
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

RESOLVING MUTUALLY EXCLUSIVE INTERACTIONS IN
AGENT BASED DISTRIBUTED SIMULATIONS

Lihua Wang
Stephen John Turner

Fang Wang

School of Computer Engineering
Nanyang Technological University

639798 SINGAPORE

ABSTRACT

With the properties of autonomy, social ability, reactivity
and pro-activeness, agents can be used to represent entities
in distributed simulations, where fast and accurate decision
making is a determining factor of the whole environment.
Resolving concurrent interactions is a key problem of this
kind of system, as the shared environment needs to allow
agents to interact with the environment in a causally con-
sistent way. There will usually be either mutually exclusive
or collaborative interactions. This paper presents our re-
search in designing a middleware component called Inter-
action Resolver (IR) to resolve the effect of concurrent in-
teractions and still guarantee the consistency and causality
of the system. The ownership management services pro-
vided by the High Level Architecture (HLA) are compared
with IRs in resolving mutually exclusive interactions in our
prototype, a minesweeping game. Conclusions are drawn
based on the experimental results.

1 INTRODUCTION

Recently, there is a trend of using agents in distributed
simulations (Uhrmacher, Fishwick, and Zeigler 2001). An
agent can be regarded as an encapsulated computer system
that is situated in some environment and is capable of
flexible, autonomous action in that environment in order to
meet its design objectives (Jennings 2000). Agents can
communicate with each other via some form of communi-
cation language and they have the ability to engage in co-
operative problem solving. The autonomy, social ability,
reactivity and pro-activeness of agents offer great flexibil-
ity in various situations, thus agents and multi-agent sys-
tems are being used increasingly in a wide range of appli-
cation areas, including information retrieval,
telecommunications, business process modeling, educa-
tion, military simulations, social simulations, games etc.
The novelty of our project is to use agents to represent
some of the entities in distributed simulations.

A distributed simulation is executed on a computing

system with multiple possibly geographically distributed
processors interconnected via a communication network
(Fujimoto 2000). Using agents in distributed simulations
means some entities in the simulation can automatically
update and act according to the latest information about the
environment in which they participate, thus no decisions
from the outside world need to be made for these entities.

The High Level Architecture (HLA) (DMSO 1998) is
a current U.S. Department of Defense (DoD) and IEEE
standard for modeling and simulation. Some of the advan-
tages of using the HLA as a multi-agent environment have
been studied in (Andersson and Löf 1999). HLA provides a
standard that can reduce the cost and development time of
simulation systems and increase their capabilities by facili-
tating the reusability and interoperability of component
simulators. In the HLA, a distributed simulation is called a
federation, and each individual simulator is referred to as a
federate, with one point of attachment to the Run-Time In-
frastructure (RTI). A federate can be a computer simula-
tion, an instrumented physical device or a passive data
viewer. The Interface Specification of the HLA describes
six service classes to support federations: federation man-
agement, declaration management, object management,
ownership management, time management and data distri-
bution management.

The benefits of the HLA and the JADE (Java Agent
DEvelopment Framework) agent platform were utilized in
this project. JADE (Bellifemine, Poggi, and Rimassa 1999)
is a software framework fully implemented in the Java lan-
guage. It simplifies the implementation of multi-agent sys-
tems with both a middleware that complies with the Foun-
dation for Intelligent Physical Agents (FIPA) specifications
(FIPA 2002) and a set of tools that support debugging and
deployment. There are different approaches to constructing
the overall architecture for integrating agents into an HLA
simulation. In our model (Wang, Turner, and Wang 2003),
a middleware is composed of JADE and a gateway feder-
ate. The gateway federate is developed to take charge of

Wang, Turner, and Wang

agents. JADE agent containers where agents reside are
constructed upon it and the gateway federate can still ac-
cess the RTI directly. There can be more than one agent
residing in the same JADE container. Every agent has a
limited knowledge of the environment; they get the infor-
mation via their own sensors, do deliberations and then act
upon the environment using their effectors. Using the ob-
ject-to-agent (O2A) communication channel provided by
the JADE toolkit, a gateway federate can communicate
with its agents using the sensor and effector objects.

This paper focuses on how to resolve concurrent inter-
actions, especially mutually exclusive interactions, in agent
based distributed simulations. When more than one agent
joins the simulation, management of the shared environ-
ment is a key problem: the shared environment needs to be
structured to allow agents to interact with the environment
in a causally consistent way. There will usually be either
mutually exclusive or collaborative interactions in agent
based distributed simulations. To resolve the effect of these
interactions and still guarantee the consistency and causal-
ity of the system, we developed a middleware component
called Interaction Resolver (IR).

