
Proceedings of the 2004 Winter Simulation Conference
R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

STEADY-STATE SIMULATION ANALYSIS USING ASAP3

Natalie M. Steiger

Maine Business School
University of Maine

Orono, ME 04469-5723, U.S.A.

Emily K. Lada

Statistical and Applied Mathematical Sciences Institute
Research Triangle Park, NC 27709-4006, U.S.A.

James R. Wilson
Jeffrey A. Joines

Colleges of Engineering and Textiles
North Carolina State University

Raleigh, NC 27695-7906, U.S.A.

Christos Alexopoulos
David Goldsman

School of Industrial & Systems Engineering
Georgia Institute of Technology

Atlanta, GA 30332, U.S.A.
ABSTRACT

We discuss ASAP3, a refinement of the batch means al-
gorithms ASAP and ASAP2. ASAP3 is a sequential pro-
cedure designed to produce a confidence-interval estimator
for the expected response of a steady-state simulation that
satisfies user-specified precision and coverage-probability
requirements. ASAP3 operates as follows: the batch size
is increased until the batch means pass the Shapiro-Wilk
test for multivariate normality; and then ASAP3 fits a first-
order autoregressive (AR(1)) time series model to the batch
means. If necessary, the batch size is further increased until
the autoregressive parameter in the AR(1) model does not
significantly exceed 0.8. Next ASAP3 computes the terms of
an inverse Cornish-Fisher expansion for the classical batch
means t-ratio based on the AR(1) parameter estimates; and
finally ASAP3 delivers a correlation-adjusted confidence
interval based on this expansion. ASAP3 compared favor-
ably with other batch means procedures (namely, ABATCH,
ASAP, ASAP2, and LBATCH) in an extensive experimental
performance evaluation.

1 INTRODUCTION

In discrete-event simulation, we are often interested in esti-
mating the steady-state mean µX of a stochastic output pro-
cess

{
Xj : j = 1, 2, . . .

}
generated by a single, prolonged

simulation run. Assuming the target process is stationary
and given a time series of length n that is part of a single re-
alization of this process, we see that a natural point estimator
of µX is the sample mean, given by X(n) = n−1 ∑n

j=1 Xj .
We also require some indication of the precision of this
point estimator; and typically we construct a confidence
interval (CI) for µX with a user-specified probability 1 −α
of covering the point µX, where 0 < α < 1. The CI for µX

should satisfy two criteria: (i) it is approximately valid—
that is, its coverage probability is sufficiently close to the
nominal level 1−α; and (ii) it has sufficient precision—that
is, it is narrow enough—to be meaningful in the context of
the application at hand.

In the simulation analysis method of nonoverlapping
batch means (NOBM), the sequence of simulation-generated
outputs {Xj : j = 1, . . . , n} is divided into k adjacent
nonoverlapping batches, each of size m. For simplicity, we
assume that n is a multiple of m so that n = km. The
sample mean for the j th batch is

Yj (m) = 1

m

mj∑
i=m(j−1)+1

Xi for j = 1, . . . , k; (1)

and the grand mean of the individual batch means,

Y = Y (m, k) = 1

k

k∑
j=1

Yj (m) , (2)

is used as a point estimator for µX (note that Y (m, k) =
X(n)). We construct a CI estimator for µX that is centered
on a point estimator like (2), where in practice we may
exclude some initial batches to eliminate the effects of
initialization bias.

If the batch size m is sufficiently large so that the batch
means {Yj (m) : j = 1, . . . , k} are approximately inde-
pendent and identically distributed (i.i.d.) normal random
variables with mean µX, then we can apply classical re-
sults concerning Student’s t-distribution (see, for example,
Alexopoulos and Goldsman 2004) to compute a confidence
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interval for µX from the batch means. For this purpose
we compute the sample variance of the k batch means for
batches of size m,

S2
m,k = 1

k − 1

k∑
j=1

[
Yj (m) − Y (m, k)

]2
.

If the original simulation-generated process {Xj : j =
1, . . . , n} is stationary and weakly dependent as specified,
for example, in Theorem 1 of Steiger and Wilson (2001),
then it follows that as m → ∞ with k fixed so that n → ∞,
an asymptotically valid 100(1 − α)% CI for µX is

Y (m, k) ± t1−α/2,k−1
Sm,k√

k
, (3)

where t1−α/2,k−1 denotes the 1 − α/2 quantile of Student’s
t-distribution with k − 1 degrees of freedom.

