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ABSTRACT

Confidence intervals for the median of estimators or other
quantiles were proposed as a substitute for usual confidence
intervals in terminating and steady-state simulation. This
is adequate since for many estimators the median and the
expectation are close together or coincide, particularly if the
sample size is large. Grouping data into batches is useful for
median confidence intervals. The novel confidence intervals
are easy to obtain, the variance of the estimator is not used.
They are well suited for correlated simulation output data,
apply to functions of estimators, and in simulation they
seem to be particularly accurate, namely they follow the
confidence level better than other confidence intervals. This
paper states their accuracy which is the difference between
the nominal confidence level and the actual coverage. The
accuracy is evaluated with analytical models and simulation.
For the estimation of quantiles by order statistics, the new
confidence intervals are exact.

1 INTRODUCTION

Modeling and simulation has been one of the modern key
technologies with increasing importance for some decades.
Discrete-event stochastic simulation is a very important
subarea for evaluating performance and reliability. It is
used in many application fields.

Due to the stochastic nature of the results, careful
statistic analysis must be done for the correct interpretation
of calculated values. If this is omitted, there is a significant
probability of making erroneous inferences about the system
under study.

In our view, many modellers and tool designers are
not aware of the importance of correct statistical inference.
There are many special-purpose simulation packages avail-
able which provide comfortable means for programming
simulation models on a high level of abstraction, resulting
in a significant decrease of programming time and in a re-
duction in overall project costs. As a matter of fact, many of
them do not provide sufficient support for obtaining correct
statistical analysis of results.
However, we are convinced that this problem is partly
based on a misunderstanding that can be removed, namely
the opinion that it is very difficult to achieve improvements.
Clearly, statistics is a hard discipline, but it is quite easy
to understand which are the crucial aspects with simulation
output data, and it is easy to apply some simple techniques
which are much more correct and reliable than “performing
one simulation run and taking the obtained figures as the
true solution”.

An important feature for correct statistical analysis of
simulation results are confidence intervals. Only if they
are easy to apply they will be used, and only if they are
statistically correct the results are credible.

In simulation, confidence intervals tend to be inac-
curate, since assumptions concerning the sample and the
estimator are not fulfilled literally, more precisely, the as-
sumed confidence level is not the probability that the real
parameter value lies within the calculated confidence in-
terval. Quite often, this probability is smaller than the
confidence level, the confidence interval is too optimistic.
Law and Kelton (2000) performed an empirical study in
order to see how (in)accurate confidence intervals may be.
They found substantial errors.

We proposed (Strelen 2001 and 2002) an alternative
technique for confidence intervals which we call median con-
fidence intervals, and min-max confidence intervals which
are more general: Median confidence intervals (MCI) are a
special case of min-max confidence intervals (MMCI), but
they seem to be particularly useful. Min-max confidence
intervals are suitable for the estimation of quantiles, and
they have some potential for further development.

Both can be obtained with the replication/deletion ap-
proach or with batch means. The technique is very easy to
apply in steady-state or terminating (finite horizon) simula-
tion; hopefully this motivates tool designers providing them
in their tools and users applying them. Median confidence
intervals can be used where other methods cannot, e.g. when
the variance of an estimator does not exist, and they seem
to be more accurate than usual confidence intervals.

This paper deals with the accuracy. Theorem 2 states
that min-max confidence intervals are exact when quantiles
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are estimated with order statistics. Median confidence in-
tervals are compared with classical confidence intervals by
analytical models and by simulation studies.

In section 3 the term accuracy is specified more pre-
cisely. For the evaluation of accuracy, we present analytical
models in section 4. In section 5 we present empirical stud-
ies for the accuracy; more can be found in (Strelen 2002).
All results indicate a better accuracy of median confidence
intervals compared to other methods. But first we explain
in section 2 what min-max and median confidence intervals
are.

2 MIN-MAX AND MEDIAN CONFIDENCE
INTERVALS

Min-max confidence intervals (and median confidence in-
tervals which are a special case) are obtained by means of a
small number of replications, typically 4, 5, or 6. They have
attractive features and some minor disadvantages compared
to classical confidence intervals.

The variance of estimators is not needed for them,
but this is usually a main difficulty when confidence in-
tervals are constructed because “simulation output data
are always correlated” (Law and Kelton 2000). Spe-
cial procedures must be applied for this variance,
the replication/deletion approach, batch means, the re-
generative method, autoregressive processes, the spec-
tral estimation method, or the standardized time se-
ries method, all of which are not free from obstacles,
see Fishman (1978), Bratley, Fox, and Schrage (1987),
Banks (1998), or Law and Kelton (2000). This difficulty
is omitted for min-max confidence intervals.

Even the variance of an estimator may not exist, for
example in the case of some heavy-tailed distributions
(Sigman 1999). Nevertheless, min-max confidence inter-
vals can be constructed, whereas classical confidence inter-
vals cannot.

