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ABSTRACT

We examine properties of overlapped versions of the stan-
dardized time series area and Cramér–von Mises estimators
for the variance parameter of a stationary stochastic process,
e.g., a steady-state simulation output process. We find that
the overlapping estimators have the same bias properties as,
but lower variance than, their nonoverlapping counterparts;
the new estimators also perform well against the bench-
mark batch means estimator. We illustrate our findings
with analytical and Monte Carlo examples.

1 INTRODUCTION

This paper discusses new “overlapping” variance estimators
that can be used in the analysis of steady-state simulations.
Such an analysis might start off with, at the very least, an
estimate of the unknown mean µ of a steady-state output
process, {Yi, i ≥ 1} — the sample mean Ȳn being the obvious
candidate. Since Ȳn is a random variable, the experimenter
ought to estimate its variability as well. One such measure
is the variance parameter, σ 2 ≡ limn→∞ nVar(Ȳn).

There are many techniques in the literature concerning
the estimation of σ 2. In particular, the well-known meth-
ods of (nonoverlapping) batch means (NBM), overlapping
batch means (OBM), spectral analysis, regeneration, au-
toregressive modeling, and standardized time series (STS)
are discussed in simulation texts such as Law and Kelton
(2000).

A common strategy used by NBM, OBM, and STS
employs batching of the observations — instead of con-
sidering all of the observations at once, break them up
into smaller batches (sometimes disjoint, sometimes not,
depending on the analysis method) and use an appropri-
ate trick. For instance, NBM splits the observations into
adjacent, but disjoint batches, assumes that the resulting
sample (batch) means from each batch are approximately
independent and identically distributed (i.i.d.) normal ran-
dom variables (r.v.’s), and then applies “standard” variance
estimation techniques to the batch means (as explained in
§3.4). STS batched estimators also use adjacent, but disjoint
batches. The idea is to form a separate STS estimator from
each batch, assume they are i.i.d., and then average them (see
§§3.2 and 3.3). OBM forms overlapping batches, with the
full realization that the resulting overlapping batch means are
not independent (though they are identically distributed and
asymptotically normal). Then OBM applies the “standard”
sample-variance estimator, appropriately scaled, to these
highly correlated overlapping batch means. This technique
uses results from spectral theory to obtain an estimator that
is provably superior to NBM, at least asymptotically for
certain serially correlated time series.

Concerning measures of the performance of estimators
for σ 2, we most often care about the bias and variance, as
well as the resulting mean squared error (MSE). Batching
typically increases bias, but decreases variance; its effect
on MSE takes a bit more work to analyze. What is nice
about the OBM estimator is that it has the same bias as,
but smaller variance than, the corresponding performance
measures for NBM. Thus, OBM gives better (asymptotic)
performance than NBM “for free”.

So what happens if we try to apply overlapping batch-
ing techniques to the STS estimators? The current article
does just this, and the news is almost all good: The result-
ing overlapped STS estimators have about the same bias,
but substantially smaller variance than their nonoverlapped
counterparts.
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There has already been a great deal of progress on the
study of overlapping estimators. Meketon and Schmeiser
(1984) introduced the OBM methodology. Welch (1987)
relates OBM to certain spectral estimators, and looks into
the effects of partial overlapping. Goldsman and Meketon
(1986), Song (1988), and Song and Schmeiser (1993) derive
bias and variance properties of OBM estimators. Additional
early work on the subject is undertaken by Pedrosa and
Schmeiser (1993, 1994), who establish covariance properties
between OBM estimators and subsequently propose a batch-
size determination algorithm. Damerdji (1991, 1994, 1995)
derives consistency results (both in the strong and mean-
square senses) for a variety of variance estimators, including
OBM and an overlapping version of a certain STS estimator.
He also establishes a formal link between the spectral and
overlapping methodologies.