In the rest of this paper, section 2 gives a brief intro-
duction to concurrent interactions. Two solutions to the
problems of mutually exclusive interactions in our proto-
type system are illustrated in section 3. The two solutions
are ownership management (OM) services provided by the
RTI and our Interaction Resolver (IR). OM and IR are
compared in depth in section 4 based on tests of two dif-
ferent mutually exclusive scenarios in our prototype.
Benchmarking results and a summary are also presented in
this section. Finally, section 5 concludes the paper together
with future work.

2 CONCURRENT INTERACTIONS

An interaction can be regarded as the way entities in a sys-
tem communicate with or influence one another. The re-
sults of these interactions normally change behaviors of
these entities. In distributed simulations, concurrent inter-
actions can be defined as interactions that happen at the
same simulation time or during the same time step. As
agents have the properties of autonomy, social ability,
reactivity and pro-activeness, which offer great
convenience in various situations, it is necessary to support
concurrent interactions in agent systems where agents can
collaborate to achieve their goals.

Concurrent interactions can be either mutually exclu-
sive or collaborative. It depends largely on the intentions of
these interactions. Mutually exclusive interactions are in-
teractions that try to access a shared object concurrently,
while the object only allows a single operation on it at one
time. On the other hand, there are situations where a shared
object permits concurrent accesses to be combined in order
to change properties of the object. These interactions are
collaborative interactions. A famous example is that if two
different persons lift a table one after another, they are not
able to lift it up individually. The table can only be lifted
when both of them collaborate at the same time as shown
in Figure 1.

Figure 1: Collaborative Concurrent Interactions

According to (Broll 1995), distributed virtual envi-

ronments providing concurrent interactions have to deal
with two different kinds of problems: the detection of those
concurrent interaction requests and a “good” mechanism
to resolve these requests. Unresolved concurrent interac-
tions may lead to unexpected errors of the whole system.
Beside other specialized methods, Broll mentions four pos-
sible alternatives: priority based interaction request resolv-
ing, request time dependent interaction sequencing, con-
straint based interaction request resolving and combining
interaction request.

3 RESOLVING MUTUALLY EXCLUSIVE
INTERACTIONS

A prototype system named a minesweeping game was de-
veloped for our project to investigate mutually exclusive
interactions. The game is implemented using the JADE
agent toolkit version 2.5 and DMSO RTI1.3NG-V6. Figure
2 gives a snapshot of this game.

Figure 2: Snapshot of the Minesweeping
Game

In this game, soldiers are roaming in a minefield to

find and clear mines to make the environment safe. The
environment has an n*n grid. It consists of static obstacles
for soldiers to avoid and dynamic mines for soldiers to pick

Wang, Turner, and Wang

up. Mines are dynamic as they can explode within a certain
time if they are not picked up and cleared from the envi-
ronment by soldiers. Each soldier is represented by an
autonomous agent. It can only have one mine in hand, so if
a soldier already has a mine in its hand (a busy soldier), it
has to walk purposely toward the border of the minefield to
release it. After that, it will roam in the environment again
as a free soldier to find a mine.

The sensor region of each agent is just the eight grid
cells around its current position. We use Data Distribution
Management (DDM) services provided by the RTI to con-
struct the agent sensors (Wang et al. 2003). Each agent
federate’s subscription region (in DDM, each federate ex-
presses its interest in receiving data via subscription re-
gions) is mainly based on the sensor regions of agents in it.

3.1 Problems of Mutually Exclusive Interactions

As far as our prototype is concerned, there are both mutu-
ally exclusive interactions and collaborative interactions.
With more than one agent participant in the game, collision
problems will occur. This is mainly because of the limited
sensor region of each agent. Figure 3 illustrates this prob-
lem in our prototype.

subscription
region

sensor
region

SB

SA

Figure 3: An Example of Collision

In this figure, shadowed areas are the sensor regions for
agents. It is clear that agent SA and agent SB may step to the
same empty grid cell without awareness of the existence of
each other. Another example of mutually exclusive interac-
tions in our present system is the problem of picking up the
same mine. It is almost the same as the example above.