It is easy to obtain median confidence intervals for
functions of two or more estimators whereas it is difficult
to get confidence intervals with other known methods, in
general, except for jackknife intervals (Miller 1974); an
example is given in section 5.

In realistic models which involve dependent simulation
output with unknown distribution, median confidence inter-
vals seem to be more accurate, i.e. the coverages are closer
to the predefined confidence level.

Some independent estimations of a measure of interest
are used for a min-max or median confidence interval, say w,
e.g. 5 or 6. The confidence level depends on w, only values
like 1 − 0.5w, w = 1, 2, . . ., or similar are possible – this
becomes clear later in theorem 1. In terminating simulation,
such an estimation can be obtained from a single terminating
simulation run, e.g. a mean, or it can be a mean taken from
some terminating simulation runs.
In steady state simulation, each independent estimation
can be obtained from an independent simulation run, as for
the replication/deletion approach. In each replication the
statistical equilibrium must be reached before data can be
collected. The new technique shares this drawback with the
replication/deletion approach.

This can be omitted: A single simulation run is produced
with only one transient phase and w consecutive batches
which are considered to be nearly independent as with the
batch means method. Each batch is taken as a substitute of
a distinct replication. We call this batch median confidence
intervals.

Now we explain the new technique in detail. The
random variables of the sample X1,1, ..., X1,n may have
the distribution function FX,θ (x) when they stem from a
steady-state simulation run of length n, or from n indepen-
dent terminating simulation runs. θ, θ ∈ �, is a parameter,
for example the mean or a quantile, and � a set of possible
parameters. Or the sample stems form a terminating sim-
ulation and has a common distribution with the parameter
θ .

Let T (X1,1, ..., X1,n) denote an estimator for the pa-
rameter θ with the distribution function Fθ(x), θ ∈ �.

We consider a novel kind of confidence interval

[T min, T max) (1)

where

T min = min
1≤i≤w

Ti and T max = max
1≤i≤w

Ti.

Here, the Ti = T (Xi,1, ..., Xi,n), i = 1, . . . , w, are esti-
mators for w independent replications Xi,1, ..., Xi,n of the
sample X1,1, ..., X1,n. We call (1) a “min-max confidence
interval”.

For F = Fθ(θ), the value of the estimator distribution
function at θ , the following theorem holds.

Theorem 1 The interval (1) is a confidence interval for
the parameter θ with the confidence level 1−Fw−(1−F)w,
i.e.

P {T min ≤ θ < T max} = 1 − Fw − (1 − F)w (2)

holds.
The proof is very simple. The probability that Ti

is less than or equal to θ is P {Ti ≤ θ} = Fθ(θ) = F ,
the probability that T max is less than or equal to θ is
P {T max ≤ θ} = P {all Ti ≤ θ} = Fw due to the indepen-
dency. Similarly, P {Ti > θ} = 1 − Fθ(θ) = 1 − F ,
P {T min > θ} = P {all Ti > θ} = (1 − F)w. Hence
P {T min > θ or T max ≤ θ} = Fw + (1 − F)w, and (2)
follows. �

Remarks
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1. The distribution function Fθ(x) of the estimator may
not be known, only the value Fθ(θ) is needed.

2. The variance of the estimator is not needed, the
question whether the random variables Xi,1, . . . , Xi,n are
independent does not arise.

3. The confidence level cannot be chosen arbitrarily,
only the values 1 − Fw − (1 − F)w, w = 2, 3, . . . are
allowed.

Now we consider the most important special case where
Fθ(θ) = 1/2, i.e. the unknown parameter is the median of
the estimator. Therefore we use the term “median confidence
intervals”. This is the case for all unbiased estimators with
symmetric distributions, for example the normal distribution.
Then,

P {T min ≤ θ < T max} = 1 − 0.5w−1 (3)

holds, the confidence level can be one of the values 1 −
0.5w−1, w = 2, 3, . . ..

Symmetry of the estimator distribution, the absence of
skewness, is a sufficient condition for median conficence
intervals to be exact. It is not necessary, there are unsym-
metric distributions for which the mean and the median
coincide, hence median conficence intervals would be exact
for them.

If the median is merely close to the expectation of an
unbiased estimator F �= 0.5 but F ≈ 0.5 holds, and the
median confidence interval is only approximate. The error
of the conficence level is the difference between (2) and
(3). This happens quite often, due to the central limit theo-
rem, when the summed random variables are not normally
distributed, but n, the number of summands, is large. Then
the distribution function of the estimator is approximately
a normal distribution, hence approximately symmetric, and
the median is near to the expectation.

A min-max confidence interval is exact if the w repli-
cations are independent, even the estimator may be biased.
This sounds very interesting, but the serious problem is
the value F = Fθ(θ), the value of the estimator distribu-
tion function at θ , the unknown parameter which is to be
estimated. We do not know how to calculate this F in
general.

