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ABSTRACT

We consider single-stage, single-product Make-to-Stock sys-
tems with random demand and random service (production)
rate, where demand shortages at the inventory facility are
backordered. The Make-to-Stock system is modeled as a
stochastic fluid model (SFM), in which the traditional dis-
crete arrival, service and departure stochastic processes are
replaced by corresponding stochastic fluid-flow rate pro-
cesses. IPA (Infinitesimal Perturbation Analysis) gradients
of various performance metrics are derived with respect to
parameters of interest (here, base-stock level and production
rate), and are showed to be unbiased and easy to compute.
The (random) IPA gradients are obtained via sample path
analysis under very mild assumptions, and are inherently
nonparametric in the sense that no specific probability law
need be postulated. The formulas derived can be used in
simulation, as well as in real-life systems.

1 INTRODUCTION

The objective of this paper is to derive IPA gradients (deriva-
tives) of the random variables that model performance met-
rics of interest in Make-to-Stock systems, and to show them
to be unbiased. Specifically, let L(θ) be a random variable,
parameterized by a generic real-valued parameter θ from a
closed and bounded set �. The IPA gradient of L(θ) with

respect to θ is the random variable L
′
(θ) = d

dθ
L(θ), pro-

vided it exists almost surely. Furthermore, L(θ) is said to
be unbiased, if the expectation and differentiation operators

commute, namely, E[ d

dθ
L(θ)] = d

dθ
E[L(θ)]; otherwise,

it is said to be biased.
Sufficient conditions for unbiased IPA derivatives are

given in the following lemma.
Lemma 1 (see Rubinstein and Shapiro (1993),

Lemma A2, p. 70)
An IPA derivative L′(θ) is unbiased, if

(a) For each θ ∈ �, the IPA derivatives L′(θ) exist
with probability 1 (w.p.1).

(b) W.p.1, L(θ) is Lipschitz continuous in �, and the
(random) Lipschitz constants, K(θ), have finite
first moments.

Comprehensive discussions of IPA derivatives and their
applications can be found, for example, in Glasserman
(1991) and Ho and Cao (1991).

Most papers on stochastic production-inventory systems
(and Make-to-Stock systems in particular) postulate specific
probability laws that govern the underlying stochastic pro-
cesses (e.g., Poisson demand arrivals and exponential service
times). For simple systems, such as the one-stage Make-
to-Stock variety, closed-form formulas of key performance
metrics (e.g., statistics of inventory levels and lost sales or
backorders), have been derived as functions of control pa-
rameters. For example, Zipkin (1986) and Karmarkar (1987)
obtain the optimal control of such systems with respect to
batch sizes and re-order points by standard optimization
techniques. For more complex Make-to-Stock systems,
such as the multi-stage serial variety, closed-form formulas
are not available. Buzacott, Price, and Shanthikumar (1991)
carried out sample path analysis for a 2-stage production
system, governed by the continuous-time base-stock policy.
Diffusion models and deterministic fluid models have been
proposed in order to mitigate the analytical and computa-
tional complexity of performance evaluation and optimal
control. For example, Wein (1992) used a diffusion process
to model a multi-product, single-server Make-to-Stock sys-
tem, while Veatch (2002) discussed diffusion and fluid-flow
models of serial Make-to-Stock systems. Note, however,
that diffusion models require a heavy traffic condition to
be valid approximations (Wein 1992). In a similar vein,
while deterministic fluid-flow models provide valuable in-
sights into the control rules of such systems, deterministic
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modeling may well result in substantial numerical errors
(Veatch 2002).

Simulation has been widely used to study the perfor-
mance of complex production systems. Under periodic-
review policies, system performance is evaluated only at
specific review times. For example, Glasserman and Tayur
(1995) considered a class of production systems under
periodic-review modified base-stock policy, and estimated
via simulation its performance metrics and expected IPA
derivatives. Fu (1994) derived IPA derivatives for production
systems under periodic-review with the (s, S) policy. In con-
trast, discrete-event simulation can track system performance
continuously. For instance, Caramanis and Liberopoulos
(1992) developed a numerical technique based-on discrete-
event simulation and IPA to design a near optimal flow
controller for failure-prone manufacturing systems. All in
all, most papers on stochastic production-inventory systems
postulate a specific underlying probability law, and focus
on off-line control and optimization algorithms.

