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ABSTRACT

A new algorithm class is presented for optimization of
stochastic simulation models. The algorithms, which com-
bine generalized pattern search (GPS) with ranking and
selection (R&S), require “black-box” simulation evalua-
tions and are applicable to problems with mixed variables
(continuous, discrete numeric, and categorical). Implemen-
tation of the Mixed-variable Generalized Pattern Search
with Ranking and Selection (MGPS-RS) algorithm with
three different R&S procedures is demonstrated and tested
on a small set of standard test functions. Results of this
preliminary performance evaluation are summarized and
compared with existing search methods.

1 DISCLAIMER

The views expressed in this article are those of the authors
and do not reflect the official policy or position of the United
States Air Force, the Department of Defense, or the United
States Government.

2 INTRODUCTION

Consider the optimization of a stochastic system in which
the objective is to find the combination of controllable sys-
tem parameters (design variables) that minimizes a system
performance measure of merit. For highly complex systems,
simulation is often used as a modelling and analysis tool
in which performance is evaluated from a set of sampled
output responses that estimate the performance measure of
interest. We consider the simulation optimization problem
of the following form,

min
x∈Θ

E[F (x, ω)], (1)

where the minimum performance is sought for the output
response F (x, ω), x is an n-dimensional design vector from
feasible domain Θ, and ω is a vector of random elements
representing inherent variation in the system.

We treat simulation as a “black-box” procedure that
takes as input the vector x and produces the output response
F (x, ω). The fundamental properties of problem (1) that
make it difficult are that the analytical form of E[F (x, ·)]
is unknown and the response F (x, ·) is “contaminated”
by random variation. Thus, E[F (x, ·)] cannot be evaluated
exactly, but must instead be estimated via samples of F (x, ·),
thereby reducing the number of designs that can be visited
given a fixed computational budget.

Additional complications arise when elements of the
design vector can be discrete, either discrete-numeric (e.g.,
integer-valued) or categorical. Categorical variables are
those which must take their value from a predefined list or
set. Such values may not even be numeric. These restric-
tions are common for realistic stochastic systems. For ex-
ample, a communication network containing a buffer queue
at each router may include a categorical design variable
for queue discipline (e.g., first-in-first-out (FIFO), last-in-
first-out (LIFO) or priority) at each router. The class of
optimization problems that includes continuous, discrete-
numeric and categorical variables is known as mixed variable
programming (MVP) problems (Audet and Dennis 2000).

e group discrete-numeric and categorical variables into a
“discrete” variable class by mapping categorical variables to
discrete numerical values. For example, integer values are
assigned to the queue discipline categorical variable (e.g., 1
= FIFO, 2 = LIFO, and 3 = priority), even though the values
do not conform to the inherent ordering that the numerical
value suggests.

To define a mixed-variable domain, Θ is partitioned into
continuous and discrete subdomains Θc and Θd, respectively.

design point x ∈ Θ is denoted as x = (xc, xd), where
xc ∈ Θc is the vector of continuous variables of dimension
nc, and xd ∈ Θd is the vector of discrete variables of
dimension nd. The continuous variable domain is expressed
as Θc = {xc ∈ R

nc

: � ≤ Axc ≤ u}, where A ∈ R
mc×nc

,
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�, u ∈ R
mc

, and � < u. Hence, Θc is subject to bound
and linear constraints. The discrete variable domain is
expressed as a subset of the integers, Θd ⊆ Z

nd

. The
iterates of sequential search methods for such problems
may be considered a sequence of random vectors. Hence,
we use the conventional notation Xk to denote a random
quantity for the design at iteration k to distinguish it from
the xk used to denote a realization of Xk.

Numerous search techniques with rigorous convergence
analyses have been devised for “black-box” simulation op-
timization problems. Presently, the predominant methods
are applicable to search domains that are either entirely con-
tinuous or entirely discrete. For example, over continuous
domains, gradient-free versions of stochastic approximation
(SA) that use finite differences (Kiefer and Wolfowitz 1952)
or simultaneous perturbations (Spall 1992) to approximate
the direction of steepest descent have well-developed con-
vergence theories. Methods for discrete domains include
certain random search approaches (Andradóttir 1999) in
which the convergence analyses typically rely on modelling
the iterate sequence as a discrete time Markov chain.