Conventional NOBM procedures such as ABATCH and
LBATCH (Fishman and Yarberry 1997, Fishman 1998) are
based on (3); and they are designed to determine the batch
size, m, and the number of batches, k, that are required to
satisfy approximately the assumption of i.i.d. normal batch
means. If this assumption is satisfied exactly, then we will
obtain a CI whose actual coverage probability is exactly
equal to the nominal level 1 − α. By contrast, the more
recent NOBM procedures ASAP (Steiger 1999; Steiger and
Wilson 1999, 2000, 2002a, 2002b) and ASAP2 (Steiger et
al. 2002) are designed to determine a batch size and an
initial warm-up period sufficient to ensure that batch means
computed beyond the warm-up period are approximately
multivariate normal with identically distributed marginals
(that is, they constitute a stationary Gaussian process) but
are not necessarily independent. If the resulting batch means
are correlated, then the classical NOBM t-ratio underlying
(3) does not possess Student’s t-distribution with k − 1
degrees of freedom so that an appropriate modification of
(3) is required to yield an approximately valid CI for µX.

Both ASAP and ASAP2 are designed to adjust (3) so
as to account for any correlations among the batch means
that those procedures finally deliver; and the required cor-
relation adjustment is based on an inverse Cornish-Fisher
expansion for the classical NOBM t-ratio. There is substan-
tial experimental evidence that when ASAP or ASAP2 is
applied with a user-specified absolute- or relative-precision
requirement for the final delivered confidence interval, ei-
ther procedure outperforms conventional NOBM procedures
such as ABATCH and LBATCH in a large class of steady-
state simulation models (Steiger and Wilson 2002a, Steiger
et al. 2002). However, when either ASAP or ASAP2 is
applied without a precision requirement, the delivered con-
fidence intervals may exhibit excessive variability in some
applications—that is, the variance and coefficient of varia-
tion of the CI half-lengths may be unacceptably large (Steiger
and Wilson 2002a; Steiger et al. 2002; Lada, Wilson, and
Steiger 2003).

In this paper we discuss ASAP3, a refinement of ASAP
andASAP2 that retains the advantages of its predecessors but
is specifically designed to prevent excessive CI variability
even in the absence of a precision requirement. Since the
previously cited studies reveal that ABATCH and ASAP2
outperform LBATCH and ASAP respectively, in this paper
we limit the our experimental performance evaluation to a
comparison of ABATCH, ASAP2, and ASAP3. In §2 we
provide an overview of ASAP3 and a formal algorithmic
statement of the procedure. In §3 we summarize some of
the results of our experimental performance evaluation; and
in §4 we present our main conclusions. Full details on this
work are available in Steiger et al. (2004).

2 OVERVIEW OF ASAP3

Figure 1 displays a high-level flow chart of ASAP3. The
procedure operates as follows. The series of simulation
outputs is divided initially into k = 256 batches, each
of a user-specified size m (where the default initial batch
size m = 16); and the corresponding batch means are
computed as in (1). The first four batches are ignored to
reduce the potential effects of initialization bias, and the
remaining k′ = k − 4 = 252 batch means are organized
into adjacent nonoverlapping groups, where each group
consists of four consecutive batch means. We select every
other group of four consecutive batch means to form a
sample of 32 four-dimensional vectors that we will test for
stationary multivariate normality. If this test is failed, then
the batch size m is increased by the factor

√
2; additional

data are obtained; and the process of computing 256 batch
means with the new batch size and testing for multivariate
normality proceeds as outlined above using all accumulated
data. ASAP3 iteratively performs this sequence of steps,
systematically decreasing the significance level δ for the
multivariate normality test on successive iterations until
that test is finally passed. (See the last paragraph of this
section and Steiger et al. 2004 for further explanation of
this issue.)

