
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

GENERATING SCHEDULING CONSTRAINTS FOR DISCRETE EVENT DYNAMIC SYSTEMS

Wai Kin Chan
Lee W. Schruben

Department of Industrial Engineering and Operations Research

University of California, Berkeley
4135 Etcheverry Hall

Berkeley, CA 94720 U.S.A

ABSTRACT

In most scheduling literature, constraints are seemingly gen-
erated in an ad-hoc manner using intuitive arguments. This
could result in overlooking some constraints or including
unnecessary constraints. Schruben (2000) has shown how
the dynamics of some discrete event systems can be mod-
eled as the solutions of optimization programs. In this pa-
per, we use this idea to generate mathematical programming
models systematically for scheduling resources in discrete
event dynamic systems. Two examples are presented: a mul-
tiple server queue and a semiconductor manufacturing clus-
ter tool. An interesting result was that the mathematical
structure of the scheduling program generated from a simu-
lation of a cluster tool found in the literature leads to a dif-
ferent, more concise and illuminating cluster tool simulation
model that would have been difficult to discover otherwise.
The corresponding optimal scheduling problem is surprising
in that it does not include explicit representation of the re-
source that is actually being scheduled!

1 INTRODUCTION

Scheduling plays an important role in many decision mak-
ing contexts. Important scheduling optimization problems
are notoriously intractable. In fact, many of them are NP-
hard. During the last few decades, heuristics algorithms
have played an important role in the solution of scheduling
problems. While not directly solving explicit optimal re-
source scheduling programs, these heuristics often result
from an analysis of their explicit formulations. This paper
is concerned with formulating such problems for discrete
event dynamic systems.

Specifically, we consider two typical classes of schedul-
ing problems: (i) parallel resource scheduling problems with
the objective of minimizing the makespan and (ii) cluster
tools scheduling problems with the objective of maximizing
the throughput. A parallel resource scheduling problem with
the objective of minimizing the makespan is a problem of
allocating N jobs to be processed in m identical resources

such that the time needed to complete all N jobs is mini-
mized. This problem is of interest because minimizing the
makespan balances the workload over all recourses.

A cluster tool is an integrated, environmentally iso-
lated manufacturing system consisting of processing
chambers, internal robots (transport modules) to transport
jobs (e.g., wafers), and load locks where the jobs enter and
leave the system (see Figure 1). Each of entering wafers is
transported from the load lock to one (or more) chamber(s)
for processing according to predefined routing sequences.
After all processing steps, the wafers are returned to the
load lock and leave the system. There are many types of
routing sequences, for example, sequential processing and
parallel processing (see, e.g., Srinivasan 1998 for details).
In this paper, for the ease of exposition, we shall assume
sequential processing.

Load Locks: Single or Double

Single Chamber

Batch Chamber

Index Module

Robot(s):
 Chamber(s),
 Arm(s),
 Hand(s).

Figure 1: A Typical Cluster Tool

The analysis of cluster tools, given a processing se-

quence, usually involves answering one (or both) of the
following two questions: (i) what is the tool throughput?
and (ii) what wafer move sequence maximizes the
throughput? The tool throughput, defined as the number
of wafers produced per unit time, is an important per-
formance measure because higher throughput usually im-
plies higher revenue.

Chan and Schruben

For the first question, there are two popular methods
for evaluating throughput, static spreadsheet analysis and
dynamic discrete event simulations. Simulation models are
typically much more accurate than spreadsheet models (see
Pederson and Trout 2002).

Perkinson et al. (1994) and Venkatesh et al. (1997) pro-
vided analytical models that predict the relationship between
steady-state throughput and tool parameters, such as process
times and transport times. Simulation models based on Petri
Nets can be found in Srinivasan (1998) and Zuberek (2001).
However, Petri Net models of cluster tools, especially for
multi-cluster tools, are much more cumbersome than models
developed using simulation event relationship graphs
(Schruben 1983). Using event graphs, very complex cluster
tools can often be modeled using only three events. The
simplicity of event graph simulations not only dramatically
reduces execution times and makes logical errors less likely,
it also facilitates the analysis of the system performance as
well as the design of algorithms for finding optimal schedul-
ing sequences (see, e.g., Nehme and Pierce 1994, Pederson
and Trout 2002). The benefits of the event graph approach
over the Petri Nets approach become more significant when
one tries to analyze multi-cluster (nested) tools. Ding and Yi
(2004) proposed a three-event event graph simulation model
for multi-cluster tools. By integrating their simulation model
into their tree search algorithm, they efficiently found the
optimal scheduling sequence for a complex, integrated sys-
tem of cluster tools.

For the second question, different approaches have
been proposed in the literature. Rostami and Hamidzadeh
(2002) presented an heuristic algorithm for finding the op-
timal scheduling sequence for cluster tools with residency
constraints. In each permutation of their algorithm, they
create and solve a linear programming (LP) problem.