Mixed-variable problems present unique challenges for
search routines. Relaxation techniques commonly used for
mixed integer problems, such as branch and bound, are not
applicable to the mixed-variable case because the response
output is defined only at the discrete settings of the cate-
gorical variables; therefore, relaxing the “discreteness” of
these variables is not possible. Small numbers of categorical
variables can be treated by exhaustively enumerating their
possible values, but this approach quickly becomes compu-
tationally prohibitive. More desirable is a method that can
systematically search over the mixed-variable domain.

In this paper, we present a method for simulation op-
timization over mixed variables, for which the continuous
variable values are restricted by bound and linear constraints.
The method extends the class of mixed variable generalized
pattern search (GPS) algorithms described in Audet and
Dennis (2000) and Abramson (2002) to stochastic response
functions by employing ranking and selection (R&S) pro-
cedures in the selection of new iterates as a means of error
control during the search. In Sriver, Chrissis, and Abramson
(2004), we show that the method converges almost surely
to appropriately defined stationary points over the mixed-
variable domain. In this paper, we focus on implementation
issues and report on some initial computational results.

The remainder of this paper is organized as follows.
Section 3 introduces pattern search and its extensions to
MVPs. Section 4 presents a new class of GPS algorithms for
simulation optimization and Section 5 discusses important
implementation considerations for the algorithms. Section
6 reports some initial computational results and Section 7
offers conclusions.
3 PATTERN SEARCH

Pattern search is a subclass of direct search algorithms,
which involve the direct comparison of objective function
values and do not require the use of explicit or approximate
derivatives. Torczon (1997) introduced the general class
of pattern search methods for unconstrained optimization,
demonstrating that the class of methods unified various
distinct direct search techniques, such as the pattern search
of Hooke and Jeeves (1961).

3.1 Continuous Variable GPS

Pattern search over continuous variables is defined via a finite
set of directions used at each search iteration. The direction
set and a step length parameter define a conceptual mesh
centered about the current iterate (the incumbent). Trial
points are selected from the mesh, evaluated, and compared
to the incumbent in order to select the next iterate. If an
improvement is found among the trial points, the iteration is
declared successful and the mesh is retained or coarsened;
otherwise, the mesh is refined and a new set of trial points
is constructed.

The key to generating the mesh is the definition of
the direction set. This set must be sufficiently rich to
ensure that at least one of the directions is one of descent.
Lewis and Torczon (1996) applied the theory of positive
linear dependence (Davis 1954) to establish criteria for the
direction set; namely, that the set of directions must positively
span the domain R

nc

. A positive spanning set allows any
vector originating from the design point to be formed as
a nonnegative linear combination of the set. Therefore, if
the gradient of the unknown objective function is nonzero
at any iterate, at least one element of the direction set is a
descent direction.

For example, consider the commonly used direction set
D = [I,−I] where the columns of D denote the positive
and negative coordinate axes as the search directions. This
situation is demonstrated for two dimensions in Figure 1
where xk is the incumbent iterate and the points {a, b, c, d}
are trial points along the search directions parameterized
by step length ∆k.

�

xk
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�
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�

d

∆k� �

Figure 1: Example Pattern
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Lewis and Torczon extended pattern search to bound
constrained (1999) and problems with a finite number of
linear constraints (2000). In these situations, the direction
set is required to include search directions that conform to
the geometry of the constraint boundaries. Such directions
are referred to as tangent cone generators and an algorithm
for computing these directions in the absence of degeneracy
is given in Lewis and Torczon (2000). With conforming
directions included, linear constraints can be treated with
the simple “barrier” approach. That is, if a linear constraint
is violated at a trial point, then a function value of +∞
is assigned without computing the objective function value
there, thus saving computational expense.

3.2 Mixed Variable GPS

A GPS framework for MVP problems with bound constraints
was developed by Audet and Dennis (2000) and further
extended to linear constraints in Abramson (2002). In this
case, a set of positive spanning directions is denoted as Di

for each unique combination i = 1, 2, . . . , imax of discrete
variable values.

