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ABSTRACT

We summarize the results of an experimental performance
evaluation of using an empirical histogram to approximate
the steady-state distribution of the underlying stochastic pro-
cess. We use a runs test to determine the required sample
size for simulation output analysis and construct a histogram
by computing sample quantiles at certain grid points. The
algorithm dynamically increases the sample size so that
histogram estimates are asymptotically unbiased. Charac-
teristics of the steady-state distribution, such as the mean
and variance, can then be estimated through the empirical
histogram. The preliminary experimental results indicate
that the natural estimators obtained based on the empirical
distribution are fairly accurate.

1 INTRODUCTION

A concern of simulation output analysis is to estimate the
sampling error of an estimator, i.e., the error caused by
the estimator’s randomness. This gives the experimenter an
idea of the precision with which the estimator reflects the
true but unknown parameter. For example, when estimat-
ing the steady-state performance, such as the mean µ, of
some discrete-time stochastic output process {Xi : i ≥ 1}
via simulation, we would like an algorithm to determine
the simulation run length N so that the mean estimator
(sample mean X̄(N) = ∑N

i=1 Xi/N ) is approximately un-
biased (i.e. the asymptotic approximation is valid), the
confidence interval (CI) is of a pre-specified width, and
the actual coverage probability of the CI is close to the
nominal coverage probability 1 − α. Because we assume
the underlying distribution is stationary, i.e., the joint dis-
tribution of the Xi’s is insensitive to time shifts, the mean
estimator will be unbiased. However, the usual method
of CI construction from classical statistics, which assumes
independent and identically distributed (i.i.d.) observations,
is not directly applicable since simulation output data are
generally correlated.

For 0 < p < 1, the p quantile (percentile) of a dis-
tribution is the value at or below which 100p percent of
the distribution lies. Related to quantiles, a histogram is
a graphical estimate of the underlying probability density
(mass) function and reveals all the essential distributional
features of output random variables analyzed by simulation.
Histograms can be constructed with a properly selected set
of quantiles.

In this paper, we propose using the runs test to deter-
mine the simulation run length and construct an empirical
histogram to approximate the underlying distribution. Dis-
tributional features, such as the variance, are then estimated
through this empirical histogram. The only required con-
dition is that the autocorrelations of the stochastic process
output sequence die off as the lag between observations
increases, in the sense of φ-mixing, see Billingsley (1999).
This mild assumption is satisfied in virtually all practical
settings. These weakly dependent processes typically obey
a central limit theorem for dependent processes of the form

√
N

[X̄(N) − µ]
σ

D−→ N (0, 1) as N → ∞,

where

σ 2 ≡ lim
N→∞ NVar[X̄(N)] =

∞∑
i=−∞

γi

is the steady-state variance constant (SSVC), and γi =
Cov(Xk, Xk+i ) for any k is the lag-i covariance. If the
sequence is independent, then the SSVC is equal to the
process variance σ 2

x = Var(Xi). For a finite sample N , let

σ 2(N) = γ0 + 2
N−1∑
i=1

(1 − i/N)γi .
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It follows that limN→∞ σ 2(N) = σ 2 so

Var[X̄(N)] = σ 2(N)/N ≈ σ 2/N, (1)

provided that N is sufficiently large.
In the non overlapping batch-means method, the sim-

ulation output sequence {Xi : i = 1, 2, . . . , N} is divided
into b adjacent non overlapping batches, each of size m.
For simplicity, we assume that N is a multiple of m so that
N = bm. The sample mean, X̄j , for the j th batch is

X̄j = 1

m

mj∑
i=m(j−1)+1

Xi for j = 1, 2, . . . , b.

Then the grand mean µ̂ of the individual batch means, given
by

µ̂ = 1

b

b∑
j=1

X̄j , (2)

is used as a point estimator for µ. Here µ̂ = X̄(N), the
sample mean of all N individual Xi’s, and we seek to
construct a CI based on the point estimator obtained by (2).

The rest of this paper is organized as follows. In Section
2, we present the methodologies of constructing an empirical
histogram estimation. In Section 3, we present algorithms
to estimate variance. In Section 4, we show some empirical-
experimental results of mean and histogram estimation. In
Section 5, we give concluding remarks.