This paper is organized as follows. We present back-
ground material in §2, where we introduce a number of
benchmark estimators. §3 reviews the effects of batching
the observations into nonoverlapping batches, then form-
ing an STS estimator from each batch. §4 does the same,
except that the batches are now allowed to overlap. That
section also examines the asymptotic performance charac-
teristics of the new overlapping estimators. We find that
the overlapping estimators almost always outperform their
nonoverlapped counterparts in terms of MSE. We give some
exact and empirical examples and comparisons in §5, while
§6 summarizes our results and provides conclusions. Most
of the proofs and some additional details relevant to the
current paper are deferred to Alexopoulos et al. (2004).

2 BACKGROUND

We consider a stationary stochastic process {Yi, i ≥ 1},
which we assume satisfies a Functional Central Limit The-
orem (FCLT). This assumption applies to a broad class of
processes, and will allow us to determine the limiting prop-
erties of the various variance estimators under consideration
in this paper.

Assumption FCLT There exist constants µ and positive
σ such that as n → ∞, Xn ⇒ σW , where W is a standard
Brownian motion process, “ ⇒ ” denotes weak convergence
as n → ∞, and

Xn(t) ≡ �nt�(Ȳ�nt� − µ)√
n

for t ≥ 0,

where Ȳj ≡ ∑j
k=1 Yk/j , j = 1, 2, . . ., and �·� is the greatest

integer function.
Glynn and Iglehart (1990) list several different sets of

sufficient conditions — usually in the form of moment and
mixing conditions — for Assumption FCLT to hold. The
constants µ and σ 2 in the assumption can be identified with
the process mean and variance parameter, respectively.
The standardized time series of the stationary Yi’s is
(cf. Schruben 1983)

Tn(t) ≡ �nt�(Ȳn − Ȳ�nt�)
σ
√

n
for 0 ≤ t ≤ 1.

Under Assumption FCLT, it can be shown that

(
√

n(Ȳn − µ), σTn) ⇒ (σW(1), σB), (1)

where B is a standard Brownian bridge process on [0, 1].

2.1 The Weighted Area Estimator

This subsection deals with the weighted area estimator for
σ 2 (cf. Goldsman, Meketon, and Schruben 1990; Goldsman
and Schruben 1990). We define the square of the weighted
area under the standardized time series and its limiting
functional as

A(f ; n) ≡
[

1

n

n∑
k=1

f (k/n)σTn(k/n)

]2

and

A(f ) ≡
[∫ 1

0
f (t)σB(t) dt

]2

,

respectively, where f (t) is continuous on the interval [0, 1]
and normalized so that Var(

∫ 1
0 f (t)B(t) dt) = 1. Then∫ 1

0 f (t)σB(t) dt ∼ σNor(0, 1), and under mild conditions,
the continuous mapping theorem (cf. Billingsley 1968, The-

orem 5.1) implies that A(f ; n)
D→ A(f ) ∼ σ 2χ2

1 , where

“
D→ ” denotes convergence in distribution as n → ∞. For

this reason, we call A(f ; n) the weighted area estimator
for σ 2.

Denote the covariance function Rk ≡ Cov(Y1, Y1+k),
k = 0, ±1, ±2, . . ., and the associated quantity γ ≡
−2

∑∞
k=1 kRk (cf. Song and Schmeiser 1995). Further,

the notation p(n) = o(q(n)) means that p(n)/q(n) → 0
as n → ∞. The next theorem gives expressions for the
expected value and variance of the weighted area estimator.

Theorem 1 (see, e.g., Foley and Goldsman 2000)
Suppose that {Yi, i ≥ 1} is a stationary process for
which Assumption FCLT holds,

∑∞
k=1 k2|Rk| < ∞, and∑∞

k=−∞ Rk = σ 2 > 0. Further, suppose that A2(f ; n) is
uniformly integrable (cf. Billingsley 1968). Then