Audet and Dennis explicitly separate the search into
two distinct steps, a search step and a poll step. Th
optional search step selects a finite number of trial points
from an implicitly defined mesh that spans the entire search
space. This step contributes nothing to the convergence
theory, but allows the user great flexibility to apply any
desired heuristic to speed convergence. In this paper, we
employ an empty search step and therefore exclude it from
the algorithm listing of Section 4.

The poll step evaluates a subset of neighboring mesh
points known as the poll set. Each point in this set must be
evaluated before the iteration can be declared unsuccessful.
Polling is conducted in up to three stages: polling with
respect to the continuous variables, polling on a set of dis-
crete neighbors, and extended polling around those discrete
neighbors whose function value is sufficiently close to that
of the incumbent.

For polling with respect to the continuous variables,
trial points are defined by,

Pk = {xk + ∆k(d, 0) : d ∈ Di
k}, (2)

where (d, 0) denotes the partitioning into continuous and
discrete variables and 0 means the discrete variables remain
unchanged, i.e., xk + ∆k(d, 0) = (xc

k + ∆kd, xd
k). The

notation d ∈ Di
k means that d is a column of Di

k. Polling
with respect to discrete variables requires a user-defined
discrete set of neighbors at xk, denoted as N (xk). If the first
polling stage does not yield an improved solution, extended
polling may be conducted in the continuous neighborhood
about each point y in the set of neighbors N (xk) for
which the objective function satisfies the extended poll
condition f(xk) < f(y) ≤ f(xk) + ξk, for some user-
specified extended poll trigger ξk > ξ > 0 bounded away
from zero.

An example poll step is depicted in Figure 2 for two
continuous variables (x1, x2) and one discrete variable x3.
The two planes represent each of two settings for the dis-
crete variable. The poll set about the incumbent consists
of the points {xk, a, b, c, d} and the discrete neighbor set
consists of the points {xk, y}. If the poll set and discrete
neighbor set fail to produce an improvement on xk, and
if discrete neighbor y produces an objective function value
sufficiently close to that of the incumbent, then a polling
sequence is initiated about y. In the figure, the set of points
{y, a′, b′, c′, d′} indicates the initial poll set about y to be
evaluated. The extended polling sequence continues until
a point is found in the upper plane that improves upon xk

or until no further improvement in that plane is possible.
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Figure 2: Poll Step Example

The mesh is updated (refined, coarsened, or retained)
according to a strict set of rules. Refinement must satisfy,

∆k+1 = τm−
k ∆k, (3)

where τ > 1 is rational and fixed over all iterations, 0 <
τm−

k < 1, and m−
k is an integer satisfying mmin ≤ m−

k ≤
−1 for some fixed integer mmin ≤ −1.

Coarsening after a successful poll or extended pol
step is accomplished by,

∆k+1 = τm+
k ∆k, (4)

where τ > 1 is defined as above and m+
k is an integer

satisfying 0 ≤ m+
k ≤ mmax for some fixed integer mmax ≥

0.
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4 THE MGPS-RS ALGORITHM

For problems with random responses, single-sample re-
sponse comparisons used in traditional pattern search can
lead to many erroneous iterate selection decisions. Alter-
native comparison techniques are necessary to ensure that
these decisions account for variation and provide some sta-
tistical assurances of correct decisions. In an approach by
Trosset (2000), iterate selection via hypothesis testing is
suggested in which a binary selection decision between the
incumbent and candidate design is based on sufficient sta-
tistical evidence. We generalize this approach using R&S
so that multiple candidates may be considered simultane-
ously at reasonable computational cost associated with the
requisite sampling. The new class of algorithms is called
Mixed-variable Generalized Pattern Search with Ranking
and Selection (MGPS-RS). Prior to presenting the algo-
rithms in detail in Section 4.2, we first discuss the general
considerations necessary to include R&S in a GPS frame-
work.

4.1 Ranking and Selection

Ranking and selection procedures are useful for selecting
the best system design from among a set of a small number
of alternatives. For a detailed survey of such procedures,
see Swisher, Jacobson, and Yücesan (2003). Recently, R&S
procedures have been used in an iterative fashion by coupling
them with search strategies to enable search of a possibly
large solution domain [e.g. see Pichitlamken and Nelson
(2003) and Ahmed and Alkhamis (2002)].