2 HISTOGRAM APPROXIMATION

This section presents an overview of constructing an empir-
ical histogram to approximate the underlying distribution
based entirely on data.

2.1 Natural Estimators

Let F(·) denote the unknown steady-state cumulative dis-
tribution function (c.d.f.) of the output random variable
X of the process under study and � a property of F(·),
such as the mean, variance, or a quantile. The natural point
estimator for �, denoted by �̂, is typically the sample
mean, the sample variance, the sample quantile, or a simple
function of the relevant order statistics, chosen to imitate
the performance measure �. Furthermore, the natural esti-
mators are appropriate for estimating any �, regardless of
dependency, which follows from the empirical distribution
function FN(·) converging to F(·).
The empirical discrete c.d.f. FN(x) based on samples
{Xi : i = 1, 2, · · · , N} of X is constructed as follows:

FN(x) =



0 if x < X(1),
i/N if X(i) ≤ x < X(i+1), 1 ≤ i ≤ N − 1,
1 if X(N) ≤ x,

where X(1) ≤ X(2) ≤ · · · ≤ X(N) are the order statistics
obtained by sorting the observations {Xi : i = 1, 2, · · · , N}
in ascending order. Furthermore, let I (·) denote the indicator
function. Then FN(x) = ∑N

i=1 I (Xi ≤ x)/N. Recall that
the p quantile xp is the value such that xp = F−1(x) =
inf{x : F(x) ≥ p}, p ∈ (0, 1). A natural estimator for xp is
the sample quantile x̂p = F−1

N (x) = inf{x : FN(x) ≥ p}.

2.2 Implementation

Chen and Kelton (2003) use grid points to construct a
histogram (multiple quantiles) as an empirical distribution
of the underlying steady-state distribution. The total number
of grid points is G = 203. The value of the grid points
g0, g1, . . . , g202 will be constructed as follows: g0 and
g202 are set to −∞ and ∞ (in practice, the minimum and
maximum values on the underlying computer) respectively.
If the analyst knows what may be the minimum or maximum
values of the distribution, those values should be used
instead. For example, the waiting-time of any queuing
system cannot be negative, so the analyst should enter 0
as the minimum. Grid point g51 is set to the minimum of
the initial n, 2n, or 3n samples, depending on the degree
of correlation of the sequence. The number of main grids,
Gm, is set to 100. Grid points gi+51, i = 1, 2, . . . , Gm,
are set to the i/Gm quantile of the initial n, 2n, or 3n

samples. We will set grid points g1 through g50 and g152
through g201 to appropriate values so that g1 through g52
will have the same segment length and g150 through g201
will have the same segment length. Therefore, the grids will
be dense where the estimated probability density function
is high and will be sparse where the estimated probability
density function is low. Furthermore, each grid will contain
no more than 1/Gm of the distribution. A corresponding
array of n1, n2, . . . , n202 is used to store the number of
observations between two consecutive grid points. The
number of observations in the grid will be updated each
time a new observation xi is generated, i.e., the number
stored in nj is increased by one if gj−1 < xi ≤ gj .

Let the p quantile estimate satisfies the precision re-
quirement

Pr[xp ∈ x̂[p±δ]1
0
] ≥ 1 − α (3)
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where

[P ]1
0 =




0 if P < 0,
P if 0 ≤ P ≤ 1,
1 if 1 < P .

Using the this precision requirement (i.e. equation
(2)), the required sample size np for a fixed-sample-size
procedure of estimating the p quantile of an i.i.d. sequence
is approximately the minimum np that satisfies

np ≥ z2
1−α/2p(1 − p)

δ2 ,

where z1−α/2 is the 1−α/2 quantile of the standard normal
distribution, δ is the maximum proportional half-width of
the confidence interval, and 1 − α is the confidence level.
See Chen and Kelton (2004) for details.

2.3 Determining the Simulation Run Length

The natural estimators are computationally reasonable and
perform well statistically (Goldsman and Schmeiser 1997).
However, although asymptotic results are often applicable
when the amount of data is “large enough,” the point at
which the asymptotic results become valid generally depends
on unknown factors. Chen and Kelton (2003) propose
using runs (runs-up and runs-down) tests to determine the
simulation run length (i.e., sample size) for simulation output
analysis. Briefly, a run up (run down) is a monotonically
increasing (decreasing) subsequence and we consider the
length of a run up (run down). A chi-square test is applied
to the frequency of different run lengths to check whether
a sequence appears to be independent. The runs test looks
solely for independence and has been shown to be very
powerful (Knuth 1998).