We note that problems of scheduling cluster tools with
residency constraints are mathematically similar to the
hoist scheduling problems. Phillips and Unger (1976) de-
scribed a mixed integer programming model for scheduling
such systems. Subsequently, Shapiro and Nuttle (1988)
and Chen, Chu, and Proth (1998) solved scheduling prob-
lems using a branch and bound approach, in which solu-
tions from linear programming sub-problems were used to
reduce the number of branching nodes as well as provide a
lower bound of the cycle time.

Constraints in above mathematical programming mod-
els are apparently generated in a rather ad-hoc manner us-
ing intuitive arguments. For complicated systems, this
could lead to the problems of overlooking necessary con-
straints or including redundant or unnecessary constraints
in the model formulation. Moreover, if structural charac-
teristics of the system change, the optimization model must
also be altered to reflect the changes. In this paper, we
propose a systematic approach for formulating mathemati-
cal programming models for scheduling problems. Spe-
cifically, we first model of the system dynamics as an
event graph that incorporates the processing sequence of
the jobs. This can be used to simulate the system for
analysis. We can also generate the constraints for optimal
resource scheduling from the event graph. The mathemati-
cal programming formulations provide an analytical ap-
proach to answering the how and what-if questions regard-
ing the performance of a system.

Another benefit from representing discrete event sys-
tem dynamics as mathematical programs is illustrated in
the cluster tool example presented in this paper. The
mathematical characteristics of the optimization model for
a cluster tool simulator found in the literature guided us to
a new, more concise and illuminating, cluster tool simula-
tion model that would have been difficult to formulate
without the help of the optimization model.

The reminder of this paper is organized as follows: In
Section 2, a general framework of generating mathematical
programming formulations for discrete event system dy-
namics is described. In Section 3, we illustrate mapping an
event graph into a linear program (LP) using an example of
mapping a G/G/1 queue. Section 4 considers parallel re-
source scheduling problems. We derive LP formulations
for cluster tool scheduling problems in Section 5. Section
6 concludes the paper.

2 GENERAL FORMULATION

Schruben (2000) proposed representing the dynamics of
discrete event systems as optimization programs, where the
solutions are the system trajectories. The discrete event
system is first modeled as a simulation event relationship
graph, or event graph (EG). Event graphs are a simple,
completely general, graphical representation of discrete
event dynamics. EGs are a system of state changes (often
simple difference equations) analogous to systems of dif-
ferential equations used to represent continuous system
dynamics. Then the constraints for an optimization model
of the system are derived from the timed edges of the EG
along with feasibility conditions for the state variables.

Certain Petri Nets can also be modeled as mathemati-
cal programs (Yen 1999). However, event graph modeling
(Schruben and Schruben 2000) is more general than Petri
Net modeling since all Petri Net models can be trans-
formed into EGs, but the reverse does not hold (see
Schruben 2003). Our derivation will be based on the EG
representation. It has been shown that the system dynam-
ics of many EG queueing models can be represented as an
LP, e.g., Chan and Schruben (2003) provides the LP for-
mulations for single-server tandem queues and Chan and
Schruben (2004) describes the LP formulations for multi-
server tandem queues.

Section 2.1 introduces a framework of generating con-
straints with integer or binary variables. The methodology
of generating constraints without integer or binary vari-
ables is described in Section 2.2.

Chan and Schruben

2.1 Generating Constraints with

Integer or Binary Variables

The variables in the optimization model are the event
times. The time of the i-th occurrence of a generic event E
is denoted as Ei. The objective function is simply to exe-
cute all system events as soon as possible, subject to con-
straints imposed in the system event graph.

To model the constraints on the event times, consider
the generic edge between events E and F in Figure 2.

E F
tEF

(iEF)
E F

tEF
(iEF)

Figure 2: A Generic Edge of an
Event Graph

This edge indicates that event E will schedule event F

after a delay of tEF, provided the condition iEF is true. The
truth of the edge condition, iEF, will be tested with the bi-
nary variable γE,j,F (discussed later):

γE,j,F = 1 iff condition iEF is true immediately after
the j-th execution of event E (at Ej).

If condition iEF is true at time Ej, then one and only

one occurrence of event F (say, the k-th) will be scheduled.
This is controlled by another binary variable,

δE,j,F,k = 1 iff the j-th execution of event E (at time,
Ej) schedules the k-th execution of event F (for
time Fk).

If iEF is true, then one and only one occurrence of

event F will be scheduled at time Fk. Let tEF(j) be the j-th
value of the edge delay time stochastic process. If M1 is a
number at least as large as the duration of the simulation,
this edge imposes five constraints on the system dynamics,

 1 , , ,() (1)k j EF E j F kF E t j M δ≤ + + − (2.1)
 1 , , ,() (1)k j EF E j F kF E t j M δ≥ + − − (2.2)

 , , , 1E j F kj
δ ≤∑

 , , , 1E j F kk
δ ≤∑

and
 , , , , ,E j F k E j Fk

δ γ≥∑ .