Within the pattern search framework, we employ in-
difference zone R&S to select the best candidate design
from a set of trial points considered simultaneously. Let
C = {Y1, Y2, . . . , YnC

} be a set of candidate designs,
including the incumbent, such that nC ≥ 2. For each
q = 1, 2, . . . , nC , let fq = E[F (Yq, ·)] denote the true
mean of the response F (Yq, ·). The collection of these
means can be ordered from minimum to maximum as,

f[1] ≤ f[2] ≤ · · · ≤ f[nC ]. (5)

If one or more candidates have true means within a practical
tolerance of the true best candidate, i.e. f[i] − f[1] < δ for
some δ > 0 and 2 ≤ i ≤ nC , then the procedure is said
to be indifferent in choosing Yi as the best. The notation
Y[q] ∈ C indicates the candidate from C with the qth best
(lowest) true objective function value.

In an indifference-zone R&S procedure, the probability
of correct selection (CS) is defined in terms of the indiffer-
ence zone parameter δ and the significance level α ∈ (0, 1),
as

P{CS} = P{select Y[1] | f[q] − f[1] ≥ δ; 2 ≤ q ≤ nC}
≥ 1 − α, (6)

where δ and α are user specified.
Of course, when using simulation to evaluate system

performance, it is necessary to work with sample means of
the response F (·, ·). For each q = 1, 2, . . . , nC , let sq be the
total number of samples and let {Fqs}sq

s=1 = {F (Yq, ·)}sq

s=1
be the set of responses obtained via simulation. For each
q, we assume the responses {Fqs}sq

s=1 are independent,
identically and normally distributed random variables with
mean fq and unknown variance σ2

q < ∞, where σ2
� �= σ2

q

whenever � �= q.
The R&S procedure determines how many samples sq

are required to guarantee P{CS} (6). Then for each q, the
sample means F q = s−1

q

∑sq

s=1 Fqs are computed, ordered

and indexed the same way as in (5). The notation Ŷ[q] ∈ C

is used to denote the candidate with the qth best (lowest)
estimated objective function value as determined by the
R&S procedure. For the purpose of inclusion in a class
of algorithms defined in Section 4.2, we denote procedure
RS(C, α, δ) as a generic R&S procedure that takes as
input a candidate set, significance level, and indifference
zone parameter setting and returns Ŷ[1] = arg(F [1]) as the
candidate having the δ-near-best mean.

4.2 Algorithm Listing

The Mixed-variable GPS Ranking and Selection (MGPS-
RS) algorithm class follows for mixed-variable simulation
optimization problems. The algorithms replace binary com-
parisons of incumbent and trial designs from traditional GPS
methods with R&S procedures. The R&S procedures pro-
vide error control by ensuring sufficient sampling of the
candidates so that the best or near-best is chosen with a
user specified probability. The algorithm class is flexible
in that a number of specific R&S procedures may be used,
so long as they satisfy the probability of correct selection
guarantee.

Step 0 : Initialization. Set the iteration counter k to 0.
Set the R&S counter r to 0. Choose a feasible
starting point X0 ∈ Θ. Set ∆0 > 0, ξ > 0,
α0 ∈ (0, 1), and δ0 > 0.

Step 1 : poll step. Set extended poll trigger ξk ≥ ξ.
Use procedure RS(Pk(Xk)∪N (Xk), αr, δr) where
Pk(Xk) is defined in (2) to return the estimated
best solution Ŷ[1]. Update αr+1 < αr, δr+1 < δr,

and r = r+1. If Ŷ[1] �= Xk, the step is successful,

update Xk+1 = Ŷ[1], ∆k+1 ≥ ∆k according to (4),
and k = k + 1 and return to Step 1. Otherwise,
proceed to Step 2.
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Step 2 : extended poll step. For each discrete neigh-
bor Y ∈ N (Xk) that satisfies the extended poll
trigger condition F (Y ) < F (Xk) + ξk, set j = 1
and Y j

k = Y and do the following.
(a) Use procedure RS(Pk(Y j

k ), αr, δr) to re-
turn the estimated best solution Ŷ[1]. Update
αr+1 < αr, δr+1 < δr, and r = r + 1. If
Ŷ[1] �= Y j

k , set Y j+1
k = Ŷ[1] and j = j +1 and

repeat Step 2a. Otherwise, set Zk = Y j
k and

proceed to Step 2b.
(b) Use procedure RS(Xk ∪ Zk, αr, δr) to re-

turn the estimated best solution Ŷ[1]. Up-
date αr+1 < αr, δr+1 < δr, and r = r + 1.
If Ŷ[1] = Zk, the step is successful, update