The stochastic fluid model (SFM) improves on the
aforementioned models in that it models fluid-flow queueing
systems subject to randomness. Like in traditional queueing
systems, an SFM consists of a buffer and a server. How-
ever, the operation of the system differs from its traditional
counterpart in that the workload moves like (continuous)
fluid rather than (discrete) jobs. More specifically, a fluid
stream is injected into a buffer according to some stochastic
arrival-rate process, and is discharged by a server according
to some stochastic service-rate process.

Finally, we point out that, ceteris paribus, SFM systems
enjoy important advantages over their discrete counterparts.
First, IPA gradients in SFM setting are unbiased, while their
counterparts in discrete queueing systems are by and large
biased (Heidelberger et al. 1988). Second, IPA gradients in
SFM setting are nonparametric in the sense that no proba-
bility law need be postulated, so that they may be computed
both in simulation and real-life systems. Consequently, IPA
gradients, derived in SFM setting, can provide important
information and insights into their discrete counterparts,
by applying gradient formulas obtained in SFM setting to
traditional queueing systems.

Motivated by the considerations above, Wardi et al.
(2002) derived IPA gradients for the loss volume and buffer-
workload time average, for simple queues in SFM setting;
each of these metrics was differentiated with respect to
buffer size, a parameter of the arrival rate process and a
parameter of the service rate process. The paper showed the
IPA gradients to be unbiased, easily computable and non-
parametric. Most recently, Paschalidis et al. (2004) treated
multi-stage production-inventory systems with continuous-
time base-stock policy in SFM setting, and computed IPA
gradients of the time averaged inventory level and service
level with respect to base-stock levels, and used them to
determine optimal base-stock levels at each stage.
In this paper, we derive the IPA gradients of the time
averaged inventory level and backorders for the class of
single-product, single-stage Make-to-Stock systems. Our
proof methodology differs markedly from Paschalidis et al.
(2004), and we further derive new IPA formulas for the time
averaged inventory level and backorders with respect to a
production rate parameter. Our ultimate goal is to use the
gradient information for control and optimization of supply
chains, which will be the subject of further research.

Throughout the paper, we use the following notational
conventions and terminology. The indicator function of set
A is denoted by 1A, and we denote x+ = max{x, 0}. A
function f (x) is said to be locally differentiable at x if it
is differentiable in a neighborhood of x; it is said to be
locally independent of x if it is constant in a neighborhood
of x.

The rest of the paper is organized as follows. Section 2
presents the production-inventory model under study. Sec-
tion 3 derives IPA gradient formulas for the MTS systems
with backorders. Finally, Section 4 summarizes the results
and discusses future work.

2 MAKE-TO-STOCK SYSTEMS
WITH BACKORDERS

Consider the traditional single-stage, single-product Make-
to-Stock system (MTS system, for short), consisting of a
production facility and an inventory facility. The two facili-
ties interact: the latter sends orders to the former, while the
former produces stock to replenish the latter. The production
facility is comprised of a queue that houses a production
server (a single machine, a group of machines or a production
line), preceded by an infinite buffer that holds outstanding
production orders. We assume that the production facil-
ity has an unlimited supply of raw material, so it never
starves. The inventory facility satisfies incoming demands
on a first come first serve (FCFS) basis, and is controlled by
a continuous-time base-stock policy with some base-stock
level S > 0. More specifically, the inventory and production
facilities are coupled: the inventory facility places orders
as discrete jobs in the production facility’s buffer, while
the production facility restocks the inventory facility. The
demand process consists of an interarrival-time process of
demands and their random magnitudes. Demands arrive at
the inventory facility and are satisfied from inventory on
hand (if available). Otherwise, the shortage is backordered
and the demand waits in a FCFS buffer at the inventory fa-
cility until the production facility replenishes the inventory
facility with the shortage amount.