This simply states that, if condition iEF is true when

event E occurs at time Ej, then one and only one event F
will be scheduled at time Ej + tEF(j). Note that changing in-

equalities (2.1) and (2.2) to the following inequalities gives
us a tighter (stronger) formulation.

 1 , , ,() (1)k j EF E j F kl k

F E t j M δ
≥

≤ + + −∑ (2.1)′

 1 , , ,() (1)k j EF E j F kl k
F E t j M δ

≤
≥ + − −∑ . (2.2)′

To test the truth of edge conditions, a counting process

is used. The number of times that event E has occurred by
time t is given by the right-continuous event counting point
process:

0
() limmax{ : }E jC t j E t

ε
ε

→
= ≤ + .

To count the number of times event E has occurred by

the k-th occurrence of event F (at Fk), we will use another
binary variable, σ. For a suitably large value of M2, define

 , , ,
2

k j
E j F k

F E
M

σ
−

≥ and , , , {0,1}E j F kσ ∈ (2.3)

and
 , , ,()E k E j F kj

C F σ=∑ .

Note that if simultaneous events are considered, e.g.,
Fk = Ej, then constraint (2.3) should be changed from ‘≥’
to ‘>’.

Denote by X(t) the value of a generic state variable at
time t with 0X − as its initial value. Let IX denote the set of
events that increment state variable, X(t), by the integer
amounts, iu ′ , and DX denote the set of events that decre-
ment X(t) by amounts id ′ . Then X(Ej) is simply the amount
X(t) has increased minus the amount it has decreased right
after the j-th occurrence of event E, or,

 0() ()

X
j i e je I

X E X uC E−
∈

′= +∑

 ()
X
i e je D
dC E

∈
′−∑ . (2.4)

If iEF is the condition like (X > B), then, for a suitably

large value of M3,

 , ,
3

()j
E j F

X E B
M

γ
−

≥ and , , {0,1}E j Fγ ∈ .

The sums of the binary variables γE,j,F, δE,j,F,k , and

σE,j,F,k are added to the objective function to be minimized
with suitable weights. To the set of constraints imposed by
the edge E-F, we add the definitions of CE(Fk) and the as-
sociated constraints. We will denote a set of constraints
like these as

 EFF E t= + iff iEF.

Chan and Schruben

2.2 Generating Constraints without

Integer or Binary Variables

Most of the aforementioned constraints involve integer (or
binary) variables and therefore the resulting mathematical
programming formulations are mixed integer programming
formulations. Sometimes, however, we might want to repre-
sent a discrete event system as an LP, for example, for dual-
ity sensitivity analysis. Therefore, we provide a method of
transforming equation (2.4) into a set of linear constraints.
Since equation (2.4) consists of more than two events that
contribute in changing the value of X(t), the derivation will
be based on ‘convolutions’ of these events. For the ease of
exposition, we shall illustrate the derivation using an exam-
ple of six events (i.e., IX = {a, b, c} and DX ={d, e, f}, see
inequality (2.5)). We will extend the result to general cases
after presenting this example. First, we note that if all simul-
taneous events are handled correctly, then without loss of
generality, we can assume 1i iu d′ ′= = for all i. For exam-
ple, if one event increments X(t) by 2 units (i.e., 2iu ′ =),
then it can be replaced by two events, each increments X(t)
by 1 unit. Let AX be the initial value of X(t). The feasibility
condition of X(t) says

() () () ()a b cX t C t C t C t= + +

() () () 0 0d e f XC t C t C t A t− − − + ≥ ∀ ≥ . (2.5)

Let ()U t be a “super” event representing the event
that either of event times a(t), b(t), or c(t) has occurred by
time t. Similarly, let ()V t be a super event representing
the event of either d(t), e(t), or f(t) having occurred by time
t. The feasibility condition of X(t) can now be re-written in
terms of the event counting processes as

 () () () 0U V XX t C t C t A= − + ≥ ,

which is equivalent to the event times being constrained by

 , 1,...,

Xi A i XU V i A N− ≤ = + . (2.6)

To represent the relationships between iU and ai, bi,
and ci (and the relationships between iV and di, ei, and fi),
notice that there are (i+1)(i+2)/2 possible permutations that
could cause iU (iV) to happen. This is depicted in Figure
3. Let ()iΑ be the set of all possible permutations and

1 2 3, , ,i i i iα be one of these permutations. Therefore, for each
i = 1,...,N, we have:

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3

, , , 1, 1, ,

, , , 1, , 1,

, , , 1, , , 1

, , , 1 2 3, (, ,) ().

i i i i i i i i

i i i i i i i i

i i i i i i i i

i i i i iU i i i i

α α
α α
α α

α

− −
− −
− −

≥
≥
≥
≤ ∀ ∈ Α

 (2.7)
3111α

ci

bi

ai

3111α

ci

bi

ai

Figure 3: The Geometry Interpretation of
Constraint (2.7)

Similarly, let ()iΒ be the set of all possible permuta-

tions and
1 2 3, , ,i i i iβ be one of these permutations, for each i

= 1,...,N, we have:

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3

, , , 1, 1, ,

, , , 1, , 1,

, , , 1, , , 1

, , , 1 2 3, (, ,) ()

i i i i i i i i

i i i i i i i i

i i i i i i i i

i i i i iV i i i i

β β
β β
β β

β

− −

− −

− −

≥
≥
≥
≤ ∀ ∈ Β

 (2.8)

and the boundary inequalities are:

, ,0,0

,0 ,0

,0,0,

, ,0,0

,0 ,0

,0,0, , 1,..., .

i i i

i i i

i i i

i i i

i i i

i i i

a
b
c
d
e
f i N

α
α
α
β
β
β

≥
≥
≥
≥
≥
≥ =

 (2.9)

Finally, we will add the following terms into our ob-

jective function to be minimized:

 1 2 3 1 2 31 2 3 1 2 3
, , , , , ,1 (, ,) () (, ,) ()

1 1

() ()

.X

N
i i i i i i i ii i i i i i i i i

N A N
i ii i
U V

α β
= ∈Α ∈Β

−
= =

 +
− −
∑ ∑ ∑
∑ ∑

The minus sign before Ui and Vi is crucial. Also, exactly
one of the constraints governing Ui and

1 2 3, , ,i i i iα (Vi and

1 2 3, , ,i i i iβ) must be binding in an optimal solution.
Now, for a general case with |IX| number of events that

increment X(t) and |DX| number of events that decrement
X(t), there are 3

1 20 0 0
1m

m m

i i i
i i i−= = =∑ ∑ ∑ (m = |IX| or

Chan and Schruben

|DX|) permutations for each i and constraints (2.6) to (2.9)
will be changed to:

 , 1,...,

Xi A i XU V i A N− ≤ = + (2.6)′

1 | | 1 | |

1 | | 1 | |

1 | |

, ,..., 1, 1,...,

, ,..., 1, ,..., 1

, ,..., 1 | |, (,...,) ()

I IX X

I IX X

I XX

i i i i i i

i i i i i i

i i i i IU i i i

α α

α α
α

− −

− −

≥

≥
≤ ∀ ∈ Α

 (2.7)′

1 | | 1 | |

1 | | 1 | |

1 | |

, ,..., 1, 1,...,

, ,..., 1, ,..., 1

, ,..., 1 | |, (,...,) ()

D DX X

D DX X

D XX

i i i i i i

i i i i i i

i i i i DV i i B i

β β

β β
β

− −

− −

≥

≥
≤ ∀ ∈

(2.8)′

, ,0,...,0 1

,0,...,0, | |,

, ,0,...,0 1

,0,...,0, | |, , 1,..., ,

X

X

i i i

i i I i

i i i

i i D i

E

E
E

E i N

α

α
β

β

≥

≥
′≥

′≥ =

 (2.9)′

where , 1,...,| |ji XE j I= and , 1,...,| |ji XE j D′ = are the
events that increment and decrement X(t) respectively.

3 G/G/1 QUEUE FORMULATION

In this section, we illustrate the mapping an EG into an LP
using a G/G/1 queue example. A more general example is
given in Schruben (2000). Figure 4 shows the event graph
for a G/G/1 queue with single-class of customers, a batch
size of 1, and a non-preemptive service discipline. Q(t) is
the number of jobs waiting in queue at time t and R(t) is
the number of available resources at time t. Let tai be the
time between the arrival of the i-1-th job and the i-th job;
tsi be the service time of the i-th service.

ta
ts

 ~

 ~

{Q=Q+1} {Q=Q-1),
 R=R-1}

{R=R+1}

Arrive Start Finish

(R>0)

(Q≥0)

Figure 4: EG for a G/G/1 Queue

For this system, the linear program that specifies the

dynamic system trajectory is almost obvious. The non-
negative decision variables in our linear program will be
the event times. Denote Ai, Si, and Fi as the time of the i-th
Arrival event, Start event, and Finish event respectively.
From the feasibility conditions of the two state vari-
ables Q(t) and R(t) and the two unconditional edges, we
will have the following LP formulation:

1
min ()N

i i ii
A S F

=
+ +∑

subject to:

1 1 , 2,..., 1i i iA A ta i N+ += + = − (3.1)
, 1,...,i i iF S ts i N= + = (3.2)
, 1,...,i iS A i N≥ = (3.3)

1 , 1,..., 1i iS F i N+ ≥ = − (3.4)

In fact, we do not need to include the job arrival times

in our objective function since they are not scheduled by
conditional edges. Constraints (3.1) and (3.2) merely say
that time is non-negative. Constraint (3.3) states that the
server cannot start the i-th job until at least i jobs have ar-
rived. Constraint (3.4) ensures that the single server can-
not process more than one job at a time.

4 FORMULATING SCHEDULING PROBLEMS

The linear program for the multiple resource simulation
becomes more interesting when the order in which J jobs
are to be processed is to be determined. Translating the
event graph into what now becomes a mixed integer
scheduling program (MIP) gives a formulation of the clas-
sical parallel server non-preemptive job scheduling prob-
lem, which is in the class of NP-hard problems. Neverthe-
less, solving this MIP for small numbers of jobs gives us
insights into possible efficient heuristics. To add general-
ity, the order in which jobs arrive can also become a policy
decision (say, to derive an order- release rule).