E[A(f ; n)] = σ 2+ [(F (1) − F̄ (1))2 + F̄ 2(1)]γ
2n

+o(1/n)
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and

Var(A(f ; n)) → Var(A(f )) = Var(σ 2χ2
1 ) = 2σ 4

as n → ∞, where the functions F(s) ≡ ∫ s

0 f (t) dt , 0 ≤
s ≤ 1, and F̄ (u) ≡ ∫ u

0 F(s) ds, 0 ≤ u ≤ 1. Note that
this limiting variance does not depend on the form of the
weighting function.

Example 1 Schruben (1983) studied the area es-
timator with constant weighting function f0(t) ≡ √

12,
for all t ∈ [0, 1]; in this case, Theorem 1 implies that
E[A(f0; n)] = σ 2 +3γ /n+o(1/n). If one chooses weights
having F(1) = F̄ (1) = 0, the resulting estimator is first-
order unbiased for σ 2, i.e., its bias is o(1/n). Exam-
ples of such weighting functions are the quadratic f2(t) ≡√

840(3t2 − 3t + 1/2) (Goldsman, Meketon, and Schruben
1990; Goldsman and Schruben 1990) and the “orthonor-
mal” sequence of weights fcos,j (t) = √

8πj cos(2πjt),
j = 1, 2, . . . (Foley and Goldsman 2000). It can be
shown that the orthonormal estimators’ limiting functionals
A(fcos,1), A(fcos,2), . . . are i.i.d. σ 2χ2

1 .

2.2 The Weighted Cramér–von Mises Estimator

We give an overview of the weighted CvM estimator for
σ 2 (cf. Goldsman, Kang, and Seila 1999). We begin by
defining some notation for the weighted area under the
square of the STS and its limiting functional,

C(g; n) ≡ 1

n

n∑
k=1

g(k/n) [σTn(k/n)]2

and

C(g) ≡
∫ 1

0
g(t)(σB(t))2 dt,

respectively, where g(t) is a weighting function normalized
so that E[C(g)] = σ 2 and d2

dt2 g(t) is continuous and bounded
on [0, 1]. Under mild assumptions, the continuous mapping

theorem implies that C(g; n)
D→ C(g), and we call C(g; n)

the weighted CvM estimator for σ 2. Theorem 2 gives results
on the expected value and variance of the weighted CvM
estimator.

Theorem 2 (cf. Goldsman, Kang, and Seila 1999)
Under conditions similar to those of Theorem 1,

E[C(g; n)] = σ 2 + γ

n
(G − 1) + o(1/n)
and

Var(C(g; n)) → Var(C(g))

= 4σ 4
∫ 1

0
g(t)(1 − t)2

∫ t

0
g(s)s2 ds dt (2)

as n → ∞, where G ≡ ∫ 1
0 g(t) dt .

Example 2 The CvM estimator with constant
weighting function g0(t) ≡ 6 has E[C(g0; n)] = σ 2 +
5γ /n+o(1/n). If one chooses weights having G = 1 (in ad-
dition to the normalizing and second derivative constraints),
Theorem 2 implies that the CvM estimator C(g; n) has bias
o(1/n). An example of such a first-order unbiased weight-
ing function is the quadratic g2;c(t) ≡ 51−c/2+ct−150t2,
where t ∈ [0, 1] and c is real.

The choice of weighting function g(t) affects the vari-
ances of C(g; n) and C(g). (The weighting function f (t)

of §2.1 affects the variance of A(f ; n), but not that of A(f ),
which is always Var(A(f )) = 2σ 4.)

Example 3 Theorem 2 implies that Var(C(g0)) =
4σ 4/5. Similarly, Var(C(g2;c)) = (c2 − 300c +
26856)σ 4/2520; this variance is minimized by g�

2(t) ≡
g2;150(t), in which case Var(C(g�

2)) = 121σ 4/70. Al-
though Var(C(g�

2)) > Var(C(g0)), the estimator C(g�
2; n)

is first-order unbiased for σ 2, while C(g0; n) is not.

3 ESTIMATORS FROM NONOVERLAPPING
BATCHES

This section examines what happens if we divide the run into
contiguous, nonoverlapping batches, form an STS estimator
from each batch, and take the average of these estimators.