The procedure will increase the simulation run length
progressively until n samples (taken from the original output
sequence) appear to be independent, as determined by the
runs test. This is accomplished by systematic sampling,
i.e., select a number l between 1 and L, choose that obser-
vation, and then every lth observation thereafter. Here the
chosen l will be sufficiently large so that systematic sam-
ples are approximately uncorrelated. A quasi independent
(QI) subsequence is defined as the sequence of systematic
samples that appear to be independent, as determined by
the runs test. A QI subsequence always exists in simulation
output sequences since we assume the autocorrelations of
the underlying process die off as the lag between observa-
tions increases. Hence, the procedure will always terminate
gracefully.

We estimate by the runs test the lag l at which the
systematic samples appear to be independent. Chen and
Kelton (2003) give some experimental results of using the
runs test to check whether a sequence appears to be indepen-
dent, and demonstrate that the lag l at which the systematic
samples appear to be independent and the strength of the
autocorrelation of the output sequence is highly correlated.
Based on those experience, we set L, the limit of l, to
210. The minimum required sample size is then N = nl,
i.e., the minimum required simulation run length computed
based on the data, which is called the computation run
length. We set n = 4000, the minimum recommended
sample size for the runs tests, in our procedure. While the
initial 4000 observations may provide a CI that exceeds the
user’s precision requirement, such an initial sample size is
usually easy and inexpensive to generate. The procedure
will iterate repeatedly to increase the lag l until it has ob-
tained n systematic samples that appear to be independent,
as determined by the runs test.

Optimally, we would like to search for the minimum
l such that the systematic samples pass the runs test of
independence. However, in order to process the data in one
pass, we double the lag l every two iterations. Thus, the
lag l determined dynamically as the simulation proceeds is
likely to be much larger than the minimum lag l to pass
the test of independence, and consequently, the empirical
simulation run length will likely be longer than the computed
run length.

3 ESTIMATING THE VARIANCE

In this section, we discuss methods of estimating the variance
of sample means using the histogram approximation and
batch means.

3.1 Histogram Variance Estimates

Once the QI algorithm has determined that the sample size
is large enough for the asymptotic approximation to become
valid, we can then compute the mean and variance based on
the estimated histogram. The mean is estimated by X̄(N).
The variance is conservatively estimated by

S2
H =

G−1∑
j=1

max((gj−1 − X̄(N))
2
, (gj − X̄(N))

2
)Pj .

Note that N = nl = ∑G−1
j=1 nj and Pj = nj/N .

This would then lead to the 100(1 − α)% CI for µ,

X̄(N) ± z1−α/2
SH√

n
.

Here n is the sample size used for the runs test. Even though
X̄(N) is the sample mean of N samples, we use n to compute
the standard error of X̄(N) to adjust for the autocorrelation.
Furthermore, even though we use the standard error S instead
of the standard deviation σ to construct the CI, we use z1−α/2
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instead of t1−α/2,n−1 to estimate the CI half-width since
n = 4000, where t1−α/2,n−1 is the 1 − α/2 quantile of the
t distribution with n − 1 degrees of freedom.

Let the half-width be

HH = z1−α/2
SH√

n
.

The final step in the QI procedure is to determine whether
the CI meets the user’s half-width requirement, a maximum
absolute half-width ε or a maximum relative fraction γ of
the magnitude of the final point estimator X̄(N). If the
relevant requirement

HH ≤ ε or HH ≤ γ |X̄(N)|

for the precision of the confidence interval is satisfied,
then the QI procedure terminates, and we return the point
estimator X̄(N) and the CI with half-width H . If the
precision requirement is not satisfied, then the procedure
will increase the sample size to n′l, where

n′ = (
HH

ε
)2n or n′ = (

HH

γ X̄(N)
)2n.

Furthermore, the half-width will be computed by

HH = z1−α/2
SH√
n′ .