For the parallel resource event graph, if the objective
function is changed to minimize the last finish time and bi-
nary variables are added assigning the i-th job processing
time to the j-th Start event then we have a formulation of
the parallel resource scheduling problem.

The MIP formulation of the scheduling problem de-
rived from the simulation event graph requires the defini-
tion of two additional binary variables defined as:

 θij = 1 if job j is the i-th arrival, 0 otherwise, and
 ηij = 1 if job j is the i-th service, 0 otherwise.

The optimization model of the parallel server job-
scheduling problem with R servers, batch size 1, and J jobs
to minimize makespan is defined as:

min JF

subject to:

, 1,..,i JF F i J≤ = (4.1)
1 , 1,..., 1, 1,..,i i j ijA A ta i J j Jθ+ ≥ + = − = (4.2)

Chan and Schruben

, 1,..., , 1,..,i i j ijF S ts i J j Jη≥ + = = (4.3)
, 1,...,i iS A i J≥ = (4.4)
, 1,...,i R iS F i J R+ ≥ = − (4.5)

1 , 1,...,iji
j Jθ = =∑ (4.6)

1 , 1,...,ijj
i Jθ = =∑ (4.7)

1 , 1,...,iji
j Jη = =∑ (4.8)

1 , 1,..., .ijj
i Jη = =∑ (4.9)

Constraint (4.1) defines the makespan. Constraints

(4.2) to (4.5) are from the Arrive-Arrive edge, Start-Finish
edge, Arrive-Start edge, and Finish-Start edge respectively.
Constraints (4.6) to (4.9) are the assignment constraints.

This formulation can be made tighter by changing
constraints (4.2) and (4.3) to

1 , 1,..., 1i i j ijj
A A ta i Jθ+ ≥ + = −∑ (4.2)′

, 1,...,i i j ijj
F S ts i Jη≥ + =∑ (4.3)′

Small instances (say for J = 15) of the above schedul-

ing problem with αij = 0 can be solved quickly.

5 GENERATING CONSTRAINTS
FOR CLUSTER TOOLS

In the recent years, the use of cluster tools in semiconduc-
tor manufacturing has increased rapidly, causing the per-
formance of cluster tools to become more and more im-
portant. If LP formulations for cluster tools are available,
performance analysis, such as sensitivity analysis (vary-
ing processing times, robot speeds, or number of cham-
bers) could be much easier. Therefore, in this section, we
illustrate how one might derive LP formulations for clus-
ter tool scheduling.

A generic three-event event graph for p-chamber clus-
ter tools is shown in Figure 5, in which chambers are dif-
ferentiated by the parameter k and the notation ‘M’, ‘S’,
and ‘F’ stand for ‘Move’, ‘Start’, and ‘Finish’ events re-
spectively. The edge M(k)-S(k) represents the activity that
the robot moves a wafer to chamber k. For a sequential
processing sequence, the duration of this activity equals the
time needed to pick up a finished wafer at chamber k-1
plus the time required to move and load this wafer in
chamber k; for a parallel processing sequence, other infor-
mation is needed to represent the time for moving a wafer
from the current location to chamber k. The edge S(k)-F(k)
symbolizes the activity of processing a wafer at chamber k.
Once the robot loads the wafer into chamber k, its next ac-
tivity is decided according to condition (i1). Similarly,
once a wafer is finished at chamber k, the system will
choose the next activity to perform according to condition
(i2). By changing conditions (i1) and (i2), one can model
cluster tools under different settings.
M(k) S(k) F(k)tmk tsk

next k (i2)(i1)
next k

k kM(k) S(k) F(k)tmk tsk

next k (i2)(i1)
next k

k k

Figure 5: A Generic Event Graph for Clus-
ter Tools

To simplify exposition, we shall first consider a two-

chamber sequential processing cluster tool with a single
robot and single load lock. Then, we will extend the LP
for two-chamber cluster tools to the LP for p-chamber
cluster tools. The expanded event graph of a two-chamber
cluster tool (without using event parameters to distinguish
similar events) is shown in Figure 6. This event graph is
the same as the one given in Ding and Yi (2004). Events
Mk, Sk, and Fk, k = 1,2 are the events of moving a wafer to
chamber k, start processing a wafer at chamber k, and fin-
ish processing a wafer at chamber k respectively. Events
M3 and F3 are the event of moving a wafer from chamber 2
to the load lock and the event that a finished wafer leaves
the system. Let M1i, S1i, F1i, M2i, S2i, F2i, M3i, and F3i de-
note the times of the i-th occurrence of the respective
events. Define the following state variables: R(t) is the
number of available robot(s) at time t; Pk(t) is the number
of available slots at chamber k (k = 1,2); Wk(t) is the num-
ber of finished wafers waiting at chamber k (k = 1,2). In
this two-chamber cluster tool example, all these variables
are initialized at 1 and can only take on the values of either
0 or 1 during a simulation.