3.1 Batching Basics

We will work with b contiguous, nonoverlapping batches of
observations, each of length m, from the simulation output,
Y1, Y2, . . . , Yn (where we assume that n = bm). Thus, the
observations Y(i−1)m+1, Y(i−1)m+2, . . . , Yim constitute batch
i, 1 ≤ i ≤ b.

To parallel the discussion in §2, the standardized time
series from batch i is

Ti,m(t) ≡ �mt�(Ȳi,m − Ȳi,�mt�)
σ
√

m
,

for 0 ≤ t ≤ 1 and 1 ≤ i ≤ b, where

Ȳi,j ≡ 1

j

j∑
k=1

Y(i−1)m+k,

for 1 ≤ j ≤ m and 1 ≤ i ≤ b. If we define Zi(m) ≡√
m(Ȳi,m − µ), 1 ≤ i ≤ b, then under the same mild
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conditions as before,

(Z1(m), Z2(m), . . . , Zb(m); σT1,m, σT2,m, . . . , σTb,m)

⇒ (σZ1, σZ2, . . . , σZb; σB0, σB1, . . . , σBb−1),

(3)

where the Zi’s are i.i.d. standard normal random variables,
and Bs denotes a standard Brownian bridge process on
[s, s + 1], for s ∈ [0, b − 1], i.e.,

Bs(t) = W(s + t) − W(s) − t[W(s + 1) − W(s)],

for t ∈ [0, 1]. It is easy to see that B0, B1, . . . ,Bb−1 are
independent Brownian bridges.

3.2 Batched Area Estimator

We define the area estimator formed exclusively from batch
i as

Ai(f ; m) ≡
[

1

m

m∑
k=1

f (k/m)σTi,m(k/m)

]2

,

1 ≤ i ≤ b. The batched area estimator for σ 2 is

A(f ; b, m) ≡ 1

b

b∑
i=1

Ai(f ; m).

Since the Ti,m’s, 1 ≤ i ≤ b, converge to independent
Brownian bridge processes as m becomes large (with fixed
b), we shall assume that the Ai(f ; m)’s, 1 ≤ i ≤ b, are
asymptotically independent as m → ∞. Then by the

remarks in §2.1, we have A(f ; b, m)
D→ σ 2χ2

b /b.
Theorem 1 implies

E[A(f ; b, m)] (4)

= σ 2 + [(F (1) − F̄ (1))2 + F̄ 2(1)]γ
2m

+ o(1/m).

Further, if assume the uniform integrability of A2(f ; b, m),
we have

lim
m→∞ bVar(A(f ; b, m)) = Var(A(f )) = 2σ 4. (5)

3.3 Batched CvM Estimator

Similarly, the CvM estimator formed exclusively from batch
i is

Ci(g; m) ≡ 1

m

m∑
k=1

g(k/m)
[
σTi,m(k/m)

]2
,

1 ≤ i ≤ b. The batched CvM estimator for σ 2 is

C(g; b, m) ≡ 1

b

b∑
i=1

Ci(g; m).

Theorem 2 implies

E[C(g; b, m)] = σ 2 + γ

m
(G − 1) + o(1/m). (6)

As before, for fixed b,

lim
m→∞ bVar(C(g; b, m)) = Var(C(g)), (7)

where Var(C(g)) is given by (2).

3.4 NBM Estimator

The quantities Ȳi,m, 1 ≤ i ≤ b, are referred to as the batch
means of the process Y1, Y2, . . . , Yn, and are often assumed
to be i.i.d. normal random variables, at least for large enough
batch size m. This assumption immediately suggests the
NBM estimator for σ 2,

N (b, m) ≡ m

b − 1

b∑
i=1

(Ȳi,m − Ȳn)
2 D→ σ 2χ2

b−1

b − 1
,

as m → ∞ with b fixed (cf. Glynn and Whitt 1991;
Schmeiser 1982; and Steiger and Wilson 2001). The NBM
estimator is one of the most popular for σ 2, and serves as
a benchmark for comparison.