Upon accepting the hypothesis of stationary multivari-
ate normality of the batch means, we fit a first-order au-
toregressive (that is, AR(1)) time series model to the 252
batch means that remain after skipping the first group of
four batch means. Adapting the notation of Box, Jenkins,
and Reinsel (1994) to the nomenclature used here, we let{
Ỹj−4 ≡ Yj (m) − µX : j = 5, . . . , k

}
denote the corre-

sponding deviations of the truncated batch means from the
unknown steady-state mean µX. The �th observation of
such an AR(1) process can be expressed as

Ỹ� = ϕỸ�−1 + a� for � = 1, 2, . . . , (4)
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Figure 1: High-level Flow Chart of ASAP3
where the autoregressive parameter ϕ ∈ (−1, 1) and {a�}
are i.i.d. normal residuals with mean 0 and variance σ 2

a .
After fitting the AR(1) model (4) to the truncated batch

means {Yj (m) : j = 5, . . . , k}, we apply a normalizing arc
sine transformation to the autoregressive parameter estimator
ϕ̂ so as to test the null hypothesis that the correlation between
adjacent batch means (that is, ϕ) is at most 0.8 versus the
alternative hypothesis that ϕ > 0.8. We have found that the
condition ϕ > 0.8 is associated with excessive variability
in the CIs delivered by ASAP and ASAP2. If the null
hypothesis is rejected, then the batch count is retained; the
batch size m is increased by a factor projected to reduce the
lag-one correlation between batch means to the threshold 0.8
(see the last paragraph of this section and Steiger et al. 2004
for further explanation of this issue); additional data are
obtained; and the process of computing batch means, fitting
an AR(1) model, and testing the autoregressive parameter
estimator proceeds as outlined above. ASAP3 iteratively
performs the sequence of steps described in this paragraph
until we finally obtain a batch size m for which we accept
the null hypothesis of nonexcessive correlation between
adjacent batch means.

Next ASAP3 constructs a CI for µX that has been
adjusted to account for the remaining (nonexcessive) cor-
relations between the k′ batch means for batches of the
current size m. The correlation adjustment uses an inverse
Cornish-Fisher expansion (Stuart and Ord 1994) for the
classical NOBM t-ratio

t = [
Y (m, k′) − µX

]/√
S2

m,k′
/
k′; (5)
and the terms of this expansion are computed from the
parameter estimates ϕ̂ and σ̂ 2

a that are obtained by fitting
the AR(1) model (4) to the current set of k′ truncated
batch means. Based on this approach, a correlation-adjusted
100(1 − α)% CI for µX is

Y (m, k′) ± (6)[(
1
2

+ κ̂2

2
− κ̂4

8

)
z1−α/2 + κ̂4

24
z3

1−α/2

]√
V̂ar[Y (m)]

k′ ,

where: z1−α/2 denotes the 1 − α/2 quantile of the stan-
dard normal distribution; κ̂2 and κ̂4 respectively denote
estimators of the second and fourth cumulants of the t-ratio
(5); V̂ar[Y (m)] denotes an estimator of the variance of the
batch means; and the statistics κ̂2, κ̂4, and V̂ar[Y (m)] are
computed from ϕ̂ and σ̂ 2

a as detailed in Steiger et al. (2004).
If additional observations of the target process must be

generated by the user’s simulation model before a CI can be
delivered that has the form (6) and the required precision,
then ASAP3 estimates a new, larger sample size based on the
ratio of the current iteration’s CI half-length to the desired
CI half-length (see the last paragraph of this section and
Steiger et al. 2004 for further explanation of this issue).
Then ASAP3 must be called again with the additional data;
and this cycle of simulation followed by analysis may be
repeated several times before ASAP3 finally delivers a CI
with the required precision.

Subsequent iterations of ASAP3 that are performed
to satisfy the user-specified precision requirement do not
repeat the test of the overall set of batch means for stationary
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multivariate normality; but on every iteration of ASAP3,
we fit an AR(1) process to the latest set of batch means, test
the hypothesis that ϕ ≤ 0.8, and if necessary increase the
batch size by the updated factor that is currently projected to
reduce the lag-one correlation between batch means to the
threshold 0.8. Thus each additional iteration of ASAP3 that
is performed solely to satisfy the precision requirement will
involve the following operations: (i) obtaining additional
simulation-generated data; (ii) recomputing the batch means
with a new batch size or computing additional batch means
of the same size; (iii) retesting the hypothesis that ϕ ≤ 0.8
with progressively larger batch sizes until that hypothesis is
accepted; and (iv) reconstructing the CI for µX and testing
that CI for conformance to the user’s precision requirement,
if necessary computing the total sample size required for the
next iteration of ASAP3. Successive iterations of ASAP3
involving operations (i)–(iv) above are performed until the
precision requirement is met.