M1 S1 F1 M2
tm1 ts1 S2 F2 M3 F3

ts2
tm2 tm3

{P1=P1-1,
R=R-1}

{R=R+1} {W1=W1+1} {W1=W1-1,
R=R-1,
P2=P2-1}

{R=R+1,
P1=P1+1}

{W2=W2+1} {W2=W2-1,
R=R-1}

{R=R+1,
P2=P2+1}

(P1>0)

(P1>0)

(W2>0)

(W1>0)

(R>0)(R>0) & (P2>0)
M1 S1 F1 M2

tm1 ts1 S2 F2 M3 F3

ts2
tm2 tm3

{P1=P1-1,
R=R-1}

{R=R+1} {W1=W1+1} {W1=W1-1,
R=R-1,
P2=P2-1}

{R=R+1,
P1=P1+1}

{W2=W2+1} {W2=W2-1,
R=R-1}

{R=R+1,
P2=P2+1}

(P1>0)

(P1>0)

(W2>0)

(W1>0)

(R>0)(R>0) & (P2>0)

Figure 6: Conventional EG for 2-Chamber Cluster Tools

In this event graph, there are six events that contribute

in changing the value of R(t), which is exactly the case
considered in Section 2 and therefore can be handled by
constraints (2.6) to (2.9).

Examining the constraints (2.6) to (2.9) more closely,
we find that most of these constraints are either dominated
or identical to constraints generated by the feasibility con-
ditions of other state variables. The only constraints that
are not redundant to those for the feasibility conditions of
other state variables are constraints governing events S1i
and M3i. This special characteristic of the LP leads us to
the following theorem.

Theorem 1 For event graphs of cluster tools with se-
quential processing, the feasibility condition of (2.5) is en-

Chan and Schruben

forced implicitly by other constraints imposed in the event
graph and are hence redundant.

Proof Using Figure 6 as an example, the constraint
enforced by edges M1-S1 and the fact that when the i-th
event of S1 happens, the next event (i.e., i+1-th) of M1 will
only happen after some positive delay imply:

 1 1 1 1i i i iS M tm M= + ≥
and
 1 1, 1i iM S −≥

which are equivalent to

1 1
() () 0 1S MC t C t or− = −

Moreover, the events relationships (enforced by the

feasibility conditions of other state variables) on the graph
make sure that at any time t, if

1 1
() () 1S MC t C t− = − , then

2 2
() () 0S MC t C t− = and

3 3
() () 0F MC t C t− = . Therefore,

the feasibility condition of R(t) ≥ 0 is satisfied. □
In light of Theorem 1, we can eliminate the variable

R(t) from the EG in Figure 6 by introducing a new “activity”
state variable, P3(t). P3(t) is the number of wafers in the ac-
tivities requiring either of the two chambers. This includes
any wafers that may be in the activity of being moved by the
robot from the load lock to chamber 1 or being moved by the
robot from chamber 1 to chamber 2, but not wafers in the
activity of being moved by the robot from chamber 2 to load
lock. The modified event graph is shown in Figure 7. Note
that the edge F3-M1 is no longer needed.

M1 S1 F1 M2
tm1 ts1 S2 F2 M3 F3

ts2
tm2 tm3

{P1=P1-1} {P3=P3+1} {W1=W1+1} {W1=W1-1,
P2=P2-1}

{P1=P1+1} {W2=W2+1} {W2=W2-1,
P3=P3-1}

{P2=P2+1}

(P1>0)

(P3>1)&(W2>0)

(P2>0)&(W1>0) (P3>1)&(W2>0)

(P2>0)&(W1>0)

M1 S1 F1 M2
tm1 ts1 S2 F2 M3 F3

ts2
tm2 tm3

{P1=P1-1} {P3=P3+1} {W1=W1+1} {W1=W1-1,
P2=P2-1}

{P1=P1+1} {W2=W2+1} {W2=W2-1,
P3=P3-1}

{P2=P2+1}

(P1>0)

(P3>1)&(W2>0)

(P2>0)&(W1>0) (P3>1)&(W2>0)

(P2>0)&(W1>0)

Figure 7: EG without State Variable R

What more surprising is that the variable R, represent-

ing the availability of the robot, is not necessary in the sim-
plified simulation. The corresponding simplified scheduling
model does not include explicit representation of the re-
source actually being scheduled! Constraints on this re-
source are all implicit from the activity indicators. This can
be done in this case because it is never optimal to delay
moving jobs into chambers of lower indexes when possible
(e.g., once S2 event happens, the robot always will move a
wafer from the load lock to chamber 1, regardless of how
soon the wafer will be finished at chamber 2).