Xk+1 = Ŷ[1], ∆k+1 ≥ ∆k according to (4),
and k = k+1 and return to Step 1. Otherwise,
repeat Step 2 for another discrete neighbor
that satisfies the extended poll trigger condi-
tion. If no such discrete neighbors remain, set
Xk+1 = Xk, ∆k+1 < ∆k according to (3),
and k = k + 1 and return to Step 1.

In the poll step, the entire poll set about the incumbent
(2) and the discrete neighbor set are considered simulta-
neously. If the poll step is unsuccessful, the extended
poll step conducts a polling sequence that searches the
continuous neighborhood of any discrete neighbor with a
response mean sufficiently close to the response mean of
the incumbent. This step is divided into sub-steps in order
to account for the sequence of R&S procedures that may
be necessary. In Step 2a, each sub-iterate Y j

k , indexed by
sub-iteration counter j and iteration k, is selected as the
best candidate from the poll set centered about the previous
sub-iterate using the R&S procedure, terminating when the
procedure fails to produce a sub-iterate different from its
predecessor. The terminal point of the resulting sequence
{Y j

k }Jk
j=1, denoted as Zk = Y Jk

k and termed an extended
poll endpoint, is compared to the incumbent via a separate
R&S procedure in Step 2b.

The extended poll trigger ξk has important implications
for solution quality and algorithm performance. If it is set
too high, this results in more extended poll steps and thus a
potentially better solution. However, the additional sampling
required at the extra points increases computational expense,
particularly with high noise levels in the response output.

The update rules for ∆k in the algorithm are the same
as for the deterministic case. Refinement (3) is accom-
plished after both the poll and extended poll steps are
unsuccessful. Coarsening (4) is accomplished after any
successful poll or extended poll step.

The algorithm maintains a separate counter for R&S
parameters αr and δr in order to enforce strict rules on
these parameters that are updated after each execution of
the R&S procedure. The rules ensure that αr → 0 and
δr → 0 as the number of iterations approaches infinity,
which is critical to the convergence theory. An additional
restriction on αr is that the infinite series

∑
αr converges;

that is,
∑∞

r=1 αr < ∞.
The restriction on δr ensures that the indifference zone

condition is satisfied as r gets large if the true best de-
sign from candidate set C considered by RS(C, αr, δr) is
a singleton for all but a finite number of iterations and
sub-iterations. The restriction on αr ensures that, with
probability one, the number of incorrect selections by the
algorithm is finite. Furthermore, by assuming all iterates
belong to a compact set, the number of consecutive success-
ful poll or extended poll steps is finite with probability
one. By coupling the “finiteness” of incorrectly selected
iterates with existing GPS convergence theory, we are able
to show that MGPS-RS iterates converge almost surely to
limit points that satisfy first-order necessary conditions for
optimality defined over the mixed-variable domain (Sriver,
Chrissis, and Abramson 2004).

In practice, the restriction on the R&S parameters can
be enforced via an appropriately selected update rule. For
example, the update rule αr = α0ρ

r for 0 < ρ < 1 and α0 >
0 results in a convergent geometric series since

∑∞
r=1 αr =

α0
1−ρ < ∞. Using this rule with α0 < 1, as required by the
R&S procedure, the rate at which αr converges to zero can
be controlled by the parameter ρ.

5 IMPLEMENTATION CONSIDERATIONS

Of primary concern for implementation is the selection of
specific R&S procedures. Since we allow for unknown and
unequal variances, a procedure of at least two stages is
required so that the sample variance can be computed in
an initial stage. Three such procedures were selected for
implementation in this study.

