollars”
spent on information from the Information Broker.

• Beacon Attacks: including the total number of
terrorist attacks that succeeded and the total number
of attacks that were stopped by successful arrests.

• Arrests: the number of successful arrests and the
number of false-arrests (false-positives)

• Beacon Alerts: the number of low and high hits
(the number of raised alerts during which an attack
occurred), and the number of low and high false-
positives (the number of raised alerts during which
no attack occurred).

6 DISCUSSION

We are told by intelligence analysts that Hats has many
attributes of “the real thing." Some say in the same breath that
Hats ought to have other attributes, for instance, telephone
communications, rapid transportation of hats around the
board, different kinds of beacons, and so on. We resist
these efforts to make Hats more “realistic" because for us,
the purpose of Hats is to provide an enormously difficult
detection problem with low domain knowledge overhead.
No doubt Hats will change over time, but we will strive
to keep it simple. Big, complex, covert, but simple. The
other goal that guides our development of Hats is what we
might call the “missing science" of intelligence analysis. To
the best of our knowledge, in the current climate, analysts
penalize misses more than false positives. This sort of
utility function has consequences – raised national alert
levels, lines at airports, and so on. Hats is intended to
be a simulated world in which analysts can experiment
with different utility functions. It is a laboratory in which
scientific models of intelligence gathering, filtering, and use
– models based on utility theory and information – can be
tested and compared.

To meet these goals, our ongoing development of Hats
includes the following: (1) increasing the scale and effi-
ciency of the simulator to accommodate hundreds of thou-
sands of hats running in reasonable time to conduct ex-
periments and play in real-time; (2) building WebHats, a
web-based interface to Hats, enabling any researcher with
access to the web to make immediate use of Hats as a data
source; (3) providing league tables of analyst/tool perfor-
mance scores from playing the Hats game, promoting public
competition to better intelligence analysis technology; and
(4) developing a user-friendly interface to Hats, including
more complex information querying and visual aids so that
human analysts can play the Hats game more naturally.

7 ACKNOWLEDGMENTS

The Hats Simulator was conceived of by Paul Cohen and
Niall Adams at Imperial College in the summer of 2002.
Cohen implemented the first version of Hats, and David
Westbrook, Clayton Morrison, Andrew Hannon and Michi-
haru Oshima have subsequently developed major portions
of the simulator. Thanks also are due to Gary King for
help. Bob Schrag at IET contributed useful ideas and built a
simulator similar to Hats for DARPA’s Evidence Extraction
and Link Discovery (EELD) program. Work on this project
was funded by EELD.

AUTHOR BIOGRAPHIES

PAUL R. COHEN is the deputy division director of the
Intelligent Systems Division of the University of Souther
California’s Information Sciences Institute. In 2003 he be-
came the Director of the Center for Research on Unexpected
Events (CRUE). Dr. Cohen is currently on leave from the
Department of Computer Science at the University of Mas-
sachusetts, where he has served for 20 years as a Professor
and Director of the Experimental Knowledge Systems Lab-
oratory. His PhD is from Stanford University in Computer
Science and Psychology, in 1983. He served as a Council-
lor of the American Association for Artificial Intelligence,
1991–1994, and was elected in 1993 as a Fellow of the
AAAI.Ê HisÊ projects include AIID, an Architecture for
the Interpretation of Intelligence Data; Capture the Flag, a
wargaming environment; the Robot Baby project, in which
a robot learns representations and their meanings sufficient
for natural language and planning; and the Packrats project,
in which rats are trained to carry video cameras for search-
and-rescue operations. He also works on algorithms for



Cohen and Morrison
finding patterns in temporal data. Dr. Cohen is interested
in AI methodology, particularly empirical methods. His
e-mail address is <cohen@isi.edu>, and his web page
is <eksl.cs.umass.edu/∼cohen/>.

CLAYTON T. MORRISON is a Postdoctoral Research
Fellow in the Information Sciences Institute at the Univer-
sity of Southern California. Formerly, Dr. Morrison was
a Senior Research Fellow in the Experimental Knowledge
Systems Laboratory of the Computer Science Department
at the University of Massachusetts. Dr. Morrison holds
a Bachelors degree in Cognitive Science from Occidental
College, and received his Masters and Ph.D. in Philoso-
phy from Binghamton University. His research interests
include the nature of representation and knowledge in hu-
mans and machines, cognitive development, and the rapid
identification of unexpected behaviors in large populations.
He is currently working on the development of a Bayesian
blackboard system for the interpretation and analysis of
asynchronous and noisy data from a variety of complex do-
mains. His e-mail address is <clayton@isi.edu>, and
his web page is <eksl.cs.umass.edu/∼clayton/>.

mailto:cohen@isi.edu
http://eksl.cs.umass.edu/~cohen/
mailto:clayton@isi.edu
http://eksl.cs.umass.edu/~clayton/

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 849
	02: 850
	03: 851
	04: 852
	05: 853
	06: 854
	07: 855
	08: 856