The EG model in Figure 7 is more concise than Figure
6 in that all the redundancies introduced by R(t) are elimi-
nated and the feasibility of transporting wafers (i.e., robot
cannot move two wafers at a time) is enforced by condi-
tions on the activity variable, P3(t). Figure 7 is also illumi-
nating because the availability of the robot (busy or idle)
can be captured by looking at the number of wafers in ac-
tivities involving chambers 1 and 2, which is equal to the
value of P3(t).

Figure 7 can easily be generalized to model p-chamber
cluster tools. For the k-th chamber, the three event nodes
(Mk, Sk, and Fk) are added with the similar state chances
and conditions. The only difference is that the conditions
on edges S1-Mp+1 and Fp-Mp+1 are changed to (Pp+1>p-
1)&(Wp>0). This condition can be interpreted as starvation
avoidance, in that it is optimal for finished wafers be re-
moved from the system if and only if all chambers are full.
Although this seems strange at the first glance, it can be
shown that this condition will not change the optimal
schedule (or the steady-state throughput).

To derive the constraints, we start from the feasibility
conditions of the state variables. For example, the feasibil-
ity condition of P1(t) states

2 11() () () 1 0S MP t C t C t= − + ≥

which is equivalent to

 1 2, 1 , 2,..., .i iM S i N−≥ =

The equalities governed by edges M1-S1, S1-F1, and
S2-F2 give:

1 2, 1 1 1 2, 1 , 2,...,i i i i iF F tm ts ts i N− −− ≥ + − = (5.1)

The constraints of state variables P2(t), P3(t), W1(t),

W2(t) are derived using a similar procedure, which yields:

2 3, 1 2 2 , 2,...,i i i iF F tm ts i N−− ≥ + = (5.2)

3 1, 1 3 1, 1 , 1,..., 1i i i iF F tm ts i N p+ +− ≥ − = − + (5.3)

2 1 2 2 , 1,...,i i i iF F tm ts i N− ≥ + = (5.4)
3 2 3 , 1,...,i i iF F tm i N− ≥ = (5.5)

Therefore, the LP formulation of a 2-chamber tool is to

minimize all event times subject to constraints (5.1) to (5.5).
The above LP can be generalized to model a p-chamber

cluster tool. This generalized LP is given below without de-
tailed derivations. The constraints BC1k and BC2k are con-
straints for initial states and terminating states of the tool
(‘BC’ is mnemonic for Boundary Conditions). These condi-
tions do not exist in the 2-chamber cluster tools.

 1

1 1
min p N

kik i
F+

= =∑ ∑

Chan and Schruben

subject to:

1, 1 1, 1

1, 1

1 1, 1, 1 1, 1, 1

1, 1 1,

1, 1,

2,1 1, 1 2,1 2,1 1

() :
() :
() :
() :
() :
1 :

k ki k i ki ki k i

p pi p i pi pi

p p i i p p i i p

k k i ki k i k i

p p i pi p i

k k k k k

P t F F tm ts ts
P t F F tm ts
P t F F tm ts
W t F F tm ts
W t F F tm
BC F F tm ts ts

+ − + −

+ −

+ + + − + + −

+ + +

+ +

+ + + +

− ≥ + −
− ≥ +
− ≥ −
− ≥ +
− ≥
− ≥ + − , 1

1, , 1, ,2 :
i

k P N k p k N P N k p k NBC F F tm ts
+

+ − − + − −− ≥ −

6 CONCLUSION

In this paper, we introduced a methodology for systemati-
cally generating mathematical programming models for
optimal resource scheduling. The general approach can be
used to create mathematical programming models for most
discrete event queueing systems. The ideas are illustrated
with two examples: (i) the parallel resource scheduling
problem as a mixed integer programming formulation and
(ii) a cluster tool scheduling problem with sequential proc-
essing as an LP formulation (For some other processing
sequences, the LP formulations can also be derived using
the procedure described in Section 2).

An interesting result is that the special structure of the
mathematical programming formulation of cluster tool dy-
namics guided us to a new concise and illuminating cluster
tools simulation model, which would have been difficult to
construct without the help of the mathematics of optimiza-
tion model. This event graph simulation used “activity”
indicator variables – a concept that should be useful in
other types of EG simulation applications.

Other advantages of the LP formulation include the
benefits we gain when answering the how and what-if
questions regarding the performance of cluster tools, e.g.,
the structure of the LP tells us some properties of the tools
since sensitivity analyses using its dual can be carried out
giving infinite perturbation analysis gradient estimators for
the processing and move times.

 Finally, the structure of the LP for 2-chamber cluster
tool tells us that in an optimal solution, constraint (5.1) is
always binding and exactly two of the constraints from
(5.2) to (5.5) are binding, depending on the processing
times and moving times; this results in only four possible
optimal schedules – a dramatic reduction in the combinato-
rial complexity of this scheduling problem. These four
schedules can be easily compared to get the optimal sched-
ule. We also found from the mathematical programming
representation and EG models together, that the move time
from chamber 1 to chamber 2 does not affect the optimal
solution at all. Similar results for p-chamber cluster tools
can be deduced from their corresponding LPs.