The quasi-independent algorithm uses the runs test to
determine the simulation run length, which has strong theo-
retical basis. The QI algorithm is easy to implement because
we only need to tally the number of observations in each
grid as the sample sizes increase once the grid points have
been set up.

3.2 A Hybrid Approach

The use of batch means is a well-known technique for es-
timating the variance of point estimators computed from
simulation experiments. The batch-means variance estima-
tor is fundamentally different than the histogram-sample-
mean variance estimator. While the histogram-sample-mean
variance estimator is computed indirectly from the sample
variance, i.e., (1), the batch-means variance estimator is
simply the sample variance of the mean estimator com-
puted on means of subsets of consecutive subsamples, i.e.,

S2
B = 1

b − 1

b∑
j=1

(X̄j − µ̂)2. (4)

The asymptotic validity of batch means depends on both the
assumption of approximate independence of the batch means
and the assumption of the batch means being approximately
normally distributed.

We divide the entire output sequence into 100 batches.
For details on batch-size effects in the analysis of simulation
output once the sample size is fixed, see Schmeiser (1982).
Let l denote the smallest lag at which the output sequence
appears to be independent, as determined by the runs test.
Then the batch size will be 40l. To reduce the storage
requirement, we allocate a buffer with size 3s (t = 10 and
s = n/t = 400) to keep sample means. Initially, the sample
means are obtained every t = n/s observations and will
be doubled every two iterations. The following shows the
total number of observations and the number of observations
used to compute sample mean in each cell at each iteration:

It 0 1A 1B 2A 2B . . . kA kB

TO n 2n 3n 4n 6n . . . 2kn 2k−13n

BU s 2s 3s 2s 3s . . . 2s 3s

OU t t t 2t 2t . . . 2k−1t 2k−1t

The It row shows the index of the iteration. The TO
row shows the total number of observations at a certain
iteration. The BU row shows the number of sample means
obtained. The OU row shows the number of observations
used to obtain the sample means stored in the buffer. For
example, at the end of the 1th

B iteration, the total number of
observations is 3n, there are 3s sample means in the buffer,
and each sample mean is the average of t consecutive
observations. At the beginning of the 2th

A iteration, we
reduce the number of sample means in the buffer from 3s to
3s/2 by taking the average of every two consecutive sample
means; consequently, each sample mean is the average of
2t consecutive observations. We will generate s/2 sample
means that are the average of 2t consecutive observations
at the 2th

A iteration; thus, we will have 2s sample means
at the end of the iteration. Depending on the number of
buffers used, the batch means will be the average of 8 or
12 sample consecutive means.

Because observations xi and xi+l appear to be inde-
pendent, we assume the batch size 40l is large enough such
that the batch means will appear to be independent. More-
over, based on the common rule of thumb that the average
of n ≥ 30 i.i.d. observations is approximately normally
distributed, the batch means with batch size 40l should
be approximately normally distributed. Our experimental
results indicate that the batch means constructed from this
algorithm are generally normally distributed. The variance
is then estimated as the sample variance of batch means,
i.e., (4).

Both the histogram-approximation and batch-means al-
gorithm of variance estimation use the same stopping rule
and can be easily performed in the same simulation run.
We propose a new approach to construct a CI. Let HB ,
HH , and HA denote the 1−α CI half-widths obtained from



Chen and Kelton
the batch-means, histogram-approximation, and hybrid ap-
proaches. Note that

HB = t1−α/2,b−1
SB√

b
.

The hybrid approach sets the half-width

HA = (HB + HH )/2.

That is, it uses the average of these two CI half-widths.
The ASAP2 procedure (Steiger et al. 2002) starts with

an initial sample size of 4096 and increases the sample size
by a factor of

√
2 at each iteration, thus, doubles the sample

size every two iterations. ASAP2 iterates repeatedly until
the batch means pass the Shapiro-Wilk test for multivariate
normality and then delivers a correlation-adjusted confidence
interval that accounts for dependency between the batch
means. The WASSP procedure (Lada, Wilson, and Steiger
2003) extends the ASAP2 and use wavelet-based spectral
method on the batch means to estimate the steady-state
variance constant. The proposed QI procedure starts with an
initial sample size of 4000 and doubles the sample sizes every
two iterations. The QI procedure iterates repeatedly until
the systematic samples pass the runs test for independence
and then delivers a classical confidence interval without
any adjustment since we assume the simulation run length
determined by the QI procedure is long enough to ensure
independence between batches. Hence, the QI procedure
generally requires a larger sample size and delivers a tighter
CI when no user precision is specified. Furthermore, ASAP
and ASAP2 require storing and repeatedly using the entire
output sequence. On the other hand, the QI-based procedures
need only process each observation once and do not require
storing the entire output sequence.