We now proceed to map the traditional discrete MTS
system into an SFM version, shown in Figure 1. Here, the
level-related stochastic processes are fluid volumes, where
I (t) is the volume of inventory on-hand at time t , B(t) is
the volume of backorders at time t , and X(t) is the volume
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of outstanding orders at time t . In a similar vein, Traffic-
related stochastic processes model random flow rates, where
α(t) is the rate of incoming demands at time t . µ(t) is
the production rate at time t , λ(t) is the rate of incoming
outstanding orders at time t , and ρ(t) is the traffic rate of
product replenishment at time t . Similarly to Wardi et
al. (2002), we define two types of events along a sample
path. We say that an exogenous event occurs whenever a
jump occurs in the sample path of {α(t)} or {µ(t)}, and
that an endogenous event occurs whenever a time interval
is inaugurated, in which X(t) = 0 or X(t) = S.

Figure 1: The Queue-Inventory System with Backorders

We impose the following mild regularity conditions (cf.
Wardi et al. (2002)).

Assumption 1

(a) The processes {α(t)} and {µ(t)} have right-
continuous sample paths that are piecewise
continuously-differentiable, w.p.1.

(b) Each of the processes, {α(t)} and {µ(t)}, has a
finite number of discontinuities in any finite time
interval, w.p.1.

(c) No multiple events occur simultaneously, w.p.1.

Let [0, T ] be a finite time interval. In this paper, we
will be interested in the following performance metrics: the
time average of the fluid volume of inventory on-hand over
the interval [0, T ], given by

LI = 1

T

∫ T

0
I (t) dt, (1)

and the time average of the fluid volume of backorders over
the interval [0, T ], given by

LB = 1

T

∫ T

0
B(t) dt. (2)

The parameters of interest are the base-stock level of the
inventory facility, S, and a parameter of the production rate
process {µ(t)} (to be defined later). Observe that the metrics
LI and LB are random variables for each T . However their
dependence on the sample path and on T is suppressed to
simplify the notation.

Let θ ∈ � denote a generic parameter of interest with
a closed and bounded domain, �. We write S(θ), µ(θ, t),
LI (θ), LB(θ) and so on, to explicitly display the dependence
of a performance random variable on its parameter of interest.
Our objective is to derive closed-form formulas for the

IPA gradients L′
I (θ) = d

dθ
LI (θ) and L′

B(θ) = d

dθ
LB(θ)

in SFM setting, using sample path analysis, and to show
them to be unbiased.

The interval [0, T ] can be partitioned into two types of
alternating periods:

1. Surplus periods are periods during which B(θ, t) =
0.

2. Shortage periods are periods during which
B(θ, t) > 0.

For each θ ∈ �, let Ij (θ), j = 1, . . . , J (θ), be the
successive surplus periods in [0, T ], and let Bk(θ), k =
1, . . . , K(θ), be the successive shortage periods in [0, T ],
so that

[0, T ] =

J (θ)⋃

j=1

Ij (θ)


 ⋃ 

K(θ)⋃
k=1

Bk(θ)


 , (3)

where |J (θ) − K(θ)| ≤ 1. We can now rewrite Eqs. (1) -
(2) as

LI (θ) = 1

T

∫ T

0
I (θ, t) dt = 1

T

J(θ)∑
j=1

∫
Ij (θ)

I (θ, t) dt, (4)

LB(θ) = 1

T

∫ T

0
B(θ, t) dt = 1

T

K(θ)∑
k=1

∫
Bk(θ)

B(θ, t) dt. (5)

We next proceed to derive IPA gradients for the MTS
system, assuming throughout the following initial condi-
tions: I (0) = S (full inventory), B(0) = 0 (no backorders),
and X(0) = 0 (empty outstanding order buffer).