But there is an interesting application where F can
be calculated: Order statistics as estimates for quantiles.
Consider samples X1, . . . , Xn and the according ordered
sequence X(1), . . . , X(n), X(i) ≤ X(j) if i < j , where the
Xi are IID with the strictly increasing distribution function
F(x). The q-quantile θ = xq, q ∈ (0, 1), F (xq) = q, is
estimated by X(r), r ∈ {1, 2, . . . , n}. Let Fθ(x) denote the
distribution function of the estimator, namely X(r). Here,
F = Fθ(x) is known:

Theorem 2 If the q-quantile xq is estimated by X(r),
the min-max confidence interval (1) has precisely the con-
fidence level (2) with

F =
n∑

i=r

(
n

i

)
qi(1 − q)n−i . (4)

Proof For any k, 0 < k < n, the probability P {X(k) ≤
x < X(k+1)} equals the probability that k of the random
variables Xi of the sample are less or equal x, hence
P {X(k) ≤ x < X(k+1)} = (

n
k

)
Fk(x)[1 − F(x)]n−k, k =

1, . . . , n − 1, and P {X(n) ≤ x} = Fn(x) hold. Using
this we conclude Fθ(x) = P {X(r) ≤ x} = P {X(r) ≤ x <

X(r+1)}+P {X(r+1) ≤ x < X(r+2)}+ . . .+P {X(n) ≤ x} =∑n
i=r

(
n
i

)
F i(x)[1−F(x)]n−i . With F(xq) = q, (4) follows.

�

Remarks
1. Here the value F = Fθ(xq) is independent of the

actual distribution function of the sample elements Xi .
2. Theorem 2 is not useful for the simulation of the

extremes, q = 0 or q = 1. Here we get the confidence
level 0.

3. Usually, r ≈ qn is chosen.
Corollary 1 If the sample size n is odd, r = �n/2�

and q = 0.5, i.e. the median is estimated, F = 0.5 holds.
Proof Here F = ∑n

i=�n/2�
(
n
i

)
0.5i (1 − 0.5)n−i =

0.5n
∑n

i=�n/2�
(
n
i

)
. Due to

(
n
i

) = (
n

n−i

)
, we have

also F = 0.5n
∑n

i=�n/2�
(

n
n−i

) = 0.5n
∑n−�n/2�

j=0

(
n
j

) =
0.5n

∑�n/2�
j=0

(
n
j

)
. We add these two equations: 2F =

0.5n
∑n

j=0

(
n
j

) = 0.5n2n = 1. F = 0.5 follows. �

The critical value F is also known for some toy simu-
lations. In (Strelen 2001) we consider min-max confidence
intervals for the estimation of the variance of normally dis-
tributed random variables. Moreover, it can be estimated
in a very long and expensive simulation; in the section 6
we present a brute force example.

3 ACCURACY OF CONFIDENCE INTERVALS

Consider a sample of realizations of random variables with
a specific distribution. From this sample, a parameter of
the distribution is estimated. In the statistical theory, con-
fidence intervals for such an estimation are provided for
any given confidence level CL. When some assumptions
concerning the sample and the estimator are fulfilled, CL

is the probability that the real parameter value is contained
in the confidence interval.

In simulation, it is very common to estimate means
and to assume normality and independence of the random
variables. Usually both is not true literally, only more or
less, depending on the length of the simulation runs. Due to
this, the confidence intervals are inaccurate, more precisely,
the assumed confidence level is not the probability that the
real parameter value lies within the calculated confidence
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interval. Quite often, the actual probability C is smaller
than the confidence level CL, hence the confidence level is
too optimistic. Sometimes the actual probability C that the
real parameter value is covered by a confidence interval is
called coverage.

The empirical comparative study of
Law and Kelton (2000), p. 535, exhibits how (in)accurate
confidence intervals may be. They found remarkable
errors, e.g. C = 69% instead of CL = 90%.

For such an empirical study, a model with a known pa-
rameter is considered, e.g. the expectation of the customers’
delays in the queue of an M/M/1 queueing system. This
parameter is estimated by simulation. Many simulations
are performed, sometimes the known value is within the
calculated confidence interval, sometimes it is not. The
frequency of the confidence interval covering the real value
estimates the coverage.

In many empirical studies we compared the accuracy of
median confidence intervals with classical confidence inter-
vals, see (Strelen 2002); in the section after the following
one we will present some figures. But first, in the next
section, we present analytical models for the coverage of
classical confidence intervals (with Student’s distribution)
and for the coverage of median confidence intervals.

4 ANALYTICAL MODELS FOR THE COVERAGE

In an ideal world, we would give theorems which state the
accuracy of the new confidence intervals, but at present this
seems impossible. Instead, we evaluated the accuracy with
examples and simulation; in section 5 we present results.
Some scientists prefer analytical models, and this is why
we built models which allow to calculate coverages.

Each model consists of two parts, one part defines the
distribution of an estimator in a specific simulation model.
With this distribution, the other part defines the distribution of
a confidence interval for the estimated parameter, namely two
random variables for the boundary points of the confidence
interval. We consider classical confidence intervals with
the Student distribution, and median confidence intervals.