Under mild conditions, it is well known that (see Chien,
Goldsman, and Melamed 1997; Goldsman and Meketon
1986; Song and Schmeiser 1995; among others)

E[N (b, m)] = σ 2 + γ (b + 1)

bm
+ o(1/m). (8)

Further, for fixed b,

lim
m→∞(b − 1)Var(N (b, m)) = 2σ 4.

3.5 Recapitulation

So we see that as m → ∞, the batched area, batched CvM,
and NBM estimators are all asymptotically unbiased for
σ 2. In addition, the variances of these estimators are all
inversely proportional to the number of batches (at least for
sufficiently large batch size). Of course, for fixed m and b

and, hence, for fixed sample size n = mb, some estimators
will tend to perform better than others. Certainly, we want
to use estimators with low bias and variance; but for fixed n,
decreasing one usually comes at the expense of increasing
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the other — the well-known trade-off that we have already
mentioned.

One could argue that NBM, as the benchmark method,
has moderate bias and variance. The good news is that STS
area and CvM estimators with certain weighting functions
can outperform NBM in terms of large-sample bias, and
in the case of CvM, in terms of variance as well. In the
sequel, we will show that the use of overlapping batches with
respect to any particular estimator preserves its expected
value, while reducing its variance — a free bonus.

4 ESTIMATORS FROM OVERLAPPING
BATCHES

Here we consider estimators based on overlapping batches,
à la Meketon and Schmeiser (1984). More specifically, we
construct a number of overlapping batches, form an STS
estimator from each batch, and take the average of these
estimators.

4.1 Overlapping Batching Basics

We assume that there are n observations Y1, Y2, . . . , Yn on
hand. We form n − m + 1 overlapping batches, each of
size m. In particular, the observations Yi, Yi+1, . . . , Yi+m−1
constitute batch i, 1 ≤ i ≤ n − m + 1. We will continue to
denote b ≡ n/m as before; but obviously, when speaking
in the context of overlapping batches, b can no longer be
interpreted as “the number of batches”.

To parallel the discussion in §3.1, the standardized time
series from overlapping batch i is

T O
i,m(t) ≡ �mt�(Ȳ O

i,m − Ȳ O
i,�mt�)

σ
√

m
,

for 0 ≤ t ≤ 1 and 1 ≤ i ≤ n − m + 1, where

Ȳ O
i,j ≡ 1

j

j−1∑
k=0

Yi+k,

for 1 ≤ i ≤ n − m + 1 and 1 ≤ j ≤ m. Under the same
mild conditions as before,

σT O
sm,m ⇒ σBs , 0 ≤ s ≤ b − 1, s fixed.

4.2 Overlapping Area Estimator

We define the overlapping area estimator from overlapping
batch i by

AO
i (f ; m) ≡

[
1

m

m∑
k=1

f (k/m)σT O
i,m(k/m)

]2

,

1 ≤ i ≤ n − m + 1. The overlapping area estimator for σ 2

is

AO(f ; b, m) ≡ 1

n − m + 1

n−m+1∑
i=1

AO
i (f ; m).

Then the continuous mapping theorem implies that, as m →
∞,

AO(f ; b, m)
D→ AO(f ; b)

≡ 1

b − 1

∫ b−1

0

(
σ

∫ 1

0
f (u)Bs(u) du

)2

ds. (9)

Meanwhile, Theorem 1 gives

E[AO(f ; b, m)] (10)

= σ 2 + [(F (1) − F̄ (1))2 + F̄ 2(1)]γ
2m

+ o(1/m).

Note that the expected value of the overlapping area estimator
matches that of the batched area estimator.

The next series of results, proven in Alexopoulos et
al. (2004), concern the asymptotic covariance between two
overlapping area estimators, formed from two weighting
functions, say fk(t) and f�(t). First of all, it can be shown
that under mild conditions, as m → ∞, we have

Cov(AO(fk; b, m), AO(f�; b, m))

→ Cov(AO(fk; b), AO(f�; b)).