ASAP3 requires the following user-supplied inputs:

• a simulation-generated output process {Xj : j =
1, . . . , n} from which the steady-state expected
response µX is to be estimated;

• the desired CI coverage probability 1 − α, where
0 < α < 1; and

• an absolute or relative precision requirement spec-
ifying the final confidence-interval half-length in
terms of (i) a maximum acceptable half-length H ∗
(for an absolute precision requirement); or (ii) a
maximum acceptable fraction r∗ of the magni-
tude of the CI midpoint (for a relative precision
requirement).

ASAP3 delivers the following outputs:

• a nominal 100(1 − α)% CI for µX that satisfies
the specified absolute or relative precision require-
ment, provided no additional simulation-generated
observations are required; or

• a larger total sample size n to be supplied to ASAP3
when it is executed again.

A formal algorithmic statement of ASAP3 is displayed
in Figure 2. Note that in Figure 2, if a and b are given
constants with a < b, then we take

mid(a, x, b) ≡


a, if x < a,

x, if a ≤ x ≤ b,

b, if x > b,

and x+ ≡ max{0, x}.

Three points about Figure 2 warrant special comment.

• On the ith iteration of the multivariate normality
test in step [2], we set δi , the significance level of
the test, so as to control the overall level of type
I error and avoid explosive growth of the overall
sample size required for this step of ASAP3.

• In step [3], we estimate the batch-size multiplier
that is required to reduce the lag-one correlation
between batch means to the threshold 0.8.

• In step [5], we estimate the increase in the number
of batches or the increase in the batch size that is
needed to satisfy the precision requirement.

Steiger et al. (2004) present a complete development of the
steps of the ASAP3. A stand-alone Windows-based version
of ASAP3 and a user’s manual are available online via
Steiger et al. (2003).

3 EXPERIMENTAL PERFORMANCE
EVALUATION

To evaluate the performance of ASAP3 with respect to the
coverage probability of its CIs, the mean and variance of the
half-length of its CIs, and its total sample size, we applied
ASAP3 together with ABATCH and ASAP2 to a large suite
of test problems. The experimental design includes some
problems typically used to test simulation output analysis
procedures and some problems more closely resembling
real-world applications. To demonstrate the robustness of
ASAP3, we limit our discussion here to an M/M/1 queue
waiting time process for a system with an empty-and-idle
initial condition, an interarrival rate of 0.9, and a service
rate of 1.0. In this system the steady-state server utilization
is 0.9 and the steady-state expected waiting time in the
queue is µX = 9.

The M/M/1 queue waiting time process is a particularly
difficult test problem for several reasons: (i) the magnitude
of the initialization bias is substantial and decays relatively
slowly; (ii) in steady-state operation the autocorrelation
function of the waiting time process decays very slowly
with increasing lags; and (iii) in steady-state operation the
marginal distribution of waiting times has an exponential
tail and is therefore markedly nonnormal. Because of these
characteristics, we can expect slow convergence to the clas-
sical requirement that the batch means are i.i.d. normal. This
test problem clearly reveals one of the principal advantages
of the ASAP3 algorithm—namely, that ASAP3 does not
rely on any test for independence of the batch means. The
steady-state mean response is available analytically for this
test problem; thus we were able to evaluate the performance
of ABATCH, ASAP2, and ASAP3 in terms of actual versus
nominal coverage probabilities for the CIs delivered by each
of these procedures. Experimental results for the other test
problems may be found in Steiger et al. (2004).

Our experiments included 400 independent replications
of each batch means procedure to construct nominal 90% and
95% CIs that satisfied four different precision requirements.
For the case of no precision requirement, we took r∗ = 0
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[0] Set iteration index i ← 1, m1 ← user-specified initial batch size (default = 16),
initial batch count k1 ← 256, initial sample size n1 ← k1m1 with n0 ← 0,
truncated initial batch count k′

1 ← k1 − 4,
1 − α ← user-specified CI coverage probability (default = 0.90),
size of test for autoregressive parameter αarp ← 0.01,
initial size of test for stationary multivariate normality δ1 ← 0.1 with parameter

ω ← 0.18421 controlling the test size in step [2] on subsequent iterations,
and indicator that normality test was passed MVTestPassed ← ‘no’;

if a relative precision requirement is given, then set RelPrec ← ‘yes’ and
r∗ ← the user-specified fraction of the magnitude of the CI midpoint that defines

the maximum acceptable CI half-length;

if an absolute precision requirement is given, then set RelPrec ← ‘no’ and
H ∗ ← the user-specified maximum acceptable CI half-length;

if no precision level is specified then set RelPrec ← ‘no’, r∗ ← 0, and H ∗ ← 0.