4 EMPIRICAL EXPERIMENTS

In this section, we evaluate the performance of using the
hybrid approach to construct a CI. We use n = 4000 samples
for the runs test and test the procedure with four stochastic
processes:

• Steady-state of the first-order moving average pro-
cess, generated by the recurrence

Xi = µ + εi + θεi−1 for i = 1, 2, . . . ,

where εi is i.i.d. N (0, 1) and 0 < θ < 1. µ is set
to 2 and θ is set to 0.9 in our experiments. This
process is denoted MA1. It can be shown that X

has asymptotically a N (µ, 1 + θ2) distribution.
• Steady-state of the first-order auto-regressive pro-
cess, generated by the recurrence

Xi = µ + ϕ(Xi−1 − µ) + εi for i = 1, 2, . . . ,

where εi is i.i.d. N (0, 1), and 0 < ϕ < 1. µ is
set to 2, ϕ is set to 0.9, and X0 is set to a random
variate drawn from the steady-state distribution in
our experiments. This process is denotedAR1 It can
be shown that X has asymptotically a N (µ, 1

1−ϕ2 )

distribution.
• Steady-state of the M/M/1 delay-in-queue process

with the arrival rate (λ = 0.9) and the service
rate (ν = 1). This process is denoted MM1. The
traffic intensity of this process is ρ = λ/ν = 0.90.
The steady-state mean waiting time for this M/M/1
queuing system is 9.0; see Hillier and Lieberman
(2001).

• Steady-state of the M/M/2 delay-in-queue process
with the arrival rate (λ = 9) and the service rate
(ν = 5). This process is denoted MM2. The traffic
intensity of this process is ρ = λ/(sν) = 0.90.
The steady-state mean waiting time for this M/M/2
queuing system is 81/95; see Hillier and Lieberman
(2001).

The confidence level of the runs test of independence is
set to 90.25%, i.e., independent sequences will fail the test
of independence approximately 9.75% of the time. Note
a lower confidence level of the runs test of independence
will increase the simulation run length.

4.1 Goodness-of-Fit Test

In this experiment, we aim to check the goodness of fit of
the empirical distribution. We use the Kolmogorov-Smirnov
(KS) and Anderson-Darling (AD) tests comparing the em-
pirical distribution with the true steady-state distribution.
The AD test statistic is approximated by

A2
η = η

K∑
i=k

(Fη(x) − F(x))2�(x)f (x)(gi − gi−1).

Here k = min{j : Pj > 0}, K = min{j : ∑j
i=k Pi = 1},

η = K − k + 1; x = (gi−1 + gi)/2, �(x) = 1/(F (x)(1 −
F(x)), and f (x) is the steady-state probability density
function.

Table 1 lists the the average and standard deviation of the
test statistics of these four stochastic processes, obtained
with the simulation run length and the computation run
length, respectively. We obtain the computation run length
by generating the same random number stream repeatedly,
so we can increase the lag l by one at each iteration. Each
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Table 1: Goodness-of-Fit Test Statistics
Process MA1 AR1 MM1 MM2

avg. KS 0.192358 0.147152 0.175046 0.179356
sdev KS 0.054680 0.047038 0.057412 0.084024
avg. AD 0.056773 0.056555 0.073777 0.372421
sdev AD 0.048956 0.056657 0.041187 0.352225

avg. KS 0.169879 0.158931 0.215457 0.185488
sdev KS 0.040643 0.040346 0.082329 0.069682
avg. AD 0.045038 0.057798 0.069351 0.490271
sdev AD 0.037782 0.045869 0.042467 0.875112

design point is based on 100 independent simulation runs.
The 90% confidence critical value of the KS and AD tests
are 1.1224 and 1.933, respectively. These results indicate
the empirical distributions constructed with the proposed
procedure are excellent approximations to the true steady-
state distributions. Since the computation run length is much
shorter than the simulation run length, the test statistics are
not as good, but they are well within the acceptable region.