The first, Rinott’s two-stage procedure (Rinott 1978),
is a well-known simple procedure that satisfies (6). In the
first stage, the sample variance S2

q for each candidate q
is computed from a fixed number s0 of response samples
for each candidate. Then, sq − s0 additional samples are
prescribed for the second stage, where

sq = max{s0, 	(hSq/δ)2
} (7)

that depends on Rinott’s constant h = h(nC , α, s0). Al-
though tabulated values for h have been published for com-
monly used parameter combinations, it was computed nu-
merically in this study by adapting code listed in (Bechhofer,
Santner, and Goldsman 1995) to accommodate changing pa-
rameter settings.

Rinott’s procedure can be computationally inefficient
because it is constructed based on the least favorable config-
uration assumption that the best candidate has a true mean
exactly δ better than all remaining candidates, which are
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tied for second best (Swisher, Jacobson, and Yücesan 2003).
As a result, the procedure can overprescribe the number of
required second stage samples in order to guarantee the
P{CS}. Furthermore, the procedure has no mechanism
to consider the sample mean of the responses after the
first stage, and therefore cannot eliminate clearly inferior
candidates prior to conducting additional sampling. These
characteristics are especially problematic in the present set-
ting since the R&S procedure is executed repeatedly and
the number of unnecessary samples accumulates at each
iteration, limiting the progress of the algorithm relative to
a fixed budget of response samples.

The second procedure implemented for this study al-
leviates some of the computational concerns of Rinott’s
procedure. The screen-and-select procedure of Nelson et
al. (2001) combines Rinott’s procedure with a screening
procedure that can eliminate some solutions after the first
stage. For an overall significance level α, significance levels
α1 and α2 are chosen for screening and selection, respec-
tively, such that α = α1 + α2. After collecting s0 samples
of each candidate in the first stage, those candidates with
a sample mean that is significantly inferior to the best of
the rest are eliminated from further sampling. The set of
surviving candidates is guaranteed to contain the best with
probability at least 1 − α1 as long as the indifference zone
condition is met. Then, sq − s0 second stage samples are
required only for the survivors according to (7) except at
significance level α2 instead of α. Nelson et al. (2001)
prove that the combined procedure satisfies (6).

The third procedure implemented for this study extends
the notion of intermediate elimination of inferior solutions.
The Sequential Selection with Memory (SSM) procedure
of Pichitlamken and Nelson (2001) is a fully sequential
procedure specifically designed for simulation optimization
search routines. A fully sequential procedure is one that
takes one sample at a time from every candidate still in
play and eliminates clearly inferior ones as soon as their
inferiority is apparent. In SSM, an initial stage of sampling
is conducted to estimate the variances between each pair of
candidates. This is followed by a sequence of screening steps
that eliminate candidates whose cumulative sums exceed the
best of the rest plus a tolerance level that depends on the
variances and parameters δ and α. Between each successive
screening step, one additional sample is taken from each
survivor and the tolerance level decreases. The procedure
terminates when only one survivor remains or after exceeding
a maximum number of samples determined after the initial
stage. In the latter case, the survivor with the minimum
sample mean is selected as the best. Pichitlamken (2002)
proves that SSM satisfies (6). An advantage of this method
is that previously sampled responses can be re-used if a
design point is revisited, leading to further computational
savings. If previous samples are not used, the procedure is
the same as the one in Kim and Nelson (2001).
A final implementation consideration concerns the
choice of starting values and the rate of decay for R&S
parameters δr and αr. Smaller values for either parameter
lead to larger sampling requirements. For example, this can
be seen for Rinott’s procedure by observing (7) and noting
that h increases with (1 − α). In practice, it is desirable
to avoid excessive sampling in regions of the search space
far from optimality. An advantage of the MGPS-RS algo-
rithms is that through manipulation of these parameters, the
sampling requirements can be increased gradually as the
algorithm progresses, so that excessive sampling effort is
not wasted at early iterations. In our numerical experiments,
the initial values δ0 and α0 are set very “loose” so that,
in the early iterations, no samples are taken beyond the
initial s0 required for each candidate in all three procedures
used. Each parameter is reduced geometrically with r so
that error control of iterate selection increases as the search
moves toward the region of optimality.