It may be thought that enlarged subscription regions
(we use this method for DDM services as they are not time
stamped) may be one solution, as it allows each agent to
get sufficient information of agents around it as shown in
Figure 3. However, the intentions of other agents, their fu-
ture actions (stepping to the empty cell or not, picking up
the mine or not) are unknown at that time step. When the
next time step begins, the collision may have already hap-
pened. Advanced methods have to be adopted to solve
these problems. The ownership management services pro-
vided by the RTI can be one solution, but this approach has
its limitations. A new method using Interaction Resolvers
has been developed for agent based distributed simulations.
Interaction Resolvers can also be used to solve collabora-
tive interactions, which is part of our future work.
3.2 Solution 1: Ownership Management (OM)

Ownership management is used by federates and the RTI
to transfer ownership of instance attributes among feder-
ates (DMSO 1998). It is possible for an object instance to
be wholly owned by a single federate. But only one feder-
ate can have update responsibility for an individual attrib-
ute of an object instance at any given time. This mutually
exclusive property of ownership transfer can be used to
solve the problems of mutually exclusive interactions.

For example, we can declare mines as HLA objects.
Suppose there are two agents that want to pick up the same
mine, they must first request the ownership of the mine from
the original owner federate of the mine. If one of them must
obtain the ownership of that mine instance before taking any
action, the collision of concurrent picking up will not occur:
when one agent gets the ownership of the mine instance, the
other one will be notified of its failure in competition for the
ownership. So when the next time step begins, only the win-
ner picks up the mine. The loser will adopt other actions: the
surrounding information for it has already changed as the
mine is cleared from its original position, so the loser will
not try to pick up the mine.

As the HLA interface specification does not relate
time stamps to ownership transfer, it is possible to have
unexpected situations happen. For example, two agent fed-
erates may both request the ownership of one object attrib-
ute within the same time step, but due to the time delay and
other factors, it is possible for the later one to get owner-
ship because the RTI receives it earlier. This receive-order
(RO) based priority in getting the ownership can be incon-
venient in agent based simulations, where users may prefer
to specify that certain agents with defined priority or at-
tributes should win in a competition. Also, if two federates
try to acquire and then release ownership of the same ob-
ject instance within the same time step, it is highly possible
that one of them may get the ownership just after the other
has released it. Thus the ownership can be acquired twice
in one time step, which is illogical.

In the RTI, it makes no sense for each federate to acquire
ownership of specific set of instance-attributes more than
once. So when there are more than one agent in one agent
federate, these agents will have to compete with each other
mainly based on the time they submit their request. Who will
obtain the ownership for this federate is unpredictable, as
only one agent will “represent” this federate. This is unfair if
we want to realize more functions in the competition.

Based on all these considerations, a mechanism using
a middleware interaction manager for each federate called
Interaction Resolver is investigated in our project.

3.3 Solution 2: Interaction Resolvers (IR)

Interaction Resolvers are deliberately designed to resolve
concurrent interactions in our prototype and similar dis-
tributed simulations. Each federate will have a local IR,

Wang, Turner, and Wang

which is used to work out partial collisions that happen
within this federate’s subscription region. All the IRs will
follow the same working mechanism, thus the result
reached in each federate is the same for every shared ob-
ject. In our game, for each time step, as each agent that re-
sides in the federate only needs to know the objects within
its sensor region to make a decision, as long as this infor-
mation is consistent, accurate and up-to-date, there will be
no errors for the decisions of agents in the whole simula-
tion. IRs are distributed across the whole simulation, this
greatly reduces the network load compared to the central-
ized ownership management method. Figure 4 shows the
overall architecture of the agent based simulation with IRs.

Run Time Infrastructure

RTIAmb

FedAmb

RTIAmb

FedAmb

FedAmb

RTIAmb

FedAmb

Non-agent Federate

RTIAmb

Agent(s)

JADE

Interface

Agent(s)

JADE

Gateway
Federate

Interface

Agent-specific
middleware

IR IR

IR

Non-agent Federate

IR

Figure 4: The Middleware with Interaction Resolvers

In each time step, all interactions (interaction has the

general meaning instead of the interaction used in the
HLA) within a federate’s subscription region will be re-
ceived and stored in a list in its local IR. Then the IR will
group them according to the objects and objects’ properties
of these interactions. For example, in our system, within
the interactions received within one time step, some of
them may be concerned with stepping to cells, while others
may be concerned with picking up mines. The objects of
these interactions here are the empty grid cells and the
mines. How to determine if these interactions have colli-
sions depends on the definition of the system, or the prop-
erties of these objects. In our game, if agents step to grid
cells with the same position (x,y), these interactions are
considered as having a collision. Likewise, interactions of
picking up mines with the same position (x,y) are also
treated as having a collision.