3 IPA DERIVATIVES

In the SFM version of the MTS model with backorders,
{λ(t)} is given by

λ(t) = α(t), t ≥ 0, (6)

and {ρ(t)} is given by

ρ(t) =
{

µ(t), if X(t) > 0
min{µ(t), λ(t)}, if X(t) = 0

(7)
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This model further satisfies the conservation relation

I (t) − B(t) + X(t) = S, (8)

where the inventory volume process is given by

I (t) = [S − X(t)]+, (9)

the backorder volume process is given by

B(t) = [X(t) − S]+, (10)

and the dynamics of the volume process of outstanding
orders, {X(t)}, in the production facility are governed by
the one-side stochastic differential equation,

dX(t)

dt+
=

{
0, X(t) = 0 and α(t) ≤ µ(t),

α(t) − µ(t), otherwise.
(11)

Observe that the stochastic derivative above does not depend
on S, but only on α(t) and µ(t).

3.1 IPA Gradients with Respect to the Base-Stock Level

In this section we treat the IPA derivatives, L
′
I (θ) and L

′
B(θ),

where θ is the base-stock level, S(θ) = θ , θ ∈ �. The
following assumptions are made throughout this section.

Assumption 2

(a) The processes {α(t)} and {µ(t)} are independent of
the parameter θ .

(b) The random derivatives L′
I (θ) and L′

B(θ) exist w.p.1.
Note that this assumption already follows from
Assumption 1 in the special case that {α(t)} and
{µ(t)} have piecewise-constant sample paths.

Notice that the time points at which {I (θ, t)} reaches S

or 0 are generally functions of θ . However, the time points
at which {I (θ, t)} ceases to be full (equivalently, {X(t)}
ceases to be zero) are locally independent of θ , because they
correspond to a jump or a change of sign in {α(t) − µ(t)},
and this difference process is independent of θ by (a) of
Assumption 2.

Let Ij (θ) = [Gj(θ), Hj (θ)), j = 1, . . . , J (θ), denote
the j -th surplus period in [0, T ], where Gj(θ) is its start
point and Hj(θ) is its end point (note the dependence on
the base-stock level, θ , except for the initial G1 = 0). We
use the convention that HJ(θ)(θ) = T when I (θ, T ) > 0
(i.e., when a surplus period is still in progress at time T ).
A generic sample path is depicted in Figure 2.
By Assumption 1 and 2, the sample paths of Gj(θ) and
Hj(θ)) are locally differentiable functions of θ , w.p.1.;
furthermore, the number of surplus periods, J (θ), is locally
independent of θ , w.p.1.
Figure 2: A Generic Sample Path of an MTS System with
Backorders

Proposition 1 For every θ ∈ �,

L′
I (θ) = 1

T

J(θ)∑
j=1

[Hj(θ) − Gj(θ)]

= 1

T

∫ T

0
1{I (θ,t)>0} dt. (12)

Proof. From Eq. (4),

LI (θ) = 1

T

J(θ)∑
j=1

∫ Hj (θ)

Gj (θ)

I (θ, t) dt.

Since J (θ) is locally independent of θ , differentiating the
equation above with respect to θ yields

L′
I (θ) = 1

T

J(θ)∑
j=1

d

dθ

∫ Hj (θ)

Gj (θ)

I (θ, t) dt. (13)

Next, for each j = 1, . . . , J (θ),

d

dθ

∫ Hj (θ)

Gj (θ)

I (θ, t) dt = − I (θ, Gj (θ))
dGj (θ)

dθ

+ I (θ, Hj (θ))
dHj (θ)

dθ
+

∫ Hj (θ)

Gj (θ)

dI (θ, t)

dθ
dt. (14)

