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ABSTRACT 

The choice of which factors to choose to vary in a simula-
tion to effect a change in the measure of interest is difficult.  
Many factors are a priori judged not to effect the measure of 
interest.  There is often no subsequent analysis of whether 
this judgment is valid or not.  The proposed methodology 
outlines a sequence of limited runs to assess the accuracy of 
the a priori belief of non-influential factors.  These runs can 
either identify if an influential factor(s) has been omitted or 
confirm a priori beliefs.  Executing these sequences of runs 
before focusing on the suspected influential factors can con-
tribute to subsequent analysis by confirming that suspected 
non-influential factors do not significantly impact the meas-
ure of interest.  An example of the methodology using an 
agent based model is presented.   

1 INTRODUCTION 

Computers have permitted a more complex environment to 
conduct experiments. A computer simulation is a computer 
model that attempts to imitate the actual, real-world prob-
lem or scenario. Hunter and Naylor (1970), Ignall (1972), 
and Montgomery (1979) address experimental designs for 
computer simulations by using factorial, fractional facto-
rial, rotatable, and response surface designs.  Still, the 
maximum number of factors examined in any of these de-
signs is seven; a small number of factors when compared 
to the number of factors examined in many simulation 
models today (Law and Kelton 2000). 

The Pareto principle is a common assumption made in 
experimental designs for computer simulations.  This im-
plies that although there are a plethora of input factors, 
only a small number of these factors will have a significant 
effect on the output response.  This is known as factor 
sparsity.  A preliminary investigation of a computer simu-
lation may involve group screening for these significant 
factors as a precursor for more detailed experimentation.  
Group screening originated with Dorfman (1943) who 
demonstrated the decrease in the number of experiments 
required in laboratory testing by placing individual sam-
ples into groups and then testing each group, as if it were 
an individual sample, for presence of the desired character-
istic.  His goal was to decrease the total number of tests re-
quired to identify those World War II drafted males who 
had syphilis. 

Group screening is a common technique used in simu-
lations with many factors.  The goal is to identify the criti-
cal, important, or influential factors in a limited number of 
runs and then conduct further experimentation on these 
critical factors.  Common assumptions and limitations of 
group screening designs (e.g., Watson 1961, Montgomery 
1979) include:  

 
• only a small number of the total possible factors 

are important, 
• each factor is restricted to two levels of testing,  
• no interactions between factors are present,  
• main effect directions are known, 
• all factors have the same probability of being im-

portant, and 
• observation errors are independently normal with 

constant known variance. 
 

Dorfman’s group screening has been extended by nu-
merous researchers.  Watson’s (1962) group screening de-
signs extended Dorfman’s work by grouping the k factors 
into g groups and then using a two-stage procedure.  Li 
(1962) and Patel (1962) extended and generalized the pro-
cedure for more than two stages.  Mauro (1984) extends 
Watson’s work by not assuming the direction of possible 
effects. Bettonvil (1995) proposes a modification of Jacoby 
and Harrison’s (1962) sequential bifurcation, a method of 
group screening.   

This paper extends group screening by using a novel 
procedure that capitalizes on expert opinion or prior knowl-
edge and then uses specifically tailored simulation runs to 
confirm perceived non-influential factors.  In this paper, the 
term non-influential implies that the factor, regardless of its 
setting, does not cause a significant change in the output 
measure(s) of interest.  Instead of verifying important fac-
tors, this method is used to verify the assumed non-
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influential factors.  The remainder of the paper is organized 
as follows.  Section 2 provides details of the methodology, 
section 3 presents justification for the procedure, section 4 
illustrates the use of the methodology, and section 5 con-
cludes with suggestions for subsequent research. 

2 METHODOLOGY DESCRIPTION 

This section describes, in detail, the sequential methodology 
used to assess the accuracy of the a priori knowledge of the 
non-influential factors.  In analyses, people who implement 
a model, those who analyze the model output, and/or area 
subject matter experts with real-world experience develop a 
rigorous insight concerning the effect of different factors or 
parameters on the measures of interest.  It is not uncommon 
that people have over a decade’s worth of experience with a 
particular model.  Furthermore, querying those with actual 
operational experience is important to enhance the model’s 
accuracy in portraying the simulated environment.  Not tak-
ing advantage of these resources would not be wise, but 
concurrently, we must ensure that we temper this judgment 
with actual model runs to verify the intuition. 