Concurrent interactions will be put in different collision
lists and then sorted. The sorting of these interactions is
mainly based on how the collision is defined. For mutually
exclusive interactions, each local IR will compare interac-
tions in each collision list according to the agents’ priorities
to decide who can be the winner in the collision. If two in-
teractions have the same priority, further properties of each
interaction will be used for the decision. These properties
must have unique values throughout the whole distributed
simulation, thus it can quickly bring an end to the winner
deciding procedure. We use object instance IDs in our proto-
type, as these IDs are assigned to each object instance by the
RTI, and are unique throughout the federation. So even if
two agents have the same priority, they definitely have dif-
ferent instance IDs, and we can then select the winner.

Only the winner can have exclusive privilege to access
the shared object, while all losers in this list will require
correction. In our game, we roll back losing stepping
agents to their previous positions. These corrections are
adopted because all agents assume that they have already
accessed the shared object and then their owner federate
updates this information to other federates. That is why
collisions are detected in each relevant IR in the beginning
of the next time step. Because IRs are used before con-
structing sensors that are sent to corresponding agents, as
long as all IRs use the same method of correction, and the
results of the correction are consistent, the whole system is
free of mistakes as each agent will get corrected status of
itself and updated nearby information for its next action.
IRs will not function if there are no collisions in one time
step. Figure 5 illustrates the working of IRs in our system.

for each collisionList L[]
MaxPriority = 0;
i = 0;
while i <= L[].length do

if L[MaxPriority]. priority < L[i]. priority then
rollback (L[MaxPriority])
MaxPriority = i

else if L[MaxPriority]. priority > L[i]. priority then
rollback (L[i])

else if L[MaxPriority]. priority = = L[i]. priority then
if L[MaxPriority].mInstanceID > L[i]. mInstanceID then

rollback (L[i])
else

rollback (L [MaxPriority]);
MaxPriority = i

end if
end if
 i++

end while
winner = L[MaxPriority];
accept (winner)

end for
Figure 5: Algorithm of IRs in the Prototype System

Admittedly, using IRs does bring temporary inconsis-

tency across a time step in the whole federation, but as far
as all the “pure” agents are concerned, in each time step, all
IRs immediately correct this inconsistency, and agents will
get corrected information and make right decisions. There
is no inconsistency in the information received by agents.
So in this sense, the whole system is still consistent. Figure
6 shows the keeping of consistency in our game. Here
TAR means Time Advance Request. In this example, we

Wang, Turner, and Wang

can clearly see that for federate 1 and federate 2, there is
inconsistency of data among different federates at the same
simulation time: each federate may not have the right agent
positions for agents of other federates within its subscrip-
tion region. But as far as all the pure agents are concerned,
before they make deliberations in every time step, the use
of IRs ensures that all relevant data is consistent.

. . .

. . .

TAR

SA

SB

SC

SD

SA

SB

SC

SD

X

XX X

X

X . . .

. . .

SBSA

SB SD SD

SA
SB

SC

SA
SB

SC
SD SD

SA

SB SD

SA

SB SD

agents make moves agents make moves

agents make moves agents make moves

X

XXX

X

X

X

X

XXXX

XX

X

XX

X

SA

I
R

I
R

Federate 1 (SA,Sc) Federate 2 (SB,SD)

SC

SC

SC

SC

. . .

. . .

Figure 6: How Consistency is Ensured Using IRs

4 COMPARISON OF SOLUTIONS

In order to compare the efficiency of IR with OM, two dif-
ferent test environments are set up. In the first group, all
agents are trying to step into the same grid cell in a 5*5
minesweeper environment, while in the second group, all
agents are picking up the same mine. Figure 7 shows the
test environments.

B

B

B

B BB B B

B BB B B

B

B

B

S

SM

S

S

S

S

B

B

B

B BB B B

B BB B B

B

B

B

S

S

T

T

S

S

S

S

The minefield for picking
up the same mine

The minefield for stepping
to the same grid cell

B: borders
T: trees
S: soldier
 agent

Figure 7: Test Environments
4.1 Stepping to the Same Grid Cell

In this test, all agents in the environment need to step to an
empty cell. We add some obstacles in order to increase the
number of agents trying to step to the same grid cell. Once
the winner gets the right to step to the empty cell in the
middle, it will step out the next time step, and all losers
will stand still at that time. This is to make the whole test
cycle repeat and give the maximum number of agents in
competitions for cells.