With the distributions of the boundary points, the prob-
ability that an estimation lies within the confidence interval
is calculated – that is the expectation of the coverage.

We consider simulations with the replication/deletion
(R/D) approach: In w independent simulation runs, the
replications, a parameter θ is estimated. To this end, in the
replications, means X̄i, i = 1, . . . , w, are sampled.

The distribution of these means depends on the specific
model, the parameter under consideration, and on the mode
of simulation, terminating or steady state. We consider
the delays in an M/M/1/N queue with N buffer places, in
steady state. For the moment, we assume that we know
the distribution of the means. Later we point out how to

obtain it.
A Student confidence interval for the parameter θ can

be obtained as follows: The great mean ¯̄X = (X̄1 + ... +
X̄w)/w estimates θ , and with the empirical variance S2 =∑w

i=1(X̄i − ¯̄X)2/(w−1) one obtains the confidence interval
¯̄X±Bhalf to the confidence level 1−α where the half width is
Bhalf = tw−1,1−α/2

√
S2/w; tw−1,1−α/2 is the upper critical

value of Student’s t-distribution with w − 1 degrees of
freedom.

If this distribution of the means X̄i is given as density
f (x), the coverage is

C =
∫

IRw

I{| ¯̄X − θ | ≤ Bhalf}f (x1)...f (xw)dx1...dxw

where ¯̄X and Bhalf depend on x1, ..., xw instead of
X̄1, ..., X̄w, and I denotes the indicator function. This
formula looks simple but the w-fold integral can not be
evaluated neither in closed form nor numerically.

Therefore we use a common distribution for the random
variables S = X̄1 + ... + X̄w and Q = X̄2

1 + ... + X̄2
w

instead. Using this common distribution one gets “random
confidence intervals”, i.e. two random variables which are the
lower und the upper boundary point as follows: ¯̄X = S/w,

S2 = (Q−w ¯̄X2)/(w−1), Bhalf as above, and the boundary

points are ¯̄X ±Bhalf. The coverage C is the probability that
the parameter θ is in this random confidence interval.

For a discrete distribution of the means X̄i, i =
1, . . . , w, P {Xi = x} = fx, x ∈ ZZ, the common distribu-
tion P {S = s, Q = q} = f

(w)
s,q , s, q ∈ ZZ, can be efficiently

calculated, as will be seen soon. With this distribution, the
coverage is

C =
∑

(s,q)∈ ZZ2

I{ ¯̄X − Bhalf ≤ θ ≤ ¯̄X + Bhalf}f (w)
s,q . (5)

The common distributions f
(w)
s,q are calculated recur-

sively for w = 2, 3, ... according to

f (2)
s,q =

∑
(i,j)∈ ZZ2

i+j=s,i2+j2=q

fifj , s, q ∈ ZZ, (6)

and for w > 2

f (w)
s,q =

∑
(i,t,r)∈ ZZ3

i+t=s,i2+r=q

fif
(w−1)
t,r , s, q ∈ ZZ. (7)

The reader may note the similarity of these formulas with
convolution. Many f

(w)
s,q are zero, therefore we store these

probabilities in a hash table.
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Now we determine the distribution of the estimator,
namely the means X̄i of the delays in an M/M/1/N queue
with N buffer places, in steady state. We give a Discrete
Time Markov Chain (DTMC) for the desired probabilities
which is finite state, inhomogeneous, and has absorbing
states. The probabilities in the absorbing states provide the
probabilities of the estimator. The DTMC is embedded,
the observation times are the beginnings of services. As
in steady state simulation, the delays of the customers in
the transient phase are not taken into consideration; we call
them ignored customers.

After a while when the steady state is (nearly) reached,
the first of n observed customers whose delays are sampled
arrives. He sees I init ignored customers in front of himself
which are served before him, I init ∈ {0, . . . , N − 1}, with
probability P {I init = i} = pi/(1 − pN). Here pi is the
probability that i customers are in an M/M/1/N queue as
given in any book on queueing theory, e.g. (Allen 1990).

The states of the DTMC are given by some random
variables: I , the number of ignored customers in the system,
Z observed customers are present whose delays are sampled,
0 ≤ Z+I ≤ N , K observed customers arrived already which
were delayed W service times up to now, 0 ≤ K ≤ n.

We consider two phases of the DTMC. In the first phase,
ignored customers are present and are served, and observed
customers arrive and wait. When the last ignored customer
leaves the system, the second phase begins where observed
customers are served, more customers arrive, wait, and are
served. After n services, they all are served, the DTMC is
in an absorbing state.

In an M/M/1/N queue, while a customer is served, A(S)

new customers arrive with probability

P {A(S) = a} =
∫ ∞

0
exp(−λt)

(λt)a

a! µ exp(−µt)dt

=
(

α

1 + α

)a 1

1 + α
, a = 0, 1, . . .

(α = λ/µ where λ is the arrival rate and µ the service rate),
but some of them are lost when the buffer is full.