But how do we calculate this asymptotic covariance?
A couple of lemmas point the way.

Lemma 1 Define

pk�(s, r) ≡
∫ 1

0

∫ 1

0
fk(u)f�(v)Cov(Bs(u), Br (v)) du dv.

Then for 0 ≤ y ≤ 1,

pk�(0, y) (11)

= F̄k(1)[F�(1 − y) − F̄�(1 − y) − F̄�(1)y]
+F̄k(y)F̄�(1) −

∫ 1−y

0
f�(u)F̄k(y + u) du,

where Fk(x), F�(x), F̄k(x), and F̄�(x) are analogous to the
functions defined in §2.1.

If we happen to be dealing with weighting functions
fk(t) and f�(t) such that F̄k(1) = F̄�(1) = 0, then most of
the terms in (11) disappear. In this case, some easy calculus
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yields the equivalent expression,

pk�(0, y) =
∫ 1−y

0
F�(u)Fk(y + u) du. (12)

The first-order unbiased weighting functions f2(t) and
fcos,j (t) from Example 1 all satisfy the condition F̄ (1) = 0,
making the calculation of Var(AO(f ; b)) particularly easy
for these cases.

Lemma 2 Define

qk�(y) ≡ p2
k�(0, y) + p2

�k(0, y).

Then for b > 1, we have

Cov
(
AO(fk; b), AO(f�; b)

)
= 2σ 4

(b − 1)2

∫ 1

0
(b − 1 − y)qk�(y) dy. (13)

So in order to calculate Cov(AO(fk; b), AO(f�; b)),
we apply (11) (or (12) if appropriate) to the definition of
qk�(y) and plug into (13). We take f (t) = fk(t) = f�(t)

when we want to calculate Var(AO(f ; b)).
Contrary to our findings in §§2.1 and 3.2, where we did

not use overlapping, some examples illustrate the fact that
the variance of the overlapping area estimator does depend
on the choice of weighting function.

Example 4 For the overlapping constant-weighted
area estimator from Example 1, we have from Equations
(11) and (13),

Var(AO(f0; b, m))

→ Var(AO(f0; b)) = 24b − 31

35(b − 1)2 σ 4 .= 24

35b
σ 4.

This compares favorably to the batched constant-
weighted area estimator’s asymptotic (m → ∞) variance,
Var(A(f0; b)) = 2σ 4/b (see Equation (5)).

Example 5 For the overlapping area estimator with
first-order unbiased quadratic weighting function f2(t) from
Example 1, Equations (12) and (13) imply

Var(AO(f2; b)) = 3514b − 4359

4290(b − 1)2 σ 4.

This compares well to the analogous batched quadratically
weighted area estimator’s variance, Var(A(f2; b)) = 2σ 4/b.

Example 6 For the overlapping area estimators
from the family of orthonormal first-order unbiased weights
fcos,i (t), i = 1, 2, . . ., we have from Example 1 and Equa-
tions (12) and (13),

Var(AO(fcos,j ; b))
.= 8π2j2 + 15

12π2j2b
σ 4. (14)
Again, the analogous batched weighted area estimator has
Var(A(fcos,j ; b)) = 2σ 4/b.

Remark 1 One can average the orthonormal esti-
mators AO(fcos,j ; b), j ≥ 1, and use Equation (13) to
obtain estimators with smaller variance (cf. Alexopoulos et
al. 2004).

4.3 Overlapping CvM Estimator

We define the overlapping CvM estimator from overlapping
batch i by

CO
i (g; m) ≡ 1

m

m∑
k=1

g(k/m)
[
σT O

i,m(k/m)
]2

,

1 ≤ i ≤ n − m + 1. The overlapping CvM estimator for
σ 2 is

CO(g; b, m) ≡ 1

n − m + 1

n−m+1∑
i=1

CO
i (g; m).