[1] Start (or restart) the simulation to generate the data {Xj : j = ni−1 + 1, . . . , ni} required for the current iteration i;

Compute the ki batch means
{
Yj (mi) : j = 1, . . . , ki

}
; and after skipping the initial spacer

{Y1(mi), Y2(mi), Y3(mi), Y4(mi)}, compute the truncated grand mean,

Y (mi, k
′
i ) ← 1

k′
imi

ni∑
�=4mi+1

X� = 1

k′
i

ki∑
j=5

Yj (mi); (7)

if MVTestPassed=‘yes’, then goto [3].

[2] From the truncated batch means
{
Yj (mi) : j = 5, . . . , ki

}
, select every other group of four successive batch means

to build the 4 × 1 vectors{
y� = [

Y5+(�−1)8(mi), Y6+(�−1)8(mi), Y7+(�−1)8(mi), Y8+(�−1)8(mi)
]T : � = 1, . . . , 32

}
;

To test the hypothesis

Hmvn : {
y� : � = 1, . . . , 32

}
are i.i.d. four-dimensional normal random vectors,

evaluate δi = δ1 exp
[ − ω(i − 1)2

]
, the significance level for the test, and W ∗

i , the multivariate Shapiro-Wilk
statistic computed from the {y�} according to equations (10)–(12) of Steiger et al. (2004);

if W ∗
i < w∗

δi
, the δi quantile of the distribution of W ∗

i under the null hypothesis Hmvn, so that Hmvn is rejected
at significance level δi , then

set i ← i + 1, ki ← 256, k′
i ← ki − 4, mi ←

⌊√
2mi−1

⌋
, and ni ← kimi ;

goto [1];
else

set MVTestPassed ← ‘yes’;
goto [3].

Figure 2: Algorithmic Statement of ASAP3
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[3] Fit an AR(1) model (4) to the truncated batch means {Yj (mi) : j = 5, . . . , ki} so as to obtain the estimator ϕ̂ of
the autoregressive parameter ϕ;

Test the hypothesis Harp : ϕ ≤ 0.8 at the level of significance αarp by checking for the condition

ϕ̂ ≤ sin
(

0.927 − z1−αarp

/√
k′
i

)
; (8)

if Harp is rejected at significance level αarp, then

set θ ← mid
{√

2, ln
[

sin
(

0.927 − z1−αarp

/√
k′
i

)]/
ln( ϕ̂ ), 4

}
,

i ← i + 1, ki ← ki−1, k′
i ← ki − 4, mi ← 
θmi−1�, and ni ← kimi ; goto [1];

else
goto [4].

[4] Using the estimators ϕ̂ and σ̂ 2
a for the AR(1) model (4), compute V̂ar[Y (mi)] and V̂ar

[
Y (mi, k

′
i )

]
from equations

(15)–(16) of Steiger et al. (2004);

For the NOBM t-ratio (5), compute the estimated effective degrees of freedom ν̂eff from equation (33) of Steiger
et al. (2004);

Compute κ̂2 and κ̂4, the estimators, respectively, of the second and fourth cumulants of the t-ratio (5), by inserting
V̂ar[Y (mi)], V̂ar

[
Y (mi, k

′
i )

]
, and ν̂eff into the computing expressions for κ2 and κ4 given in equations (31)–(32)

of Steiger et al. (2004);

Calculate the half-length of the correlation-adjusted CI,

H ←
[(

1

2
+ κ̂2

2
− κ̂4

8

)
z1−α/2 + κ̂4

24
z3

1−α/2

]√
V̂ar[Y (mi)]

k′
i

;

Construct the correlation-adjusted CI,

Y (mi, k
′
i ) ± H. (9)