In order to resolve the conflict, both OM and IR can be
used. A synchronization point is used to start the simula-
tion at exactly the same time, otherwise agents in early
joined federates will move around before all agents have
joined, which will influence the test results.

4.1.1 Using OM

The specific grid cell in the middle of the minefield is de-
clared as an HLA object in the federation; once the envi-
ronment federate is initialized, it automatically has the
ownership of that grid cell. All agents interested in step-
ping to this grid cell should first request its ownership, and
only when the federate in which the agent resides gets the
ownership, can the agent step to the cell. The winner agent
will then step out of the cell, and release the ownership of
the grid cell for the next possible ownership competition.
Agents failing to step to the grid cell will be notified by the
RTI and will stand still until there is another new empty
grid cell within their sensor region. Figure 8 illustrates the
test cycle of this process.

There are two time steps in one test cycle. We have two
main types of agent federates: the winner federate (the agent
federate who gets ownership of the cell) and the loser feder-
ates (other agent federates who are denied ownership). The
test cycles for both types are almost the same. They mainly
differ in the agent actions: the winner agent will step to and
step out of the grid cell, while all loser agents will stand still
at their original positions. It is important to note that loser
agents can reside in a winner federate.

A test cycle of a winner federate is described as fol-
lows. When a test cycles starts, the federate will receive
soldier updates within its subscription region (S step 1). It
will use this information to construct the sensors for each
agent in it (S step 2). The federate will then send both sen-
sors and effectors to respective agents using the O2A com-
munication channel (S step 3). When the pure agent gets
its new sensor, it will deliberate its action and decide to
step to an empty cell within its sensor region (S step 4).
The federate will get the decision from the effectors (S step
5), and request ownership of the empty grid cell (S step 6).
In order to ensure subsequent ownership transfer, the agent
federate will tick and wait for ownership callbacks from
the RTI (S step 7). This ensures every federate in the com-
petition know the result of their ownership requests. The

Wang, Turner, and Wang

Soldier Agent Federate 2 (winner)

TAR

A test
cycle

T

Soldier Agent Federate 1 (loser/losers)

receive soldiers within region
construct sensor for each agent
send sensor and effector to agent

(pure agent writes effector)
 read effector

10

13

14
15
16 updating agent position

12

Time

(pure agent does deliberation)

receive soldiers within region
construct sensor for each agent
send sensor and effector to agent

(pure agent writes effector)
 read effector

1

3
4

5

(pure agent does deliberation)

6 ask for ownership of the grid cell
7 ticking for ownership grant callback

9
8

updating agent position
winner agent steps to the cell

receive soldiers within region
construct sensor for each agent
send sensor and effector to agent

(pure agent writes effector)
 read effector

1

3
4

5

(pure agent does deliberation)

6 ask for ownership of the grid cell
7 ticking for ownership grant callback

9
8

updating agent position
loser agents stand still

TAR T+t

loser agents stand still

11 receive soldiers within region
construct sensor for each agent
send sensor and effector to agent

(pure agent writes effector)
 read effector

10 release ownership of the cell

12

14

15
16 winner agent steps out for next cycle
17 updating agent position

(pure agent does deliberation)

TAR T+2t

2 2

11

13

Figure 8: The Test Cycle of Using OM in Stepping to the Same Grid Cell
winner agent will step to the cell (S step 8). After this, the
agent federate will update agent positions within it (S step
9). In the next time step, the winner federate will first re-
lease the ownership of the grid cell instance (S step 10). S
step 11 ~ S step 15 are the same as S step 1 ~ S step 5. Af-
ter the federate has read the effectors, for the winner agent,
it will step out of the grid cell (S step 16). Then the feder-
ate will update agent positions again (S step 17).

4.1.2 Using IR

Using IRs, each federate can locally decide who can step to
the cell due to the rules of the game. In this test, the one
with the highest priority has the privilege. If two agents
have the same priority, their unique instance ID in this fed-
eration will help in further decision. All losers will be
rolled back by the local IR. The same information in each
IR ensures the consistency of the view of each agent.

All agents will step to the empty grid cell if there is
one within their sensor regions, and only the winner will
stay in that cell, while all losers will be rolled back. This is
one of the main differences from the method of using OM.