If a specific set of factors has been identified as the fo-
cal point of investigation, then the following described 
method does not require implementation. This situation 
may occur when the experiment is scoped or tailored to in-
vestigate particular factors. Alternatively, if there is no 
predetermined factor list identified for experimentation and 
doubt exists as whether to classify a factor as important or 
unimportant, then this method will be beneficial.   

Expert opinion is queried using some collection and 
analysis methodology (e.g., survey or Delphi technique).  
The goal is to produce a categorization of the factors into 
three stochastically ordered groups (e.g., Agresti 1990).  
These groups consist of the categories of most likely to be 
important [ξ ], unknown [ψ ], and not likely to be impor-
tant [τ ].  It is recommended that the unknown category 
contain as few factors as possible.  This does not seem a pro-
hibitive restriction since the expert opinion and prior 
knowledge should reduce the uncertainty of a factor’s effect.  
Additionally, we assume that the direction of the effect of a 
factor is known (e.g., Bettonvil 1995).  The methodology is 
applicable to both deterministic and stochastic simulations, 
but stochastic simulations will require replications. 
 With the factors grouped into one of three stochasti-
cally ordered groups, a sequence of runs described in the 
following section is conducted.  Note that “+” refers to the 
maximum setting (favorable) for that factor and “-” refers 
to the minimum value (unfavorable) for that factor.  Thus, 
in a similar fashion as done with group screening, if the 
category of [ξ ] is assigned a “+” setting, then all factors 
within that category have a “+” setting.   
2.1 Sequence I Simulation Runs 

Sequence I consists of two runs and establishes a baseline to 
better determine factor effects.  The first run sets all factors at 
their maximum setting and thus should yield the best possible 
outcome for the desired measure of interest. The second run 
sets all factors at their minimum setting and thus should yield 
the worst possible outcome for the desired measure of inter-
est. Table 1 summarizes these two runs where the observa-
tion corresponds to the measure of interest.   
 

Table 1: Sequence I Simulation Runs 
ξ  ψ  τ  Observation 
+ + + 1γ  

- - - 2γ  
 

From these two runs, we establish the following equation. 
 

121 δγγ =− .                                (1) 
 

In theory, there should be a sufficiently large 1δ , but 
this may not be evident (e.g., if the error term has a compli-
cated variance structure).  Thus, it would be unwise to con-
clude with finality that the factors have minimal impact 
upon the measure of interest if the difference between the 
two observations is small.  Note that when the terms of large 
and small corresponding to the δ ’s is made, this suggests 
that the user is the one to define the comparative magnitude. 
After only two runs, no defining characteristics of the rela-
tionship can be made, but future runs will yield additional 
information permitting more detailed explanation.   

2.2 Sequence II Simulation Runs 

Sequence II consists of two runs whose purpose is to verify 
those factors designated as not important. We employ the 
following rationale. Since [τ ] contains perceived non-
influential factors, there should not be a significant δ  found 
between 

1
γ and a modified run corresponding to [τ ] being 

assigned a “-” setting. Similarly, there should not be a sig-
nificant δ  between 

2
γ and a modified run corresponding to 

[τ ] being assigned a “+” setting. Table 2 summarizes these 
two runs. 

 
Table 2: Sequence II Simulation Runs 

ξ  ψ  τ  Observation 
+ + - 3γ  

- - + 4γ  
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From these additional two runs, we now establish the fol-
lowing two equations. 
 

231 δγγ =−                                  (2) 
 

   342 δγγ =− .                                 (3) 
 

At this point, four runs have been conducted (Tables 1 
and 2) so it is possible to gain some insight into the meas-
ure of interest’s variance and the accuracy of the expert 
opinion.  If the [τ ] category truly contains non-influential 
factors, then δ 2 and δ 3 should be small.  Thus, there are 
four possible scenarios which may exist and are arranged 
in order from most desirable to least desirable where desir-
ability is measured in terms of additional runs required to 
verify non-influential factors.   
 

• Scenario 1:  If sequence I has a large δ 1, paired 
with small δ 2 and δ 3, then this suggests that the 
[τ ] category does contain non-influential factors.  
This can be considered the best situation.  Simula-
tion runs focusing on the important factors can 
commence.   

• Scenario 2:  If sequence I has a smallδ 1, andδ 2  
and δ 3 are small, then this suggests that the meas-
ure of interest may not be substantially influenced 
by any of the factors.  Simulation runs focusing on 
the important factors can commence, if desired. 

• Scenario 3:  If sequence I has a largeδ 1, and one 
or both ofδ 2 and δ 3  are large, then this suggests 
that the [τ ] category may contain an influential 
factor(s) not found with expert opinion or a com-
plicated  variance exists for the measure of inter-
est.  Sequence III (described below) runs should 
be conducted. 