[5] if RelPrec=‘yes’ then set H ∗ ← r∗∣∣Y (mi, k
′
i )
∣∣;

if (H ≤ H ∗) or (r∗ = 0 and H ∗ = 0), then
deliver Y (mi, k

′
i ) ± H and stop;

else
Estimate additional batches needed to satisfy the precision requirement,

k′′ = max
{⌈(

H
/
H ∗)2

k′
i

⌉
− k′

i , 1
}

;

If ki + k′′ ≤ 1,504, then
set i ← i + 1, ki ← ki−1 + k′′, k′

i ← ki − 4, mi ← mi−1, and ni ← miki ; goto [1];
else

Find the root θ of the equation θ
(
1 − ϕ̂ θ+

)2 = (
H

/
H ∗)2 (

1 − ϕ̂+
)2,

set θ ← mid
(√

2, θ, 4
)

, i ← i + 1, ki ← ki−1, k′
i ← ki − 4,

mi ← 
θmi−1� , and ni ← miki ; goto [1].

Figure 2 (Continued): Algorithmic Statement of ASAP3
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and H ∗ = 0 in the initialization step [0] of Figure 2 so
that we continued the simulation of each test problem until
ASAP3 completed the following operations: step [2] (so that
the batch means passed the test for stationary multivariate
normality); step [3] (so that the batch means passed the test
for acceptable lag-one correlation); step [4] (so that the first
CI of the form (9) could be constructed); and finally step [5]
(so that ASAP3 stopped immediately, delivering the first CI
of the form (9) that was constructed). For the cases of the
precision requirements ±15%, ±7.5%, and ±3.75%, we
continued the simulation of each test problem until ASAP3
delivered a CI of the form (9) that satisfied the stopping
criterion in step [5] with r∗ = 0.15, 0.075, and 0.0375,
respectively.

In addition to the experimentation using the ASAP3
algorithm, we performed 400 independent replications of
the ASAP2 algorithm under the same precision requirements
described above. Recall that unlike ASAP3, ASAP2 does
not include the test (8) for acceptable correlation between
adjacent batch means.

Since ABATCH lacks a method for determining sample
size, we passed to this procedure the same data sets used
by ASAP3. Based on all our computational experience
with ASAP2 and ASAP3, we believe that the results given
below are typical of the performance of ASAP2 and ASAP3
that can be expected in many practical applications. On
the other hand, ABATCH is a nonsequential procedure
whose proper operation may require direct user intervention
(Fishman 1998); and thus it is not clear that the following
results exemplify the performance of ABATCH in practical
applications. Nevertheless, we believe that the results given
below provide some basis for comparing the performance
of ABATCH, ASAP2, and ASAP3.

Since each CI was replicated 400 times, the standard
error of the coverage estimator for CIs with nominal 90%
coverage probability is approximately 1.5%; and for CIs
with nominal 95% coverage probability, the standard error of
the coverage estimator is approximately 1.1%. As explained
below, this level of precision in the estimation of coverage
probabilities turned out to be sufficient to reveal significant
differences in the performance of ASAP3 compared with
that of ASAP2 and ABATCH in the test problems presented
here.

Table 1 summarizes the experimental performance of
the procedures ABATCH, ASAP2, and ASAP3 when they
were applied to the waiting times in the M/M/1 queue. As
can be seen from this table, ASAP3 outperformed ABATCH
with respect to CI coverage for the first three precision re-
quirements. As we demanded improved levels of precision,
we were of course forced to perform more sampling. For the
precision requirement of ±3.75%, the three algorithms gave
similar results. The results in Table 1 suggest that ABATCH
will give satisfactory coverage if this procedure is supplied
with an adequate amount of data; however, ABATCH pro-
vides no mechanism for determining the amount of data
that should be used. No average sample sizes are shown in
the table for the ABATCH procedure since on each repli-
cation of ASAP3 and ABATCH, these two procedures used
exactly the same data set, whose size was determined by the
stopping rule in step [5] of ASAP3. Table 2 of Steiger and
Wilson (2002a) shows that simply adding an absolute- or
relative-precision stopping rule to ABATCH will not gen-
erally yield acceptable performance for this procedure. A
desirable feature of ASAP3 is that it usually determines a
sample size sufficient to yield acceptable results.