ACKNOWLEDGMENTS

The authors wish to thank the National Science Foundation
through grant DMI–0323765 for partial support of the re-

search reported here.
REFERENCES

Chan, Wai Kin and L. W. Schruben (2003). Properties of
discrete event systems from their mathematical pro-
gramming representations. Proceedings of the 2003
Winter Simulation Conference, ed. Chick, S. E., San-
chez, P. J., Ferrin, D., and Morrice, D. J., 496-502.
Piscataway, NJ, USA, IEEE.

Chan, Wai Kin and Lee W. Schruben (2004). Mathemati-
cal Programming Representations for Multi-server
Tandem Queueing Networks. Technical Report, UC
Berkeley, Berkeley.

Chen, H. X., C. B. Chu and J. M. Proth (1998). Cyclic
scheduling of a hoist with time window constraints.
IEEE Transactions on Robotics and Automation 14(1):
144-152.

Ding, Shengwei and Jingang Yi (2004). An event graph
based simulation and analysis of multi-cluster tools.
Proceedings of the 2004 Winter Simulation Confer-
ence, ed. Ingalls, R. G., Rossetti, M. D., Smith, J. S.,
and Peters, B.A., Piscataway, NJ, USA.

Nehme, D. A. and N. G. Pierce (1994). Evaluating the
throughput of cluster tools using event-graph simula-
tions. IEEE/SEMI 1994 Advanced Semiconductor
Manufacturing Conference and Workshop. Theme -
Manufacturing Excellence: A Global Challenge. ASMC
'94 Proceedings, 189-192. New York, NY, USA, IEEE.

Pederson, D. E. and C. E. Trout (2002). Demonstrated
Benefits of Cluster Tool Simulation. Proceedings of
the International Conference on Modeling and Analy-
sis of Semiconductor Manufacturing (MASM 2002),
58-63, Tempe, AZ,.

Perkinson, T. L., P. K. McLarty, R. S. Gyurcsik and R. K.
Cavin, III (1994). Single-wafer cluster tool perform-
ance: an analysis of throughput. IEEE Transactions on
Semiconductor Manufacturing 7(3): 369-373.

Phillips, L. W. and P. S. Unger (1976). Mathematical pro-
gramming solution of a hoist scheduling program.
AIIE Transactions 8(2): 219-225.

Rostami, S. and B. Hamidzadeh (2002). Optimal scheduling
techniques for cluster tools with process-module and
transport-module residency constraints. IEEE Transac-
tions on Semiconductor Manufacturing 15(3): 341-349.

Schruben, D. and Lee W. Schruben (2000). Graphical Simu-
lation Modeling using SIGMA. Custom Simulation.

Schruben, Lee W. (1983). Simulation Modeling with Event
Graphs. Communications of the Association of Com-
puting Machinery.

Schruben, L. W. (2000). Mathematical programming mod-
els of discrete event system dynamics. Proceedings of
the 2000 Winter Simulation Conference, ed. Joines, J.
A., Barton, R. R., Kang, K., and Fishwick, P. A., 381-
385. Piscataway, NJ, USA, IEEE.

Schruben, Lee W. (2003). Conditional Parametric Petri
Nets and their Mapping to Simulation Event Graphs.
Technical Report, Italy.

Chan and Schruben

Shapiro, G. W. and H. L. W. Nuttle (1988). Hoist Schedul-

ing for a Pcb Electroplating Facility. IIE Transactions
20(2): 157-167.

Srinivasan, R. S. (1998). Modeling and performance analy-
sis of cluster tools using Petri nets. IEEE Transactions
on Semiconductor Manufacturing 11(3): 394-403.

Venkatesh, S., R. Davenport, P. Foxhoven and J. Nulman
(1997). A steady-state throughput analysis of cluster
tools: dual-blade versus single-blade robots. IEEE
Transactions on Semiconductor Manufacturing 10(4):
418-424.

Yen, H.-C. (1999). Integer Linear Programming and the
Analysis of Some Petri Net Problems. Theory Com-
puting Systems.

Zuberek, W. M. (2001). Timed Petri nets in modeling and
analysis of cluster tools. IEEE Transactions on Robot-
ics & Automation 17(5): 562-575.

 AUTHOR BIOGRAPHIES

WAI KIN CHAN is a PhD candidate in the Industrial
Engineering and Operations Research Department at the
University of California, Berkeley. His research interests
include designs of simulation experiments, queueing the-
ory, and computational optimization. His e-mail is
<kin@ieor.berkeley.edu> and his web address is
<www.ieor.berkeley.edu/~kin>.

LEE W. SCHRUBEN is the Chancellor’s Professor
Chairman of the Department of Industrial Engineering and
Operations Research at the University of California, Berke-
ley. His research is on discrete event simulation modeling
and analysis methodologies and a variety of applications –
most recently in the area of bio-production. His e-mail ad-
dress is <schruben@ieor.berkeley.edu>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 568
	02: 569
	03: 570
	04: 571
	05: 572
	06: 573
	07: 574
	08: 575
	09: 576