For j = 1, dG1(θ)/dθ = 0, since G1 = 0 is independent of
θ , while for j = 2, . . . , J (θ), I (θ, Gj (θ)) = 0 by definition.
Similarly, I (θ, Hj (θ)) = 0 for j < J(θ) and for j = J (θ)

with HJ(θ)(θ) < T by definition. For j = J (θ) with
HJ(θ)(θ) = T one has dHJ(θ)(θ)/dθ = 0, since in this case,
HJ(θ)(θ) is locally independent of θ . Hence, the first two
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terms on the right-hand side of Eq. (14) vanish for all j =
1, . . . , J (θ). Furthermore, I (θ, t) = S(θ) − X(t) during
the surplus periods by Eq. (9), and X(t) is independent of
θ = S(θ) by Eq. (11) and the initial condition X(0) = 0,

whence
dI (θ, t)

dθ
= 1 over (Gj (θ), Hj (θ)). It follows that

∫ Hj (θ)

Gj (θ)

dI (θ, t)

dθ
dt = [Hj(θ) − Gj(θ)]. (15)

Eq. (12) now follows from Eq. (15) in view of Eqs. (13)
- (15).
We point out that Proposition 1 agrees with the result
obtained in Paschalidis et al. (2004) by other methods.

Next, observe that Bk(θ) = [Hk(θ), Gk+1(θ)), k =
1, . . . , K(θ), denotes the k-th shortage period in [0, T ],
where Hk(θ) is its start point and Gk+1(θ) is its end point
(note the dependence on the base-stock level θ ). If I (θ, T ) >

0, then K(θ) = J (θ) − 1, while if B(θ, T ) > 0, then
K(θ) = J (θ). We use the convention that GK(θ)+1(θ) = T

when B(θ, T ) > 0 (i.e., when a shortage period is still in
progress at time T ). By Assumption 1 and 2, the realizations
of Hk(θ) and Gk+1(θ) are locally differentiable functions
of θ , and the number of shortage periods, K(θ), is locally
independent of θ , w.p.1.

Proposition 2 For every θ ∈ �,

L′
B(θ) = − 1

T

K(θ)∑
k=1

[Gk+1(θ) − Hk(θ)]

= − 1

T

∫ T

0
1{B(θ,t)>0} dt. (16)

Proof. From Eq. (8),

B(θ, t) = I (θ, t) − S(θ) + X(t), t ∈ [0, T ].

Substituting the formula above into Eq. (5), one has

LB(θ) = 1

T

∫ T

0
[I (θ, t) − S(θ) + X(t)] dt

= LI (θ) − S(θ) + 1

T

∫ T

0
X(t) dt. (17)

Since S(θ) = θ and {X(t)} does not depend on θ , differ-
entiating Eq. (17) with respect to θ yields,

L′
B(θ) = L′

I (θ) − 1.

Eq. (16) now follows by substituting Eq. (12) into the
above, since by Eq. (3), [0, T ] can be partitioned into
surplus and shortage periods.

To show that the IPA gradients are unbiased, consider
any θ, θ + �θ ∈ �. Since {X(t)} is independent of θ and
S(θ) = θ , we have from Eq.(9),

|I (θ + �θ, t) − I (θ, t)|
= |[S(θ + �θ) − X(t)]+ − [S(θ) − X(t)]+|
≤ |�θ |, (18)

and from Eq. (10),

|B(θ + �θ, t) − B(θ, t)|
= |[X(t) − S(θ + �θ)]+ − [X(t) − S(θ)]+|
≤ |�θ |. (19)

Proposition 3 Under Assumption 1 and 2, the IPA
derivatives L′

I (θ) and L′
B(θ) are unbiased.

Proof. To show that L′
I (θ) and L′

B(θ) are unbiased, we
use Lemma 1. First, Condition (a) of Lemma 1 is satisfied
by part (b) of Assumption 2 for both L′

I (θ) and L′
B(θ).