Also, as grid cells need not be HLA objects when us-
ing IR, there is no ownership associated with each grid
cell. Thus there is no need for agent federates to request its
ownership before they step to the cell, and release owner-
ship when they step out.

As with the OM services method, this method also has
two time steps in one test cycle. The test cycle of this
method is illustrated in Figure 9. The first time steps are the
same for both types of agent federates. They all try to step to
the empty grid cell. The federate will first get all the soldier
information within its subscription region (S step 1). Then it
will construct sensors (S step 2) according to the information
and send both sensors and effectors to respective agents us-
ing the O2A communication channel (S step 3). When the
pure agents get the new sensors, they will deliberate their
actions and write effectors (S step 4). The federate gets each
agent’s action information from its effector (S step 5), and
they know that agents are stepping to the empty grid cell (S
step 6). This information is updated by these federates (S
step 7). When the next time step begins, each federate will
get relevant updated soldier information (S step 8). All the
agents with the same position will be grouped and the local
IR will decide who can be the winner (S step 9). Only the
winner agent can stay in the position (S step 10), while all
losers will be rolled back to their old positions. Because the
positions of soldier agents change after IR is used, sensors
and effectors for every agent need to be refreshed to notify
the pure agents of their current positions (S step 11). S step
12 ~ S step 15 are the same as S step 2 ~ S step 5. For the
winner agent, it will then step back to its original place for
the next test cycle (S step 16). Other loser agents will stand
still as they have already been rolled back by IRs. At this
stage, the environment will become exactly the same as in
the initialization, that is, all agents stand centered around an
empty grid cell. The federate will update agents’ information
before it advances the simulation time (S step 17). Then the
next cycle begins.

4.1.3 Experimental Results

Timings for different numbers of agents/federates are car-
ried out. The platform for our experiments is six DELL
2.2GHz Pentium 4 computers connected via 100MB
Ethernet running Windows XP. JADE agent toolkit version

Wang, Turner, and Wang

TAR T
Time

TAR T+2t

tTAR T+
A

test
cycle

Soldier Agent Federate 2 (winner)Soldier Agent Federate 1 (loser/losers)

send sensor and effector to agent

construct sensor for each agent
1
2
3
4

5
6
7

receive soldiers within region

send sensor and effector to agent

(pure agent writes effector)
read effector

updating agent position

(pure agent does deliberation)

agents step to the cell

construct sensor for each agent
1
2
3
4

5
6
7

receive soldiers within region

send sensor and effector to agent

(pure agent writes effector)
read effector

updating agent position

(pure agent does deliberation)

agents step to the cell

8
9

11
12
13
14

10

15
16
17

refresh sensors/effectors

receive soldiers within region

(pure agent writes effector)
read effector

updating agent position

(pure agent does deliberation)

use local IR to decide winner
winner agent stays in the cell

construct sensor for each agent

winner agent steps out

8
9

11
12
13
14

10

15
16
17

refresh sensors/effectors

receive soldiers within region

(pure agent writes effector)
read effector

updating agent position

(pure agent does deliberation)

use local IR to decide winner

construct sensor for each agent

loser agents rolled back

send sensor and effector to agent

loser agents stand still

Figure 9: The Test Cycle of Using IR in Stepping to the Same Grid Cell

2.5, DMSO RTI1.3NG-V6 and JAVA jdk1.4.0 are used. In
our simulation test, each machine runs a federate. To en-
sure better results, one computer is used to run the rtiexec
and fedexec separately from the federates and all unneces-
sary outputs were deleted from the source code. The execu-
tion times for the agent federates to run 2000 test cycles
(4000 time steps in this test) using both OM and IR are re-
corded. For each method, the test is divided into ten differ-
ent groups, varying in agent and federate numbers. The
distribution of agents in varying numbers of federates (see
Table 1) is carefully designed to get even load balancing
and thus achieve the best result.