• Scenario 4:  If sequence I has a smallδ 1, and one 
or both ofδ 2 andδ 3  are large, this suggests that 
the expert opinion or previous knowledge may 
have incorrectly classified factors (in both the [ξ ] 
and [τ ] categories) or a complicated variance for 
the measure of interest exists.   This may be con-
sidered the worst situation, but in practice, a gross 
factor misclassification of this nature should occur 
very rarely.  If a complicated variance is the root 
cause, it will become evident as the procedure en-
sues.  Although sequence III may be conducted, it 
is  recommended instead to conduct a thorough 
reexamination of the  categories and re-executing 
sequences I and II. 

 
Note that we do not separately examine the [ξ ] cate-

gory, but assume that influential factors are contained in 
this category.  Otherwise, we would have encountered sce-
nario 2 and possibly terminated the simulation experiment 
or encountered scenario 4 (a rare event) which requires fur-
ther investigation and refinement of the categories.  Fur-
thermore, if non-influential factors are incorrectly con-
tained in the [ξ ] category, these will be identified during 
subsequent simulation runs.   

2.3 Sequence III Simulation Runs 

If scenario 3 (or possibly 4) is found, sequence III is done 
in an attempt to determine which factors in the [τ ] cate-
gory are influential.  The expert opinion or previous 
knowledge can be reexamined to determine if an oversight 
occurred.  The [τ ] category can then be revised and se-
quence II repeated with the goal of achieving scenario 1.  
The other recommended alternative is to conduct sequen-
tial bifurcation (Bettonvil, 1995) on the original [τ ] cate-
gory to identify the influential factors.  With k representing 
the number of important factors in the [τ ] category, m rep-
resenting the total number of factors in the [τ ] category, 
and l an integer subject to the following conditions: 
 

,22

20
1 ll

l

≤<

≤≤
− k

m
                           (4) 

 
then in the worst case, the number of required observations 
(Bettonvil, 1997) during sequence III is 
 

                     )(21 ll −++ mk .                        (5) 

2.4 Sequence IV Simulation Runs 

Sequence IV focuses on the [ψ ] category where the most 
uncertainty exists.  Partition [ψ ] into equal (or nearly) 
subgroups subject to the following constraint where n 
equals the total number of subgroups, 
 

∑
=

=
n

i
i

1

][][ ψψ .                             (6) 

 
A resolution III experimental design is then conducted on 
the subgroups, explained later in this paper, but first we 
address the consequences of subgroup size and the impact 
of finding a subgroup containing an influential factor(s).   

The first alternative is to transfer each factor in the sub-
group to the [ξ ] category.  The second alternative is to con-
duct sequential bifurcation on the subgroup to isolate influ-
ential factors.  Thus, choosing the size of the subgroups of 
[ψ ] is an important consideration.  If the subgroups are too 
large and the first alternative is chosen, then the [ξ ] cate-
gory may get unnecessarily large for the follow-on phases.  
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If the subgroups are large and the second alternative is cho-
sen, then the sequential bifurcation will require additional 
runs to determine influential factors.  Conversely, subgroups 
which are too small will yield excessive runs in the proposed 
resolution III design.  Since the follow-on phases will re-
quire extensive runs, our recommendation is to use the sec-
ond alternative and choose relatively small subgroups (no 
more than 10 factors in a subgroup).   
 Since the focus is to determine the influence of the [ψ ] 
subgroups, we set the [ξ ] category to the “-“ level in order 
to magnify the effects of any influential factors in a [ψ ] 
subgroup.  From sequence 3, the [τ ] category should con-
tain the non-influential factors and therefore have no effect 
whether its factors are set at “+” or “-.”   Arbitrarily the [τ ] 
category is set at “+.”  Thus, the [ξ ] and [τ ] categories are 
considered fixed, and a resolution III design is constructed 
for the [ψ ] subgroups.  Table 3 illustrates an example of 
this design where there are three [ψ ] subgroups. 
 

Table 3: Example Resolution III 
ξ  τ  1ψ  2ψ  213 ψψψ =  Observation 

- + + + + 5γ  
- + + - - 6γ  
- + - + - 7γ  

- + - - +  8γ  

 
 From the resolution III design and its associated 
analysis of variance, influential [ψ ] subgroups can be 
identified.  As previously noted, an entire subgroup may 
then be transferred to the [ξ ] group or sequential bifurca-
tion can be done on the influential [ψ ] subgroup(s) to iso-
late the influential factors.  The sequential bifurcation al-
ternative is recommended to reduce the computational 
burden during subsequent computer experimentation. 