In some sense, a simulation is just a function, which
may be vector-valued or stochastic. The explicit form of this
function is unknown and probably very complicated even if
it were known. These empirical distributions (histograms)
numerically characterize the response function over the pa-
rameter range, even though we do not have an algebraic
formula with which to characterize it. In this sense, we
have generated a response surface or metamodel.

4.2 Evaluation of Independence of the Batch Means

In this experiment, we evaluate the asymptotic validity of
independence of the batch means. We generate 4000 batch
means with batch size 40l, where l is determined by the
procedure described in Section 3.2. We then apply the
runs test of independence of these 4000 batch means to
determine whether they appear to be independent. Recall
that the confidence level of the runs test of independence
is set to 90.25%. Consequently, we will encounter Type
I error, i.e., reject the null hypothesis that the underlying
distribution is normal when it is true, approximately 9.75%
of the time.

Table 2 lists the the proportion of the batch means
obtained with the simulation run length and the computation
run length, respectively, that appear to be independent, as
determined by the runs test. Each design point is based on
100 independent simulation runs. The observed proportions
are smaller than the nominal value of 0.9025, indicating that
approximately 10% and 15% of the batch means obtained
by the simulation run length and the computation run length,
respectively, are not independent. Since the runs test of
independence has great power, we believe those batch means
that appear to be dependent are only slightly correlated. Our
experimental results reflect that, i.e., the CI coverage for
Table 2: Proportion of Batch Means that Ap-
pear to be Independent

Process MA1 AR1 MM1 MM2

proportion 0.77 0.81 0.81 0.83

proportion 0.83 0.73 0.72 0.74

the mean constructed with these batch means are close to
the nominal value; see Chen and Kelton (2003).

In general, the proportion of batch means that appear
to be independent should be higher with the simulation
run length than with the computation run length since the
simulation run length is at least the computation run length.
The proportion is lower with the simulation run length than
with the computation run length when MA1 is the underlying
process. We believe this is because of the stochastic nature
of the experiment. Note that the MA1 process is only
weakly correlated, so the simulation run length and the
computation run length are approximately the same; see
Chen and Kelton (2003).

4.3 Evaluation of Normality of the Batch Means

In this experiment, we evaluate the asymptotic validity of
normality of the batch means. We generate 100 batch
means with batch size 40l, where l is determined by the
procedure described in Section 3.2. We then apply the chi-
square test to these 100 batch means to determine whether
they appear to be normal. We check the proportions of
the value of batch means in each interval bounded by (-
∞, µ̂ − 0.96S, µ̂ − 0.43S, µ̂, µ̂ + 0.43S, µ̂ + 0.96S,
∞), where µ̂ and S are, respectively, the grand sample
mean of these N observations and standard error of these
b batch means. These intervals are strategically chosen so
that the proportions of batch means in each interval are
approximately equal. Under the null hypothesis that the
batch means are normally distributed, the proportions of
batch means in each interval are approximately (0.1685,
0.1651, 0.1664, 0.1664, 0.1651, 0.1685). We use a 0.9
confidence level for the chi-square test.

Table 3 lists the the proportion of the batch means
obtained with the simulation run length and the computa-
tion run length, respectively, that appear to be normal, as
determined by the chi-square test. Each design point is
based on 100 independent simulation runs. The observed
proportions are greater than the nominal value of 0.90, when
the underlying distributions are normally distributed.

Table 3: Proportion of Batch Means that Ap-
pear to be Normal

Process MA1 AR1 MM1 MM2

proportion 0.97 0.95 0.68 0.65

proportion 0.98 0.94 0.46 0.42
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Furthermore, our experimental results indicate that the
autocorrelations among observations have little impact on
this test of normality, i.e., if the underlying steady-state
distribution is normal, it is likely to pass this test of normality
even the samples are correlated. On the other hand, when the
underlying distributions are far from normal the proportion
of batch means that appear to be normal is smaller than
the nominal value. We can enhance the procedure by
increasing the batch size progressively until the obtained
batch means pass the normality check. Moreover, our
experimental results indicate that CIs constructed with the
assumption that samples are i.i.d. normal generally have
coverages close to the nominal value when samples are
independent but not normal.