Then by the continuous mapping theorem, as m → ∞,

CO(g; b, m) (15)

D→ CO(g; b) ≡ 1

b − 1

∫ b−1

0

∫ 1

0
g(u)σB2

s (u) du ds.

Meanwhile, Theorem 2 implies

E[CO(g; b, m)] = σ 2 + γ (G − 1)

m
+ o(1/m). (16)

So the expected value of the overlapping CvM estimator is
the same as that of the batched CvM estimator.

Alexopoulos et al. (2004) give mild conditions for which

Var(CO(g; b, m)) → Var(CO(g; b)), as m → ∞.

We next give a preliminary result from Alexopoulos et al.
(2004) that will help to simplify the subsequent calculations
for Var(CO(g; b)).

Lemma 3

Var(CO(g; b)) = 4σ 4

(b − 1)2

∫ 1

0
(b − 1 − y)q(y) dy, (17)
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where

q(y)

≡
∫ 1

0

∫ 1

0
g(u)g(v)Cov2(B0(u), By(v)) du dv

= y2
∫ 1−y

0
g(v)v2

∫ y

0
g(u)u2 du dv

+(1 − y)2
∫ 1

1−y
g(v)(1 − v)2

∫ y

0
g(u)u2 du dv

+
∫ 1−y

0
g(v)

∫ y+v

y
g(u)(u − y + vy − uv − uvy)2 du dv

+y2
∫ 1

1−y
g(v)(1 − v)2

∫ 1

y
g(u)(1 − u)2 du dv

+(1 + y)2
∫ 1−y

0
g(v)v2

∫ 1

y+v
g(u)(1 − u)2 du dv.

Carrying out the tedious algebra allows us to calculate
the desired variance for a particular weighting function.

Example 7 For the overlapping constant-weighted
CvM estimator from Example 2, we have, as m → ∞,

Var(CO(g0; b, m))

→ Var(CO(g0; b)) = 88b − 115

210(b − 1)2 σ 4 .= 44

105b
σ 4.

This compares favorably to the batched constant-weighted
CvM estimator’s asymptotic variance, Var(C(g0; b)) =
4σ 4/5b.

Example 8 For the overlapping CvM estimator with
quadratic weight g2;c(t) from Example 2, we have

Var(CO(g2;c; b))

= 3876480b + 187c2 − 56100c − 690300

4989600(b − 1)2 σ 4.

This quantity is minimized with respect to c by the choice
c = 150 (uniformly in b), i.e., with weighting function
g�

2(t) as in Example 2. Then

Var(CO(g�
2; b)) = 10768b − 13605

13860(b − 1)2 σ 4 .= 0.777

b
σ 4.

This compares well to the batched quadratic CvM estimator’s
asymptotic variance, Var(C(g�

2; b)) = 121σ 4/70b.

4.4 OBM Estimator

Using the notation from §4.1, we define the ith overlapping
batch mean as Ȳ O

i,m ≡ ∑m−1
k=0 Yi+k/m, for 1 ≤ i ≤ n −

m + 1. The OBM estimator for σ 2, originally studied by
Meketon and Schmeiser (1984) (with a slightly different
scaling constant), is

O(b, m) ≡ nm

(n − m + 1)(n − m)

n−m+1∑
i=1

(Ȳ O
i,m − Ȳn)

2.

Under mild conditions, Goldsman and Meketon (1986)
and Song and Schmeiser (1995) show that, for large b,

E[O(b, m)] = σ 2 + γ

m
+ o(1/m), (18)

a result that certainly makes sense in light of Equation
(8). As for the OBM estimator’s variance, Alexopoulos et
al. (2004), Damerdji (1995), and Meketon and Schmeiser
(1984) find that

lim
m→∞Var(O(b, m)) (19)

→ (4b3 − 11b2 + 4b + 6)σ 4

3(b − 1)4
.= 4σ 4

3b
,

with the approximate result holding for large b.