3 METHODOLOGY JUSTIFICATION 

Although the runs required to corroborate a priori non-
influential factors appears to be excessive, this is a necessary 
step for two major reasons.  The first reason has already 
been mentioned; namely, by conducting these simulation 
runs, fewer runs will be required during subsequent com-
puter experimentation.  The second reason is that if the over-
all process must be terminated early due to an accelerated 
decision requirement or some other unforeseen event, in-
sights can still be acquired during any point of the sequence. 
 Theorem 1 is presented which details the worst-case 
performance for the number of runs required under scenar-
ios 1, 2, and 3.  Scenario 4 is omitted, although its worst-
case performance could be found depending on the out-
come of the re-execution of sequences I and II.   
Theorem 1    Under scenarios 1 or 2, in the worst 
case the number of observations is 4.  Under scenario 3, in 
the worst case the number of observations is 

 

           5 + )(2 ll −+ mk + )](21[
1

iii

p

i

mki ll −++∑
=

,   (7) 

 
where k, m, and l are as previously defined, ki represents 
the number of important factors in a particular [ψ ] sub-
group, mi represents the total number of factors in the par-
ticular [ψ ] subgroup, p represents the total number of 
[ψ ] subgroups from the minimal resolution III design, and 

il is an integer subject to the following conditions: 
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 The proof of Theorem 1 is straightforward.  From se-
quences I and II under scenarios 1 and 2, the number of 
observations required is 4.  Equation (7) follows from a 
combinatorial extension of Equation (5) from the minimal 
resolution III design.  This concludes the proof. 

Clearly we expect the actual performance of phase I to 
be superior to that prescribed under Theorem 1 since oth-
erwise, the expert opinion or previous knowledge would be 
simply random selection. 

4 IMPLEMENTATION EXAMPLE 

The Map Aware Non-Uniform Automata (MANA) is an 
agent-based simulation that is being developed by the New 
Zealand’s Defence Technology Agency (Lauren, Stephen, 
and Anderson 2001). MANA is a useful simulation for analy-
sis of complex military problems (Cioppa and Brown 2002). 

A peace enforcement scenario was developed that 
consisted of a friendly force that is subjected to a series of 
encounters with a hostile force and a non-hostile force that 
turns hostile after a specified time.  There were 10 factors 
identified for the [ξ ] category, three factors for the [ψ ] 
category, and 11 factors for the [τ ] category.  The meas-
ure of interest was how many friendly forces were killed or 
wounded (a lower value is preferable).  Since MANA is 
stochastic, 30 replications were done for each specified run 
to attain the average measure of interest. 

The runs specified in Table 1 were executed.  Equation 
(1) resulted in a value of 16.  The runs specified in Table 2 
were then executed.  Equations (2) and (3) resulted in val-
ues of  7 and 5, respectively.  These values were consid-
ered large indicating that a factor in the [τ ] category may 
be influencing the measure of interest.  

Sequence III runs were then executed by using sequen-
tial bifurcation and required five runs.  The procedure identi-



Cioppa 

 
fied a factor (movement speed) that influenced the number 
of friendly forces killed or wounded, although movement 
speed had not been identified a priori by expert judgment. 

Although a total of nine runs were executed prior to de-
tailed experimentation of the [ξ ] category factors, these 
runs identified an important factor, originally thought to be 
unimportant.  Subsequent analysis from this detailed ex-
perimentation indicated that movement speed was the sec-
ond most significant factor in number of friendly forces 
killed or wounded.  Specifically, increasing movement speed 
resulted in a decrease of friendly forces killed or wounded. 

5 CONCLUSIONS 

Choosing which factors to focus upon within a simulation is 
difficult.  Expert opinion, judgment, or experience with the 
simulation are used to determine which factors might influ-
ence the measure of interest.  Often this judgment is not 
verified with actual simulation runs and can be inaccurate.   

Although the majority of simulation and analysis ef-
fort should be upon the important factors, a subset of runs 
prior to this detailed experimentation should be used to 
verify a priori judged non-influential factors.  The meth-
odology presented in this paper provides an efficient ap-
proach for identifying potential important factors that were 
originally omitted from consideration. 

Subsequent research will focus on two areas.  The first 
area will be a comparison of this methodology between de-
terministic and stochastic simulations.  The second area of 
research will examine strategies that decrease the likeli-
hood of scenario 4 occurring.   
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