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ABSTRACT

We consider the steady state output analysis problem for
a process that satisfies a functional central limit theorem.
We construct asymptotically valid confidence intervals for
the steady-state mean using normalized excursions of the
simulated process. An alternative approach splits the output
at the last zero crossing of the normalized path. The methods
use a bounded memory of size determined by the user.

1 INTRODUCTION

A basic simulation problem is to construct asymptotically
valid confidence intervals for the steady-state mean of a
simulated stochastic process. One of the most commonly
used and widely applicable methods is the method of batch
means. This method can be applied when the simulated
process satisfies a functional central limit theorem (described
below). The idea is to break up the suitably normalized and
centered simulated path into a fixed number of segments
(batches), and to compute a statistic based on the increments
over the segments; see Goldsman and Schmeiser (1997).
Variations include the method of overlapping batch means
(Meketon and Schmeiser 1984).

In this paper we consider methods that break the sim-
ulated path into random length segments. In some settings
there can be computational advantages, as well as advan-
tages in terms of statistical efficiency. The methods are
standardized time series methods, but we center the pro-
cess by running two (or more) independent simulations in
parallel and taking their difference. For background on
standardized time series methods, see Schruben (1983) or
Glynn and Iglehart (1990).

The methods we describe are partly motivated by the
problem of simulation-based optimization. Some optimiza-
tion algorithms use a large collection of estimates based on
different parameter values. It must be possible to halt and
resume simulations at different parameter values as those
parameters become more or less important for identifying
the optimum. Thus it is important for the simulations to use
bounded memory (since there may be many of them going
on in parallel), and it is not known in advance how long the
simulation at a particular parameter value will ultimately
run.

In the next section we describe the basic setup and the
use of ranked excursions for constructing asymptotically
valid confidence intervals. In Section 3 we describe the
straight-forward batching method. An alternative approach,
based on blocking the output at the last zero crossing, is
presented in Section 4. The results of some numerical
experiments are presented in Section 5.

2 RANKED EXCURSIONS

Let Y = [Y (t) : t ≥ 0] be a process representing the
output of a simulation. If the output is a discrete sequence
[Y0, Y1, . . .] then set Y (t) = Y�t�. For each n ≥ 1, define
the scaled process

Yn(t) = 1

n

∫ nt

s=0
Y (s) ds 0 ≤ t ≤ 1.

Let �0 be the space of continuous real-valued functions
on the unit interval that vanish at 0. The scaled process Yn

has paths that are in �0 even if the simulation output Y is
not continuous.

Suppose that there is a real number µ and a positive
number σ such that if we define a sequence of processes
Xn, n ≥ 1, by

Xn(t) = √
n (Yn(t) − µt) , 0 ≤ t ≤ 1,

then

Xn
d→ σB (1)

in �0 endowed with the uniform metric as n → ∞, where B

is a standard Brownian motion, and
d→ denotes convergence

in distribution. In this case we say that the process satisfies
a functional central limit theorem.
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In discrete-event simulation, we are often interested in
estimating the parameters µ and σ . Suppose that one is
interested in constructing an asymptotically valid confidence
interval for µ using only a bounded amount of memory.
In particular, the simulated sample path can not be stored.
We now outline such a procedure.

Run two independent simulations, say Y1 and Y2. Set

Ai(t) =
∫ t

s=0
Yi(s) ds (2)

for i = 1, 2, and define the centered process A(t) = A1(t)−
A2(t). Set

Xn(t) = 1√
n
A(nt), 0 ≤ t ≤ 1.

Let [αi, βi], i ≥ 1, denote the intervals of excursion above
the minimum for the process A. That is,

A(αi) = A(βi) = min
s≤αi

A(s),

and

A(s) > A(αi)

for αi < s < βi . Set

Mi = sup{A(s) − A(αi) : αi ≤ s ≤ βi}

and

li = βi − αi.

We call the process A over the interval [αi, βi] the ith ex-
cursion above the minimum. For the ith excursion, consider
the pair vi = (li , Mi(li)

−1/2) (we refer to the second com-
ponent as the normalized excursion height). Fix a number
m; the amount of storage will be proportional to m. Let
kn denote the number of excursions above the minimum
that have occurred by simulated time n. As the simulation
progresses, store the m elements of {vi : 1 ≤ i ≤ kn} with
the largest lengths li ; a priority queue keyed on li could be
used for this purpose. Let Hi,n be the normalized height of
the ith longest excursion above the minimum after simulated
time n (= 0 if i > kn). For the following theorem we fix
m ≥ 1 and consider the m longest excursions.

Theorem 1 As n → ∞, Hi,n/σ converges in dis-
tribution to the height of a standard Brownian excursion.
Furthermore,

(
H1,n, H2,n, . . . , Hm,n, Xn(1)

)
d→ σ · (H1, H2, . . . , Hm,

√
2N),
where N ∼ N(0, 1) and the Hi , the maximum of normalized
excursions, are independent.

Theorem 1 is proved in Calvin (2004).
Let B be a standard Brownian motion, and suppose

that

B(α) = B(β) = 0,

and

B(s) > 0 ∀s ∈ (α, β).

Then the process

e(t) = B (α + t (β − α))√
β − α

, 0 ≤ t ≤ 1,

is a standard (positive) Brownian excursion; see Revuz and
Yor (1994). Let M denote the maximum of a standard
Brownian excursion. Then

P(M ≤ x) = √
2π5/2x−3

∞∑
n=1

n2 exp

(
−1

2
π2 n2

x2

)
.

The mean of the distribution is
√

π/2.
As a point estimator of µ we take

µn = 1

2n
(A1(n) + A2(n)) .