4.4 Performance Evaluation of Confidence Intervals

Since the empirical histograms provide good approximations
of the underlying distribution, we evaluate the performance
of the CI half-width estimated based on the hybrid approach.
In these experiments, no relative precision or absolute pre-
cision was specified, so the half-width of the CI is the result
of the default precision.

Table 4 lists the experimental results of these four
processes with the simulation run length and the computation
run length. Each design point is based on 1000 replications.
The µ row lists the true mean. The X̄ row lists the grand
sample mean. The avg. rp row lists the average of the relative
precision of the estimators. Here, the relative precision is
defined as rp = |X̄ −µ|/X̄, where |x| is the absolute value
of x. The sdev rp row lists the standard deviation of the
relative precision of the estimators. The avg. srl row lists
the average of the simulation run length. The avg. crl row
lists the average of the computation run length. The sdev
samp row lists the standard deviation of the simulation or
computation run length. The avg. hw row lists the average
of the CI half-width. The sdev hw row lists the standard
deviation of the CI half-width. The coverage row lists the
percentage of the CIs that cover the true mean value.

The results of using the histogram approximation and
batch-means approach separately are not listed here, but we
make some observations. For the MA1 and AR1 processes,
the CI coverages are above the specified 90% confidence
level under both simulation and computation run length.
Since the steady-state distribution of the MA1 and AR1
process extends to −∞ and ∞ in each tail, the histogram
variance estimator seems conservative, i.e., achieves high
coverage with larger CI half-width. The standard deviation
of the CI half-width from the histogram approach is signifi-
cantly smaller than the batch-means approach. The observed
coverage of the hybrid approach is between the histogram-
approximation and batch-means approaches. The simulation
run length is significantly longer than the computation run
length and achieved significantly narrower CI half-width
Table 4: Coverage of 90% confidence intervals from AHB
Process MA1 AR1 MM1 MM2

µ 2.00 2.00 9.00 0.852632

X̄ 2.000021 1.999499 8.997934 0.852395
avg. rp 0.008043 0.011576 0.015386 0.016181
sdev rp 0.006174 0.009084 0.011714 0.012606
avg. srl 8968 122752 1377024 1307136

sdev samp 2759 40663 537098 486560
avg. hw 0.036058 0.056863 0.227210 0.027882
sdev hw 0.001936 0.003537 0.027182 0.002893
coverage 92.28% 95.0% 90.3% 90.4%

X̄ 2.000714 2.002307 8.992556 0.848514
avg. rp 0.008207 0.014312 0.021803 0.022567
sdev rp 0.006394 0.010306 0.016961 0.017255
avg. crl 8652 83812 656016 624896

sdev samp 1489 10280 86451 79593
avg. hw 0.036188 0.061223 0.329302 0.032875
sdev hw 0.001686 0.002831 0.030914 0.003225
coverage 91.2% 93.1% 81.9% 83.3%

under the batch-means approach, but the improvement of
CI half-width is small under histogram-approximation ap-
proach.

For the M/M/1 delay-in-queue process, the CI coverages
are near the specified 90% with simulation run length, but
the coverages are below the nominal values with the com-
putation run length, especially under the histogram approx-
imation. Since the steady-state distribution of the M/M/1
delay-in-queue process is bounded below by zero, the his-
togram variance estimator of sample means is biased low.
This is caused by estimating the variance of sample means
indirectly from the sample variance and the asymptotic ap-
proximation may not be valid yet with computation run
length. The extreme values may not have occured with the
necessary frequency to obtain an unbiased variance estimate.
Several extreme values do not affect the quantile much, but
those extreme values can significantly increase variance.
Note that the batch-means variance estimator is computed
directly from several batch means. The relative precision is
significantly lower while the CI half-width is only slightly
wider with the computation run length, resulting in low CI
coverage. Again, the standard deviation of the half-width
obtained by the histogram approach is smaller than in the
batch-means approach. It is interesting that the hybrid ap-
proach obtains the best CI coverage while its half-width is
smaller than the half-width of the histogram approximation
with simulation run length. When estimating the M/M/1
delay-in-queue process with ρ = 0.9, there were two in-
dependent simulation runs that terminated by reaching the
iteration limit, i.e., l = 210.