In the absence of a precision requirement, ASAP2-
generated confidence intervals were highly variable in their
half-lengths. Imposing the requirement (8) that the lag-one
correlation between the batch means must not significantly
exceed 0.8 greatly reduced the variability of the half-lengths
of the CIs generated by ASAP3, as shown in Table 1.
Moreover, in terms of CI coverage, ASAP3 performed as
well as ASAP2 in the no precision case.

4 CONCLUSIONS

The undercoverage problem encountered with ASAP was
virtually eliminated by removal of the test for independence
of the batch means. Both ASAP2 and ASAP3 test only for
stationary multivariate normality of the batch means and
always deliver a CI adjusted for correlation, if any, among the
final batch means. Excessive variabilities seen with ASAP
in the final sample sizes, and to some extent in the final CI
half-lengths, were partially resolved inASAP2 by decreasing
the significance level of the test for stationary multivariate
normality on each iteration of that test. Moreover, the
means and variances of the final CI half-lengths delivered
by ASAP3 were greatly reduced in comparison with the
corresponding quantities delivered by ASAP and ASAP2;
and ASAP3 has achieved this performance improvement by
progressively increasing the batch size until we can conclude
that the correlation between adjacent batch means does not
significantly exceed 0.8 in the sense that a one-sided upper
99% confidence interval for this correlation lies entirely
below 0.8.

ASAP3 is primarily designed for use in conjunction with
a user-specified absolute or relative precision requirement
on the final CI; and when it is used in this way, ASAP3
generally delivers CIs whose coverage probability is close to
the nominal level. On the basis of all the experimentation
we have performed with the procedure, ASAP3 appears
to deliver CIs whose coverage probability is reasonably
close to the nominal level even in the absence of a precision
requirement; but in such cases there is of course no guarantee
that the resulting CIs will be narrow enough to be useful
in practice. Although ASAP3 does not provide a definitive
resolution of all problems associated with the batch means
method for steady-state simulation output analysis, many
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Table 1: Performance of Batch Means Procedures for the M/M/1 Queue Waiting
Time Process with Traffic Intensity τ = 0.9 Based on 400 Independent Replications
of Nominal 90% and 95% Confidence Intervals

Precision Nominal 90% CIs Nominal 95% CIs
Requirement ABATCH ASAP3 ASAP2 ABATCH ASAP3 ASAP2

NO PRECISION
avg. sample size 31,181 22,554 31,181 22,554
coverage 76.0% 87.5% 88.0% 81.8% 91.5% 90.3%
avg. rel. precision 0.161 0.239 0.579 0.193 0.290 0.730
avg. CI half length 1.388 2.072 6.440 1.669 2.521 8.300
var. CI half length 0.112 0.348 167.000 0.164 0.535 350.000
±15% PRECISION
avg. sample size 103,742 93,374 140,052 126,839
coverage 80.5% 91.0% 90.0% 87.8% 95.5% 94.5%
avg. rel. precision 0.098 0.134 0.135 0.104 0.136 0.136
avg. CI half length 0.865 1.182 1.184 0.921 1.206 1.204
var. CI half length 0.020 0.026 0.025 0.023 0.020 0.020
±7.5% PRECISION
avg. sample size 287,568 281,022 382,958 382,040
coverage 85.8% 89.5% 92.0% 92.3% 94.3% 96.0%
avg. rel. precision 0.063 0.070 0.070 0.066 0.071 0.071
avg. CI half length 0.561 0.627 0.628 0.588 0.632 0.633
var. CI half length 0.005 0.002 0.002 0.005 0.002 0.002
±3.75% PRECISION
avg. sample size 969,011 943,498 1,341,522 1,331,887
coverage 88.8% 89.5% 92.0% 93.3% 93.5% 95.5%
avg. rel. precision 0.035 0.036 0.036 0.036 0.036 0.036
avg. CI half length 0.318 0.320 0.323 0.323 0.321 0.322
var. CI half length 0.001 4.4E-4 3.0E-4 0.001 3.8E-4 3.0E-4
of the undesirable behaviors of its predecessors ASAP and
ASAP2 have been eliminated; and there is good evidence
to show that ASAP3’s performance in practice compares
favorably with other well-known batch means procedures.
We believe the basic approach of ASAP3 has the potential
to lead to new developments in the method of batch means.

Additional experimental results, follow-up papers
and revised software, will be available on the website
<www.ie.ncsu.edu/jwilson>.
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