Next, by Eq. (18),

|LI (θ + �θ) − LI (θ)|
= 1

T

∣∣∣∣
∫ T

0
[I (θ + �θ, t) − I (θ, t)] dt

∣∣∣∣
≤ 1

T

∫ T

0
|I (θ + �θ, t) − I (θ, t)| dt ≤ |�θ |, (20)

and by Eq. (19),

|LB(θ + �θ) − LB(θ)|
= 1

T

∣∣∣∣
∫ T

0
[B(θ + �θ, t) − B(θ, t)] dt

∣∣∣∣
≤ 1

T

∫ T

0
|B(θ + �θ, t) − B(θ, t)| dt ≤ |�θ |. (21)

Eqs. (20) and (21) establish that Condition (b) of Lemma
1 holds for both L′

I (θ) and L′
B(θ). The proof of the

proposition is complete.

3.2 IPA Gradients with Respect to the Production Rate

In this section we treat the IPA derivatives, L
′
I (θ) and L

′
B(θ),

where θ is a parameter of the production rate, µ(θ, t), such
that for all θ ∈ � and all t ∈ [0, T ],

dµ(θ, t)

dθ
= µ′(θ, t) = 1. (22)

This functional form corresponds to a linear relationship
between θ and the production rate. More picturesquely,
θ can be viewed as a “knob” whose “turning" scales the
production rate.

The following assumptions are made throughout this
section.
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Assumption 3

(a) The process {α(t)} and the base-stock level, S, are
independent of the parameter θ .

(b) The random derivatives L′
I (θ) and L′

ζ (θ) exist, w.p.1.

The surplus periods, Ij (θ) = [Gj(θ), Hj (θ)), gener-
ally depend on θ for all j = 1, . . . , J (θ), except for the
initial G1 = 0. Let [Uj,m(θ), Vj,m(θ)), m = 1, . . . , Mj (θ),
be the subintervals in Ij (θ) during which I (t) = S,
with the notational conventions V1,0(θ) = G1 = U1,1,
Vj,0(θ) = Gj(θ) for j > 1, and Uj,Mj (θ)+1(θ) = Hj(θ), for
all j = 1, . . . , J (θ). We let HJ(θ)(θ) = T if I (θ, T ) > 0.
Assumption 1 and 3 imply that all Uj,m(θ) and Vj,m(θ)

are locally differentiable functions with respect to θ . For
all t ∈ [Vj,m(θ), Uj,m+1(θ)) in surplus period, Ij (θ), let
Fj,m(θ) be the (common) most recent time point at which
the on-hand inventory was S. Note that the Fj,m(θ) are
well-defined by the assumption I (0) = S (though they may
fall in the current or preceding surplus periods). Assumption
1 and 3 imply that each Fj,m(θ) is a locally continuously-
differentiable function of θ .

From the definitions above it follows that for all 1 ≤
j ≤ J (θ) and 1 ≤ m ≤ Mj(θ),

∫ Vj,m(θ)

Uj,m(θ)

dI (θ, t)

dθ
dt = 0, (23)

while Eq. (9) implies for all 1 ≤ j ≤ J (θ) and 1 ≤ m ≤
Mj(θ),

I (θ, t) = S − X(θ, t) > 0, t ∈ (Vj,m(θ), Uj,m+1(θ)).

(24)

Furthermore, Eq. (11) implies for all 1 ≤ j ≤ J (θ) and
1 ≤ m ≤ Mj(θ),

dX(θ, t)

dt+
= α(t) − µ(θ, t), t ∈ (Fj,m(θ), Uj,m+1(θ)),

(25)

whence,

X(θ, t) = X(θ, Fj,m(θ)) +
∫ t

Fj,m(θ)

[α(τ) − µ(θ, τ )] dτ

=
∫ t

Fj,m(θ)

[α(τ) − µ(θ, τ )] dτ, t ∈ (Fj,m(θ), Uj,m+1(θ)),

(26)

since X(θ, Fj,m(θ)) = 0.
Proposition 4 For every θ ∈ �,

L′
I (θ) = 1

2T

M1(θ)∑
m=1

[U1,m+1(θ) − V1,m(θ)]2

+ 1

2T

J(θ)∑
j=2

{ [Uj,1(θ) −Fj,1(θ)]2 − [Gj(θ) −Fj,1(θ)]2

+
Mj (θ)∑
m=1

[Uj,m+1(θ) − Vj,m(θ)]2}. (27)