4.5 Recapitulation

Parallelling the discussion in §3.5, we see that as m → ∞,
the overlapping area, overlapping CvM, and OBM estimators
are all asymptotically unbiased for σ 2. In addition, the
variances of these estimators are all inversely proportional
to the ratio b = n/m (for sufficiently large batch size). We
have yet to prove that the estimators are consistent in mean
square as both m and b → ∞, though we believe this to
be true (cf. Damerdji 1995).

All of the overlapping estimators preserve the bias prop-
erties of their nonoverlapping counterparts. Thus, we found
that the overlapping area and overlapping CvM estimators
with certain “unbiased” weighting functions can beat OBM
in terms of large-sample bias. An added feature is that
the overlapping STS estimators also defeat their nonover-
lapped counterparts as well as OBM in terms of variance,
sometimes by quite a bit.

5 EMPIRICAL EXAMPLE

In this section, we illustrate via Monte Carlo simulation the
performance of the various estimators on a simple first-order
autoregressive process [AR(1)]. This stationary process
is defined as Yi = φYi−1 + εi , i ≥ 1, where the εi’s
are i.i.d. Nor(0, 1 − φ2) r.v.’s, and Y0 is a Nor(0, 1) r.v.
initialized independently of the other observations. The
AR(1) process has covariance function Rk = φ|k| for all k,
so that σ 2 = (1 + φ)/(1 − φ) and γ = −2φ/(1 − φ)2.

In the current example, we set φ = 0.9, corresponding
to a highly positive autocorrelation structure and variance
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parameter σ 2 = 19. Based on 10,000 replications, we
estimated the expected values and variances of a variety
of nonoverlapping and overlapping area, CvM, and batch
means variance estimators. Representative results are given
in Table 1, where b = 20 and m = 1000. The last column
in Table 1 provides the asymptotic (as m → ∞) variance
of each variance estimator obtained analytically in previous
sections.

Table 1: Empirical Performance of the Variance Es-
timators for b = 20 and m = 1000

Variance Estimated Estimated Asymptotic
Estimator Mean Variance Variance

AO(f0; b, m) 18.51 12.89 12.83
A(f0; b, m) 18.47 33.84 36.10

AO(f2; b, m) 18.98 15.34 15.37
A(f2; b, m) 18.91 35.52 36.10

AO(fcos,1; b, m) 18.98 14.85 14.89
A(fcos,1; b, m) 18.91 35.60 36.10

CO(g0; b, m) 18.15 7.79 7.83
C(g0; b, m) 18.14 13.61 14.44

CO(g�
2; b, m) 18.96 14.53 14.56

C(g�
2; b, m) 18.91 29.96 31.20

O(b, m) 18.74 25.86 25.56
N (b, m) 18.82 37.11 38.00

From the last two columns of Table 1, one can see
that the estimated variances of all variance estimators for
the AR(1) process with φ = 0.9 are consistent with their
analytically obtained asymptotic counterparts. Moreover,
the expected values of all variance estimators are similar
and close to σ 2. Hence, this empirical study confirms
our earlier conclusions based on our theoretical results. In
particular, the overlapped versions of the various area, CvM,
and batch means estimators have similar expected values
but smaller variances than the nonoverlapped versions.

6 SUMMARY AND CONCLUSIONS

In this paper, we studied the overlapping versions of the
standardized times series area and Cramér–von Mises vari-
ance estimators for steady-state simulations. We obtained
asymptotic expressions for the expected values and vari-
ances of these overlapping variance estimators, and we
compared them with the corresponding nonoverlapping es-
timators as well as with the overlapping and nonoverlapping
batch means estimators. These expressions show that the
overlapping versions of the standardized times series vari-
ance estimators provide similar bias but smaller variance
than their nonoverlapping counterparts — sometimes by a
large margin. We confirmed these asymptotic results by an
empirical study that showed that the overlapping variance
estimators perform as advertised.

Algorithms for computing the estimates as well as the
related time-complexity issues are given in Alexopoulos et
al. (2004).
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