Table 1: Distribution of Agents in Federates
Number of
Federates

Total Number
of Agents Distribution

2 1+1
4 2+2
6 3+32

8 4+4
4 1+1+2
6 2+2+23
8 3+3+2
4 1+1+1+1
6 1+1+2+24
8 2+2+2+2

Figure 10 shows the complete results according to the

number of federates in the federation. It is clear that using
IR is more efficient than using OM for this test.
200

210

220

230

240

250

260

270

280

290

2(OM) 2(IR) 3(OM) 3(IR) 4(OM) 4(IR)

Number Of Federates

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

2 agents 4 agents 6 agents 8 agents

Figure 10: Execution Time of OM and IR in Test One

4.2 Picking up the Same Mine

In this test, soldiers are deliberately set as static agents, that
is, they stand still in their initial positions and their only
action is to pick up a mine within their sensor regions.
Once there is a mine in the minefield, all agents will try to
pick it up. The federate that gets the ownership will then
delete the mine from the federation instead of releasing the
ownership as in the previous test. The environment feder-
ate will keep on generating mines in the middle once the
old mine is picked up and deleted from the federation.

4.2.1 Using OM

The mine is declared as an HLA object in the federation.
Once a mine object is initialized, the environment federate
automatically has the ownership of it. All agents interested

Wang, Turner, and Wang

in picking up this mine should first request ownership of
the mine, and only when the federate the agent resides in
gets the ownership can the agent pick that mine up, and de-
lete it from the federation. Agents failing to pick up the
mine will be notified by the RTI and will wait until there is
another new mine within their sensor regions.

This method uses three time steps in one test cycle. This
is mainly because the Environment federate needs to update
the mine object to other federates, and the discovery of the
mine object needs one time step. The test cycle is almost the
same as the previous one except for above differences.

4.2.2 Using IR

IRs in each federate will resolve the collision of picking up
the same mine. Only the winner of the collision will have
the chance to acquire the ownership of the mine, and it will
get the ownership without ownership competition in the
RTI. This is different from using IR in stepping to a grid
cell where no ownership transfer is involved.

For each federate, its local IR will group agents with
the same purpose-pick up the mine, then the IR will deter-
mine which agent wins in the competition due to its prior-
ity. All losers in the IR will be notified of their failure in
picking up the mine. So in this test, ownership transfer is
still used, but in a less competitive way than in using OM
to resolve mine picking conflicts. Some extra time spent in
ownership transfer is inevitable here. There are also three
time steps in each test cycle. The cycle is similar to the one
used in competition for empty cells.

4.2.3 Experimental Results

The platform for this test is exactly the same as the previ-
ous one. The execution times for the agent federates to run
2000 test cycles (6000 time steps in this test) using both
OM and IR are recorded. This test uses the same distribu-
tion of agents in federates as in Table 1. Figure 11 shows
the complete results according to the number of federates
in the federation. These results demonstrate that in this test,
although extra time is spent in ownership transfer when IR
is used, IR is still more efficient than OM.

250

270

290

310

330

350

370

390

410

430

450

2(OM) 2(IR) 3(OM) 3(IR) 4(OM) 4(IR)

Number Of Federates

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

2 agents 4 agents 6 agents 8 agents

Figure 11: Execution Time of OM and IR of Test Two
4.3 Summary

From the two tests, we can see clearly that the IR method
is more efficient than the OM method.

Due to the limitation of the environment in our game,
there are at most eight agents in a collision. In a more gen-
eral distributed simulation, where there are many more
agents in a collision, the original OM method may not
scale well. With the increase of the requests from federates
for the same set of instance-attributes, the network load
will be greatly increased due to the centralized server. The
IR method solves the conflict locally instead. Moreover,
there is no bottleneck in the system as all IRs are distrib-
uted across the simulation. All these factors reduce the
bandwidth requirement in the simulation. This method also
avoids using tick() to wait for ownership callbacks from
the RTI. Suppose there are many federates in the federa-
tion, all ticking for the callbacks, it brings a large synchro-
nization burden for the whole federation.

Moreover, there is a disadvantage of the OM method
that all losers in the competition will not know who wins.
The way to select the winner is decided by the RTI due to
the request time and is unpredictable. This is very incon-
venient for agent based simulations where we may want a
specific agent with certain advantages to win over others.
The IR method enables users to design different winning
mechanisms for various implementations. In addition, all
the losers in the competition will know the winner, and this
is an advantage for practical implementations where fur-
ther decisions may be based on this knowledge.

We have mentioned that the OM method allows only
one agent in each agent federate to request ownership. The
IR method definitely does not have this trouble as all
agents within each IR are the same regardless of whether
or not they belong to the same federate. It ensures free-
competition throughout the federation. Also the rules for
the competition can be freely modified by the users.

When we change to an event-based distributed simula-
tion, resolving concurrent interactions is quite different, as
there will not be any time-step in the simulation. For the
OM method, it is almost impossible as the services are not
time stamped. Additional work is needed if OM is to be
used in event-based distributed simulations. However, for
IR we may just need to set a period of time acting as some
kind of time threshold.