In our model, we restrict the number of arivals, within
a service only A ≤ Amax customers arrive instead of A(S):

1. A ≤ amax where P {A(S) > amax} is very small,
2. A ≤ n − K , we are interested only in n delays,
3. A ≤ N − Z − I restricts the number of customers

in the buffer.

If A is smaller than this maximum we take the probabilities
P {A = a} = P {A(S) = a}, otherwise the arrival probability
is 1 − P {A = Amax − 1} − . . . − P {A = 0}.

In the first (transient) phase ignored customers are
served. Within the first service of this phase, at least one
customer arrives, hence we take the arrival probabilities
conditioned on this fact, P {A = a|A > 0} instead of
P {A = a} which is valid afterwards.

The state transitions in this first phase are as follows.

• I −→ I − 1, one ignored customer less,
• Z −→ Z + a, a observed customers more in

system,
• K −→ K +a, a observed customers more arrived,
• W −→ W +Z+a, all present and all new observed

customers wait one service time,

the transition probability is P {A = a}, a = 0, . . . , Amax.
Initially, I = I init, Z = 0, K = 0, W = 0 holds with

probability P {I init = i}, i = 0, . . . , N − 1.
The transitions in the second phase where the n observed

customers are served occur with the transition probability
P {A = a}, a = 0, . . . , Amax. They are as follows (I is
always 0). If Z > 1 or A > 0:

• Z −→ Z − 1 + a, one customer finished, a new
customers,

• K −→ K + a, a customers more arrived,
• W −→ W+Z+a, all present and all new customers

wait one service time.

If Z = 1 and A = 0 and K < n (after the service, the
system is empty; later a customer arrives):

• Z −→ 1, the new customer,
• K −→ K + 1, one customer more,
• W remains unchanged.

If Z = 1 and K = n, no arrivals occur and the last
service follows. The absorbing states are reached with
transition probability 1:

• Z −→ 0, the last customer leaves the system,
• K = n remains unchanged, no more arrivals,
• W remains unchanged.

The absorbing probabilities P {W = j, Z = 0, K = n}
equal the probabilities P {W = j}, j = 0, 1, . . .. W = j

means: The sum of all delays consists in j service times.
With these probabilities, the distribution function of nX̄i

which is in principle the estimator, is

∞∑
j=0

P {W = j}FE(j,j/µ)(x)

where FE(j,j/µ) denotes the Erlang-j distribution function
with expectation j/µ.

But we need a discrete distribution for the means X̄i .
Therefore we approximate the exponential distribution with
a geometric distribution. Let X have an exponential dis-
tribution with distribution function FE(x) = 1 − exp(−λt)
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and expectation E[X] = 1/λ, and let G have a geomet-
ric distribution with the probabilities P {G = x} = p(1 −
p)x, x = 0, 1, . . ., and expectation E[G] = (1 − p)/p.
For x = 0, 1, . . ., FE(x + 1) − FE(x) = (1 − e−λ)(e−λ)x .
This motivates the approximation X ≈ G where G is ge-
ometrically distributed with parameter p = 1 − e−λ. For
the expectations 0 < E[X] − E[G] < 0.5 holds, hence the
relative error |(E[X] − E[G])/E[X]| is smaller than 0.5λ,
the approximation is better for a small λ.

Sums X(j) of j iid. exponentially with parameter λ

distributed random variables have an Erlang-j distribution
with expectation j/λ, sums G(j) of j iid. geometrically with
parameter p distributed random variables have a negative
binomial distribution with the probabilities

P {G(j) = x} =
(

j + x − 1

x

)
pj (1 − p)x, x = 0, 1, . . . ,

and expectation j (1 − p)/p. This motivates the approxi-
mation

X(j) ≈ G(j) + δj , δj =
⌊
j

(
1

λ
− 1 − p

p

)
+ 0.5

⌋

which accounts for the error E[X] − E[G].
Together with the probabilities for W we obtain the

approximate discrete probabilities for nX̄i :

P {nX̄i = x} =
∞∑

j=0,x≥δj

P {W = j}P {G(j) = x −δj }, (8)

x = 0, 1, . . ..
Due to the finite DTMC for the probabilities P {W = j},

these are zero for large j . For large x > xmax when P {nX̄i =
x} becomes very small, we set these probabilities to zero
and normalize as follows: P {nX̄i = xmax} = 1 −P {nX̄i =
xmax − 1} − . . . − P {nX̄i = 0}.

Now we change the time skale, one old unit equals
n new units. Than the probabilities in (8) are the desired
distribution for the means X̄i , P {X̄i = x} = fx .

This distribution is used for the calculation of cover-
ages for Student confidence intevals and median confidence
intevals: We apply them in (6) and in (7), get the common
distribution for S and Q, and calculate the coverage CStudent

with (5). This is the desired figure for confidence intervals
with the Student distribution.