6 NUMERICAL EXPERIMENTS

Algorithm performance was conducted for unconstrained
problems over continuous variables for each of three im-
plementations, which we designate as MGPS-RIN (Rinott),
MGPS-SAS (screen-and-select), and MGPS-SSM (sequen-
tial selection with memory). For comparison to other
methods, three additional algorithms were also included in
the experiments: finite-difference stochastic approximation
(FDSA), simultaneous perturbation stochastic approxima-
tion (SPSA), and simplex search (NM) of Nelder and Mead
(1965). Code for FDSA and SPSA was obtained from the
web site associated with (Spall 2003). Code for NM was
adapted from the Matlab function fminsearch.

The test functions included the extended Rosenbrock
function and the extended Powell singular function, both
of which are described in (Moré, Garbow, and Hillstrom
1981). The dimension can be varied, so a 4- and 20-
dimensional version of each function was tested. To imitate
random responses from a simulation, noise was added to
each function evaluation according to a zero-mean normal
distribution N(0, σ2(f(x)). To compare two different ran-
dom noise scenarios, the standard deviation of the error term
σ(f(x)) was either proportional or inversely proportional
to f , but bounded on the range (.1, 10):

σ1(f(x)) = min
(
10,

√
f(x)

)
, or

σ2(f(x)) = max

(
0.1,

1√
f(x)

)
.

We refer to these test cases as noise cases 1 and 2, re-
spectively. The test functions were slightly altered to make
the optimal objective function value equal unity so that the
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standard deviation approached one from above (below) for
noise case 1 (case 2) as algorithms neared optimality.

For the MGPS algorithms, the direction set consisted
of the coordinate axes D = [I,−I] for all k. The step size
parameters were set to τ = 2, m−

k = −1, and m+
k = 1 for

all k so that ∆k+1 = 1
2∆k for refinement and ∆k+1 = 2∆k

for coarsening. The initial step size was set to ∆0 = 2. The
R&S parameters were updated as δr = δ0ρ

r and αr = α0ρ
r

using ρ = 0.95 and initial values δ0 = 100 and α0 = 0.8.
First stage samples were set to s0 = 5.

As recommended in Spall (2003), the step sizes for
FDSA and SPSA were updated according to ak = a/(k +
1 + A)0.602 with stability constant A = 100 for FDSA and
A = 1, 000 for SPSA. The initial 500 response samples
were used to estimate a by the method suggested in Spall
(2003, p. 165) and using the initial desired change in
magnitude of the elements in the design vector of 0.25 for
SPSA and, in the case of FDSA, 0.5 (Rosenbrock) or 1.5
(Powell). The perturbation distance parameter was updated
as ck = 0.447/(k + 1)0.101. For SPSA the random per-
turbation direction vector was determined from a Bernoulli
±1 distribution with probability 1

2 for each outcome. Each
point in the differencing formula was averaged over s0 = 5
response samples.

The Nelder-Mead algorithm was used in its original
form with the following modifications. As suggested by
Barton and Ivey (1996), the shrink parameter was adjusted
to 0.9 (from 0.5) and the best point was resampled after
a shrink. In addition, each point was evaluated based on
an average over s0 = 5 samples. The initial simplex was
constructed using the starting point plus n points a distance
of 4 units in the direction of the coordinate axes from the
starting point.

For each combination of test function, dimension, and
noise case, each algorithm was run for 100,000 response
evaluations using the starting points in (Moré Garbow, and
Hillstrom. 1981). The difference in true objective function
value from the optimum was measured at three stages of
computational budget: 1,000, 10,000 and 100,000 response
evaluations. The results, averaged over 30 replications, are
presented in Tables 1 and 2.

The results demonstrate the computational improve-
ments achieved using screening and fully sequential R&S
approaches for the high variance case (noise case 1). In
all four test function and dimension combinations under
this case, MGPS-SAS achieved a better mean objective
function value than MGPS-RIN after 10,000 response eval-
uations where MGPS-SSM achieved a better result in three
of the combinations. For the 20-dimensional Powell func-
tion, MGPS-SSM was hampered by homogeneity among
a subset of candidate points in early iterations, causing an
increase in sampling required to select the best and thus
slowing progress relative to the other two methods. By
100,000 response evaluations, the standard deviation nears
unity and the distinction between the three methods is less
clear. The near equivalence of all three methods in the
lower variance case (noise case 2) indicates that not many
samples beyond the initial stage samples were necessary
and the methods become essentially the same.