Based on all these comparisons, we can safely draw
the conclusion that the IR method is better than the OM
method for solving mutually exclusive interactions in agent
based distributed simulations.

5 CONCLUSIONS AND FUTURE WORK

This paper shows how to resolve concurrent, mutually ex-
clusive interactions in agent based distributed simulations.
Using our prototype system, a minesweeping game, own-

Wang, Turner, and Wang

ership management services are compared with interaction
resolvers. Two different situations of mutually exclusive
interactions: stepping to the same grid cell and picking up
the same mine are investigated using these two solutions.
Besides the flexibility and convenience IR provides, ex-
perimental results also show that the distributed IR saves
more execution time than the centralized OM.

Current IRs in our system can only deal with mutually
exclusive interactions. In the near future, a more complete
IR component needs to be devised to satisfy the require-
ments of collaborative agents. We need to set up certain
rules for local IRs to divide different interactions according
to certain properties, and act upon each of them to achieve
a combined interaction. This is not difficult based on what
we have achieved so far. Moreover, the current IR algo-
rithm needs to be generalized, that is, IRs can analyze the
common features of interactions and divide them into dif-
ferent categories (Natrajan and Reynolds 1999).

REFERENCES

Andersson, J., and S. Löf. 1999. HLA as Conceptual Basis
for a Multi-Agent Environment. Technical Report
8TH-CGF-033, Pitch Kunskapsutveckling AB.

Bellifemine, F., A. Poggi and G. Rimassa. 1999. JADE - A
FIPA-compliant agent framework. In Proceedings of
4th International Conference on Practical Applications
of Agents and Multi-Agent Systems, 97-108.

Broll, W. 1995. Interacting in Distributed Collaborative
Virtual Environments. In Proceedings of Virtual Real-
ity Annual International Symposium, 148-155.

DMSO. 1998. High Level Architecture RTI Interface
Specification, Version 1.3, Defense Modeling and
Simulation Office.

FIPA. 2002. Agent Management Specification Technical
Report SC00023J, Foundation for Intelligent Physical
Agents. Available online via <www.fipa.org/>
[accessed April 12, 2004].

Fujimoto, R.M. 2000. Parallel and Distributed Simulation
Systems, Wiley Interscience.

Jennings, N.R. 2000. On agent-based software engineering,
Artificial Intelligence 117: 277-296. Elsevier.

Natrajan, A., and P.F. Reynolds, Jr. 1999. Resolving Con-
current Interactions. In Proceedings of 3rd Interna-
tional Workshop on Distributed Interactive Simulation
and Real Time Applications, 85-92.

Uhrmacher, A.M., P.A. Fishwick and B.P. Zeigler (eds).
2001. Special issue on agents in modeling and simula-
tion: exploiting the metaphor, In Proceedings of the
IEEE, 89 (2): 127-129.

Wang, L., S.J. Turner and F. Wang. 2003. Interest Man-
agement in Agent-Based Distributed Simulations, In
7th IEEE International Workshop on Distributed
Simulation and Real-Time Application, 20-27.
AUTHOR BIOGRAPHIES

LIHUA WANG is a Master student of Nanyang Techno-
logical University, Singapore. She received her B.Eng in
Computer Science and Engineering from Xi’an Jiaotong
university, China in 2001. Her research interests include
agents and distributed simulations. Her email address is
<wlh@pmail.ntu.edu.sg>.

STEPHEN JOHN TURNER is Director of the Parallel
and Distributed Computing Centre in the School of Com-
puter Engineering, Nanyang Technological University
(Singapore). He received his MA in Mathematics and
Computer Science from Cambridge University (UK) and
his MSc and PhD in Computer Science from Manchester
University (UK). His current research interests include:
parallel and distributed simulation, distributed virtual envi-
ronments, grid computing and multi-agent systems. His
email address is <assjturner@ntu.edu.sg>.

FANG WANG is a PhD student of Nanyang Technologi-
cal University (Singapore). She received her Bachelor de-
gree from Huazhong University of Science and Technol-
ogy (China). Her current project title is autonomous agents
for distributed virtual worlds. Her email address is
<wfirene@pmail.ntu.edu.sg>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 783
	02: 784
	03: 785
	04: 786
	05: 787
	06: 788
	07: 789
	08: 790
	09: 791