For median confidence intervals, the coverage CMCI

equals the confidence level (2) of a min-max confidence
interval according to theorem 1, CMCI = 1 − [F(θ)]w −
[1 − F(θ)]w where F(y) denotes the distribution function
of the estimators X̄i , F(y) = ∑

x≤y fx .
Some figures for the errors CL−CStudent and CL−CMCI

are given in Table 1, the theoretical confidence level CL is
93.75% (w=5):

Table 1: Errors CL − C

ρ N n CL − CStudent CL − CMCI

0.1 10 20 0.056 0.043
0.3 20 5 0.103 0.076
0.3 10 10 0.065 0.047
0.3 10 20 0.040 0.027
0.5 10 10 0.080 0.051
0.5 5 40 0.016 0.014
0.8 10 10 0.040 0.020
0.9 20 20 0.035 0.017

Obviously, in all examples the median confidence in-
terval is more accurate - we did not find counter-examples.

5 NUMERICAL EXPERIENCE

Many simulation studies were accomplished which com-
pared median confidence intervals and classical confidence
intervals. We summarize some results.

In these studies, simulation experiments were done with
different models. In each experiment confidence intervals
were calculated with well-known methods and with the
new technique. Especially the replication/deletion method
is compared with median confidence intervals. For both
techniques some independent replications of the simulation
must be done. In steady-state simulations each replication
begins with a transient phase. Batch median confidence
intervals are compared with the batch means method. Both
techniques need only one transient phase.

We chose the confidence level 93.75% for all confidence
intervals, hence w = 5 replications or batches.

In each study, many independent experiments were
performed. In each experiment we noticed if the true
value of an estimated parameter (which is known here) was
contained in the (median) confidence interval or not. So we
estimated the coverage C. This coverage should be near
to the theoretical confidence level CL if the confidence
intervals are accurate. The error CL − C measures the
accuracy of the confidence interval technique, the smaller
the better. These errors serve the purpose to compare the
accuracy of different techniques. Compared confidence
intervals are calculated with equal total sample sizes but for
the regeneration method this is possible only approximately.

The overall result of these studies is as follows: All
confidence intervals are accurate or too small. When they
are too small, the new technique is more accurate with
slightly wider confidence intervals.

1. An M/M/1 queueing system is considered. The ar-
rival rate is 1.0 and the service rate 1.25, hence the system is
heavily loaded with utilization 0.8. Law and Kelton (2000),
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p. 535, performed a comparative study in order to see how
accurate the confidence intervals are. They applied different
well-known methods for confidence intervals: Batch means
(B), autoregressive method (A), spectrum analysis(SA), re-
generative method (R) (classical (C) and jackknife (J)), and
standardized time series (STS). 90% confidence intervals
were constructed for the steady-state mean delay which is
known to be 3.2.

For each of the methods and for different simulation
run lengths, confidence intervals are considered. The total
sample sizes are n = 320, 640, 1280, 2560. For batch
means and standardized time series, the number of batches
is 5, hence the batch sizes are m = 64, 128, 256, 512 (10
and 20 batches were also tried, but with worse results).
These batch sizes m are also the numbers of regeneration
cycles because the mean length of these cycles here is 5.

For each sample size and each method, Law and Kelton
estimated the coverages C and the errors CL − C for the
confidence level CL = 0.9 with 400 independent simulation
experiments (they took the results for the standardized time
series method from another source). They counted how
often the known value of the mean delay was inside the
confidence interval and thus got the coverages C and the
errors CL − C.

In this statistically difficult model, the coverage differs
a good deal from the nominal confidence level, at least
for small sample sizes. The longer the run was, the more
accurate were the confidence intervals, as one would expect.

We conducted an according simulation study with the
same model and the same run lengths. Batch median
confidence intervals were constructed with w = 5 batches
in each simulation. This implies a 93.75% confidence
level CL. The transient phase is eliminated in our M/M/1
examples as follows: Initially, there are q customers in the
system with probability (1−ρ)ρq where ρ is the utilization.
Since these are the steady-state probabilities, there is no
transient phase – this is a result of queueing theory, see e.g.
Allen (1990).

Unfortunately, we did not repeat the experiments of
Law and Kelton. They used the confidence level of 90%
which is impossible for the new technique. Hence, 90%
confidence intervals and 93.75% median confidence intervals
are compared; this is not entirely correct. But the reader
may note that we compared the difference between the
assumed confidence level CL and the coverage C which is
the error, not the coverage itself. This remark only applies
to the figures in Table 2; all other confidence intervals are
calculated for the level 93.75%.

In all cases, the coverages of the batch median con-
fidence intervals were nearer to the theoretical value of
93.75% than all coverages of the Law and Kelton study to
90%, the BMCI errors were smaller. That means, in the
considered examples, the new technique is more accurate
than all the other methods.
An overview of the errors of the Law-and-Kelton study
and our study is given in Table 2. Here the entries are the
errors CL − C. For example, for the batch means method
(B) and sample size n = 320 the error is 0.210. This
means that the observed coverage is 69% = 90% (nominal
confidence level) - 21%. Or for batch median confidence
intervals (BMCI) and sample size n = 1280 the error is
0.060, hence the observed coverage is 87.75% = 93.75% -
6%.