In every noise, test function, and dimension combina-
tion, SPSA outperformed all of the other algorithms. This
is a tribute to its efficient method of estimating the gradient,
in which only 2 × s0 samples are needed at each iteration.
The FDSA algorithm outperformed all MGPS algorithms
for the Powell function but was nearly equivalent for the
Rosenbrock function. This seems reasonable since Rosen-
brock’s function is known to be difficult for gradient-based
methods because the gradient between subsequent iterations
become nearly orthogonal along the valley en route to the
optimum. Also, FDSA samples at n × s0 points which is
nearly the same as MGPS using Dk = [I,−I] when the
noise is low. One weakness of FDSA and SPSA is that if
the initial desired change in magnitude of the design vector
is set too high, the algorithms can diverge badly. Careful
tuning is required beforehand to ensure this doesn’t happen.
The MGPS algorithms are robust to such initial parame-
ter settings, although the performance can be significantly
degraded with poorly chosen settings.

Finally, all MGPS algorithms outperform the similar
direct search method NM in this limited numerical study,
especially with increasing noise. As discussed in Barton
and Ivey (1996), NM can be adversely affected in noisy
cases because inaccurate relative ranks of the points in the
simplex can lead to inappropriate contract and shrink steps,
causing it to converge much too early. This is evident
from Tables 1 and 2: the objective function value does not
improve after 10,000 response evaluations for any of the
test cases.

7 CONCLUSIONS

e have presented a convergent, gradient-free class of al-
gorithms for simulation optimization that employs ranking
and selection to control the error of selecting iterates from
a set of candidate designs. It is flexible in that any vi-
able R&S method can be inserted within the pattern search
framework. It is also more general than many existing
algorithms because it allows for simple linear constraints
and mixed variables. In a limited computational evalua-
tion, The MGPS-RS class of algorithms performed better
than a similar direct search method and comparably with a
finite-differencing stochastic approximation algorithm.

Future work will focus on techniques to accelerate
convergence, developing effective termination criteria, and
a more comprehensive computational evaluation.
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Table 1: True Objective Function Difference From OptimumAveraged Over 30 Replications
– Rosenbrock Test Function

Noise MGPS- MGPS- MGPS-
n Case Budget RIN SAS SSM FDSA SPSA NM

4 1 1,000 0.72 0.62 0.66 5.75 4.88 1.24
10,000 0.73 0.44 0.22 0.71 0.15 1.19

100,000 0.16 0.18 0.11 0.44 0.05 1.19
2 1,000 0.42 0.36 0.38 5.69 4.64 0.73

10,000 0.15 0.20 0.16 0.72 0.05 0.71
100,000 0.09 0.10 0.10 0.44 0.02 0.71

20 1 1,000 57.1 56.9 56.9 43.6 32.6 45.0
10,000 11.6 9.71 9.18 12.1 1.71 42.5

100,000 2.81 2.96 1.89 3.20 0.54 42.5
2 1,000 56.9 56.9 56.9 41.0 28.0 42.4

10,000 2.15 2.23 2.22 8.10 0.29 14.6
100,000 1.29 1.29 1.17 3.03 0.01 14.6

Table 2: True Objective Function Difference From OptimumAveraged Over 30 Replications
– Powell Test Function

Noise MGPS- MGPS- MGPS-
n Case Budget RIN SAS SSM FDSA SPSA NM

4 1 1,000 0.82 0.52 0.95 7.86 8.28 9.00
10,000 0.43 0.18 0.13 0.34 0.11 8.87

100,000 0.10 0.06 0.04 0.005 0.002 8.87
2 1,000 0.13 0.21 0.20 7.77 8.15 0.18

10,000 0.08 0.09 0.08 0.34 0.11 0.17
100,000 0.04 0.04 0.03 0.004 8e-5 0.17

20 1 1,000 820 820 820 117 57.6 58.2
10,000 16.9 13.4 22.8 15.5 2.64 41.7

100,000 7.24 3.74 7.92 0.47 0.02 41.7
2 1,000 819 819 819 115 59.4 54.2

10,000 15.3 14.6 15.0 15.1 2.59 3.99
100,000 1.38 0.80 1.26 0.42 0.003 3.99
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