For the M/M/2 delay-in-queue process, the CI cov-
erages of the histogram-approximation and batch-means
approaches are just below the specified 90% with simu-
lation run length. However, the hybrid approach obtains
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CI coverage higher than the nominal value while its half-
width is smaller than the half-width of the batch-means
approach with simulation run length. In these simulation
runs, there was one independent simulation run that reached
the iteration limit L. Other results are similar to the M/M/1
delay-in-queue process. These experimental results indicate
that the histogram variance estimates are often too small
to achieve the desired coverage with the computation run
length when the underlying distribution is bounded in one
tail and the probability density function has relatively high
values around the bound. One remedy for the histogram
variance estimator being biased low with computation run
length when the underlying distribution is bounded in one
tail is heuristically to adjust the variance estimators when
the output sequence is highly correlated.

Table 5 lists the experimental results from ASAP,
ASAP2, and WASSP for AR1 process with correlation co-
efficient 0.9 and the M/M/1 process with traffic intensity 0.9
with the required relative precision set to 7.5%. These results
are extracted directly from Steiger and Wilson 1999; Steiger
et al. 2002; Lada, Wilson, and Steiger 2003. Hence, the un-
derlying random number streams are different. Since these
procedures terminate when they detect normality among
batch means and deliver a correlation-adjusted CI half-
width, they are able to provide valid CIs with relatively
small sample sizes. On the other hand, the QI procedure
generally requires larger sample sizes and delivers tighter
CIs by default because it terminates only after it has obtained
large enough samples to approximate the underlying distri-
bution. We don’t think this is a major drawback since wide
half-widths provide little useful information. Furthermore,
the empirical histogram can provide insight regarding the
underlying distribution, such as quantiles.

Table 5: Coverage of 90% Confidence Intervals
from ASAP and ASAP2
Procedure ASAP ASAP ASAP2 WASSP
Process AR1 MM1 MM1 MM1

avg. samp 24860 321468 281022 371380
coverage 91.0% 93.0% 92.0% 90.8%
avg. rp 0.059 0.069 0.070 -
avg. hw 0.118 0.620 0.628 0.5914
sdev hw 0.0003 0.003 0.002 0.006

The estimated required sample size for WASSP to obtain
average M/M/1 CI half-width to be within 0.227210 is ap-
proximately 2516312 ((0.5914/0.227210)2371380), which
is much greater than the average sample size 1377024 used
by the QI procedure to obtain average CI half-width of
0.227210. In this regard, the QI procedure is very efficient
in terms of sample size.
5 CONCLUSIONS

We have presented an algorithm for estimating the histogram
of a stationary process. Some histogram estimates require
more observations than others before the asymptotic approx-
imation becomes valid. The proposed quasi-independent al-
gorithm works well in determining the required simulation
run length for the asymptotic approximation to become valid.
The QI procedure estimates the required sample size based
entirely on data and does not require any user intervention.
Moreover, the QI procedure processes each observation only
once and does not require storing the entire output sequence.
Since the procedure stops when the QI subsequence appears
to be independent, the procedure obtains high precision and
small half-width with long simulation run length by default.

The histogram-approximation algorithm computes
quantiles only at certain grid points and generates an empir-
ical distribution (histogram) of the output sequence, which
can provide valuable insights of the underlying stochas-
tic process. The hybrid approach takes into consideration
two different half-width estimators and may achieve bet-
ter performance in terms of CI coverage and the average
half-width. Since the QI procedure does not need to read
the output sequence repeatedly, the storage requirement is
minimal. The main advantage of the approach is that by
using a straightforward runs test to determine the simulation
run length and using natural estimators to construct the CI,
we can apply classical statistical techniques directly and do
not require more advanced statistical theory, thus making
it easy to understand and simple to implement.

Because a histogram is constructed as an empirical
distribution of the underlying process, it is possible to
estimate other characteristics of the distribution, such as a
proportion, quantile, or derivative (Chen 2003), under the
same framework. Preliminary experimental results indicate
that the natural estimators obtained based on the empirical
distribution are fairly accurate.
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