Table 2: Errors CL − C

n(m) 320(64) 640 (128) 1280 (256) 2560 (512)
B 0.210 0.177 0.120 0.102

STS 0.380 0.272 0.170 0.102
SA 0.187 0.140 0.117 0.067
A 0.212 0.177 0.147 0.145

RC 0.340 0.217 0.195 0.155
RJ 0.230 0.172 0.152 0.137

BMCI 0.127 0.102 0.060 0.045

We had the impression that the statistical relevance from
400 independent experiments is insufficient. Therefore we
made more experiments in all our studies and calculated
90% confidence intervals for the errors.

In Table 3 we compare the batch means method and
batch median confidence intervals with 25600 independent
experiments. In this table and others in section 5, the
entries are the errors CL − C, together with the average of
the half lengths of the (median) confidence intervals, and
the empirical variance of the half lengths. The confidence
intervals of the errors are CL − C ± ε, ε < 0.005.

Table 3: Errors CL−C, avg. Half Length, var. Half Length
n(m) B BMCI
320(64) 0.189 2.4 3.3 0.153 2.5 3.4
640 (128) 0.135 2.2 2.7 0.107 2.3 2.9
1280 (256) 0.094 1.8 1.7 0.072 1.9 1.8
2560 (512) 0.059 1.4 0.8 0.046 1.5 0.9

The bach median confidence intervals are more accurate
and only slightly wider than classical confidence intervals.

2. In another study, median confidence intervals and
classical confidence intervals which were achieved with the
replication/deletion approach were compared. The M/M/1
queue was simulated with light, medium, and heavy load ρ

(arrival rate 1.0, service rate 4.0, 2.0, 1.25). For each load,
short simulations with run lengths 150, 200, and 500 delays,
respectively, and long simulations with 2,400, 3,200, and
8,000 delays, respectively, were performed. We did 25,600
independent simulation experiments for each case.

In the short simulations, the obtained median confidence
intervals are more accurate than the classical confidence in-
tervals from the replication/deletion approach. In the long
simulations for light and medium load, no statistically sig-
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nificant differences were observed: Both techniques yielded
accurate confidence intervals. We conjecture that here the
estimator is nearly normally distributed, and for normally
distributed estimators, both techniques provide exact confi-
dence intervals. In Table 4, the confidence intervals of the
errors are CL − C ± ε, ε < 0.004.

Table 4: Errors CL−C, avg. Half Length, var. Half Length
ρ Run RD MCI

Short 0.022 0.03 ≈ 0 0.017 0.03 ≈ 00.25
Long 0.001 0.01 ≈ 0 0.000 0.01 ≈ 0
Short 0.032 0.19 0.01 0.024 0.20 0.010.5
Long 0.003 0.05 ≈ 0 0.004 0.05 ≈ 0
Short 0.058 1.44 0.85 0.043 1.53 0.940.8
Long 0.005 0.42 0.03 0.005 0.45 0.04

3. In study 2. we compared also median confidence
intervals and jackknife intervals for ratios of estimators. In
particular, we estimated the expected throughput, λ̂(r), as
the ratio of the mean number of jobs in the waiting room,
Q̂, and the mean delay, Ŵ , λ̂(r) = Q̂/Ŵ (Little’s law), and
we estimated the mean delay Ŵ (r) by Ŵ (r) = Q̂/λ̂. For
these ratios, Q̂, Ŵ , and the throughput λ̂ were estimated
directly.

For the ratios, we calculated median confidence inter-
vals and jackknife intervals. In all examples, the median
confidence intervals are much more accurate than the jack-
knife intervals. In Table 5, the confidence intervals of the
errors are CL − C ± ε, ε < 0.005.

Table 5: Errors CL−C, avg. Half Length, var. Half Length
ρ What Run RD, Jackknife MCI

Short 0.105 0.07 ≈ 0 0.002 0.10 ≈ 0
λ̂(r)

Long 0.074 0.02 ≈ 0 -0.002 0.02 ≈ 00.25
Short 0.093 0.02 ≈ 0 0.015 0.04 ≈ 0

Ŵ (r)
Long 0.075 0.01 ≈ 0 0.000 0.01 ≈ 0
Short 0.126 0.06 ≈ 0 0.005 0.09 ≈ 0

λ̂(r)
Long 0.078 0.01 ≈ 0 0.000 0.02 ≈ 00.5
Short 0.098 0.14 0.01 0.019 0.20 0.01

Ŵ (r)
Long 0.080 0.04 ≈ 0 0.003 0.05 ≈ 0
Short 0.178 0.04 ≈ 0 0.017 0.05 ≈ 0

λ̂(r)
Long 0.079 0.01 ≈ 0 -0.001 0.01 ≈ 00.8
Short 0.123 1.07 0.50 0.036 1.55 0.96

Ŵ (r)
Long 0.079 0.31 0.02 0.005 0.45 0.04

4. In the next example we consider the heavy-tailed
Pareto distribution with the distribution function F(x) =
1 − (b/x)a, 0 < a <= 2, 0 < b <= x where a is a
shape parameter and b a skale parameter. The expectation
is ab/(a − 1) if a > 1, the median 21/ab, and the variance
does not exist. This distribution is very skewed.