Then
√

n (µn − µ)
d→ √

2 σN(0, 1).

Let

Vn,m = 1

m

m∑
i=1

Hi,m,

and let Vm denote the average of m independent standard
excursion heights. Then

√
n/2 (µn − µ)

Vn,m

d→ N(0, 1)

Vm

. (3)

Let Gm denote the cumulative distribution function of
the limit random variable in (3). For m = 1 we have

Theorem 2

G1(x) = 1 − πx2
∞∑

n=1

nK1(πnx),

where K1 is the modified Bessel function. The 95th quantile
is approximately 1.39739.

It appears difficult to obtain a useful expression for Gm,
m > 1; simulation can be used to approximate quantiles.
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Thus if we keep only the longest excursion above the
minimum, then a 90% confidence interval for µ can be
constructed as

[µn − 1.39 · H1,n/(2
√

n), µn + 1.39 · H1,n/(2
√

n)].

3 BATCHING

A natural alternative to the method described in the previous
section is to use the increments over a fixed grid. Suppose
that we store {Xn(i/m) : i = 0, 1, 2, . . . , m} for some fixed
m. Then

√
n (µn − µ)( 1

m

∑m
i=1(Xn(i/m) − Xn((i − 1)/m))2

)1/2
d→ tm,

where tm denotes a t distribution with m degrees of freedom.
In our setup the limit t distribution has one more degree
of freedom than for the usual batch means since we have
a Brownian motion limit instead of a Brownian bridge.

As n increases, one could “forget" some of the values
to maintain a memory of size m. Thus we can construct
a method for which the run length would not need to be
known in advance, though it would be cumbersome.

4 BLOCKING ON LAST ZERO CROSSING

The method described in the previous section uses evalu-
ations of the normalized path concentrated in a relatively
small subset of the unit interval (on average less than half,
since the portion after the global minimum is not used). In
this section we consider an alternative approach that uses
evaluations that are more spread out, though the number of
“batches" m can not be increased in the version we describe
here.

Let Tn be the location of the last zero crossing of Xn,
so that Xn(Tn) = 0 and |Xn(s)| > 0 for Tn < s ≤ 1. Let

Rn = max0≤s≤Tn Xn(s) − min0≤s≤Tn Xn(s)√
Tn

,

and

Un = |Xn(1)|√
1 − Tn

.

Let R denote the range of a standard Brownian bridge.
Then R has the same distribution as the random variable
H1 of Theorem 1 (Vervaat 1979). Let M1 denote the value
at 1 of a standard Brownian meander (roughly speaking, a
Brownian motion conditioned to take positive values over
(0, 1]). Then (Revuz and Yor 1994, p. 468) M1 has the
same distribution as

√
2γ , where γ has an exponential

distribution with mean 1.
Theorem 3 As n → ∞,

(Rn, Un)
d→ σ · (H1, M1),

where H1 and M1 are independent, H1 is the maximum of a
standard Brownian excursion, and M1 is the value at time
1 of a standard Brownian meander.

For scaling function we take
(
R2

n + U2
n/2

)1/2
, and so

the limit random variable is

N(
H 2

1 + γ
)1/2 ,

where N ∼ N(0, 1) and all three random variables are
independent. Then for z > 0,

P

(
N(

R2 + γ
)1/2 ≤ z

)
=

= 1√
1 + 2/z2

+

2
∞∑

k=1

(
2k2 + 1

(2k2 − 1)2 (1 + 2/z2)−1/2

− 4k2

z2(2k2 − 1)
(1 + 4k2/z2)−3/2

− 2k2 + 1

(2k2 − 1)2 (1 + 4k2/z2)−1/2
)

.

For a derivation, see Calvin (2004).

5 EXPERIMENTS

This section describes some numerical experiments that
compare the characteristics of the excursion and the batching
estimators. The simulated model is the Ehrenfest urn model
with state space {0, 1, . . . , 8}. This is the discrete-time
Markov chain with transition probabilities given by: P0,1 =
P8,7 = 1, and

Pi,i+1 = 8 − i

8
= 1 − Pi,i−1, 0 < i < 8.

We ran 1, 000 independent replications, each replication
having a run length of 1, 000, 000 transitions. In Table 1
we plot the coverage of nominal 90% confidence intervals,
and the average and standard deviation of the confidence
interval half-widths.

In Table 2 we plot similar results for the excursion-
based estimator. It appears that coverage degrades, while
the size and variability of the half widths decrease.
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Table 1: Coverage, Average and Stan-
dard Deviation of Half-Widths for Con-
fidence Intervals Based on m Batches

m coverage avg. hw std. of hw
1 0.893 0.0137 0.0091
2 0.894 0.0068 0.0024
3 0.900 0.0057 0.0015
4 0.891 0.0052 0.0012
5 0.899 0.0050 0.0011
6 0.899 0.0049 0.0011
7 0.911 0.0048 0.0010
8 0.902 0.0047 0.0010

Table 2: Coverage, Average and Stan-
dard Deviation of Half-Widths for Con-
fidence Intervals Based on m Excur-
sions

m coverage avg. hw std. of hw
1 0.887 0.00447 0.001015
3 0.883 0.00444 0.000564

6 CONCLUSIONS

We have described a method to construct asymptotically
valid confidence intervals for the time-average of a simu-
lated process using a bounded memory of size selected by
the user. The method requires (at least) two independent
simulations to be run in parallel to center the output in order
to avoid storing the entire simulation data. Compared with
a straightforward batching scheme, the method appears to
have relatively small confidence intervals of low variability
for the same memory size (though the batching scheme has
excellent coverage properties).
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