In simulations we constructed median confidence in-
tervals with w =5 replications for the expectation and
the median and classical confidence intervals only for the
median; for the expectation they do not exist due to the
non-existing variance.

Each replication consisted in m = 999 independent
observations, hence the total sample size was n = wm =
4995. The coverages C and the errors CL−C were estimated
with 1000 independent simulations.

For shape parameter a = 2 and scale parameter b = 1,
the accuracy of the median confidence intervals for the
expectation of the Pareto distribution was quite good, CL−
C = 0.003 ± 0.013, for a = 1.5 quite bad, CL − C =
0.086±0.019, for a = 1.1 inacceptably bad, even for much
bigger sample sizes. These results confirm the general
observation that the mean may converge poorly towards the
expectation for heavy-tailed distributions.

Here one should resort to alternative estimators; we
chose the suitable order statistic for the median and found
very accurate estimates and very accurate median confidence
intervals.

In Table 6 the errors are given for classical confidence
intervals (CI) and median confidence intervals (MCI) for
this order statistic. Their confidence intervals are ±ε with
ε < 0.019.

Table 6: Errors CL−C, avg. Half Length, var. Half Length
a CI MCI
2 0.007   0.02 ≈ 0 0.007 0.03 ≈ 0
1.5 0.011   0.04   ≈ 0 0.002 0.04 ≈ 0
1.1 -0.005  0.06   ≈ 0 0.001 0.06 ≈ 0

Clearly both kinds of confidence intervals are accurate.
Due to theorem 2, one would expect the median confidence
intervals to be exact. The observed figures seem to confirm
this.

5. Now we present an example where the estimator
has a very skewed and non-normal distribution. Hence,
confidence intervals and median confidence intervals are
quite inaccurate, but again the latter are better.

The considered reliability model from
Law and Kelton (2000), p. 508, consists of three
components and will function as long as component
1 works and either component 2 or 3 works. If G

is the time to failure of the whole system and Gi is
the time to failure of component i, i = 1, 2, 3, then
G = min{G1, max{G2, G3}}. It is further assumed that the
random variables Gi are independent and that each Gi has
a Weibull distribution F(x) = 1 − exp(−x/b)a, x > 0,
with shape parameter a = 0.5 and scale parameter b = 1.
This particular Weibull distribution is extremely skewed
and nonnormal.

We constructed median confidence intervals with w =
5 replications each of which consisted of m = 1, 2, 4, or
8 outcomes, and the mean of them is the estimator, hence
the total sample sizes were n = wm = 5, 10, 20, 40.
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The sample of n realisations of the time to failure G

is independent. Hence we calculated a classical confidence
interval with the Student quantile tn−1,1−α/2, as indicated
in the beginning of section 4.

The coverages C and the errors CL−C were estimated
with 8000 independent simulations. In Table 7, the errors
are given. Their 90% confidence intervals are ±ε with
ε < 0.008. Again the MCIs are clearly more accurate than
the CIs.

Table 7: Errors CL−C, avg. Half Length, var. Half Length
n(m) CI MCI
5 (1) 0.191 1.15 1.31 0.147 1.17 1.33
10 (2) 0.143 0.77 0.37 0.079 0.95 0.59
20 (4) 0.105 0.55 0.11 0.049 0.73 0.23
40 (8) 0.069 0.40 0.03 0.032 0.55 0.09

6 FUTURE RESEARCH

In section 2 we mentioned that min-max confidence intervals
would be exact, but the modeller would have to be able to
obtain Fθ(θ), the value of the estimator distribution function
at θ which is the value of the unknown parameter to be
estimated, in an efficient way. With this value, the real
confidence level according to (2) could be determined very
accurately.

We illustrate this with example 5: In very long and
expensive simulations we estimated first the empirical dis-
tribution of G and then the distribution of the estimator
F̂θ (x) which is essentially the m-fold convolution of this
empirical distribution. Using θ̂ , the estimation of the un-
known parameter θ , we obtained F̂ = F̂θ (θ̂ ). With this
estimated F̂ we calculated the confidence level ĈL accord-
ing to (2). Table 8 shows that these estimated confidence
levels are very close to the observed coverages C, even in
this pathological example.

Table 8: Coverages and Estimated Confidence Levels

n(m) C ĈL

5 (1) 0.791±0.002 0.791
10 (2) 0.852±0.002 0.848
20 (4) 0.886±0.002 0.884
40 (8) 0.909±0.002 0.907

This is a brute force appoach which we cannot recom-
mend due to the high effort - min-max confidence intervals
would require efficient estimation of Fθ(θ).
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