Proof. From Eqs. (4), we can write

L
′
I (θ) = 1

T

J(θ)∑
j=1

d

dθ

∫ Hj (θ)

Gj (θ)

I (θ, t) dt, (28)

since J (θ) is locally independent of θ . Differentiating each
term in Eq. (28) with respect to θ yields,

d

dθ

∫ Hj (θ)

Gj (θ)

I (θ, t) dt = −I (θ, Gj (θ))
dGj (θ)

dθ

+ I (θ, Hj (θ))
Hj (θ)

dθ
+

∫ Hj (θ)

Gj (θ)

dI (θ, t)

dθ
dt

=
∫ Hj (θ)

Gj (θ)

dI (θ, t)

dθ
dt, j = 1, . . . , J (θ), (29)

and the proof already appears in Proposition 1. Furthermore,
from Eq.(23), we can rewrite Eq. (29) for each j =
1, . . . , J (θ) as

d

dθ

∫ Hj (θ)

Gj (θ)

I (θ, t) dt =
Mj (θ)∑
m=0

∫ Uj,m+1(θ)

Vj,m(θ)

dI (θ, t)

dθ
dt,

(30)

since the Mj(θ) is locally independent of θ .
Next, differentiate Eq. (24), and substitute Eq. (25)

into the result. In view of Eq. (26) we can now deduce for
every t ∈ (Vj,m(θ), Uj,m+1(θ)) the representation,

dI (θ, t)

dθ
= −dX(θ, t)

dθ

= − d

dθ

∫ t

Fj,m(θ)

[α(τ) − µ(θ, τ )] dτ

= [α(F+
j,m(θ)) − µ(θ, F+

j,m(θ))] dFj,m(θ)

dθ

+
∫ t

Fj,m(θ)

dτ = t − Fj,m(θ). (31)
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To see that, note that only two cases are possible for
α(t) − µ(θ, t): (i) either it jumps at t = Fj,m(θ) (im-
plying dFj,m(θ)/dθ = 0, since the jumps of both {α(t)}
and {µ(t)} are locally independent of θ ), or (ii) it crosses
zero continuously at t = Fj,m(θ) (implying α(F+

j,m(θ)) −
µ(θ, F+

j,m(θ)) = α(Fj,m(θ)) − µ(θ, Fj,m(θ)) = 0). Either
way, the first term on the third right-hand equality of (31)
vanishes, and the rest follows from Eq. (22).

Next, substituting Eq. (31) into Eq. (30), we can now
write for j = 1, . . . , J (θ),

∫ Hj (θ)

Gj (θ)

dI (θ, t)

dθ
dt =

Mj (θ)∑
m=0

∫ Uj,m+1(θ)

Vj,m(θ)

[t − Fj,m(θ)] dt

=
Mj (θ)∑
m=0

{1

2
[U2

j,m+1(θ) − V 2
j,m(θ)]

− Fj,m(θ)[Uj,m+1(θ) − Vj,m(θ)]}. (32)

Eq. (27) now follows by substituting Eq. (32) into Eq.
(29), and then substituting Eq. (29) into Eq. (28), and
noting the identities V1,0 = U1,1 = G1 = 0 (independent
of θ ), and Fj,m(θ) = Vj,m(θ) for all j = 1, . . . , J (θ) and
m = 2, . . . , Mj (θ).

We next derive L′
B(θ). For θ ∈ �, the shortage periods,

Bk(θ) = [Hk(θ), Gk+1(θ)), generally depend on θ for all
k = 1, . . . , K(θ). By Assumption 1 and 3, its end points are
locally differentiable functions with respect to θ . For each
shortage period, Bk(θ), let F̃k(θ) be the most recent time
point at which the on-hand inventory was S. The existence
of the F̃k(θ) follows from the initial condition I (0) = S. In
view of Assumption 1 and 3, F̃k(θ) is a locally continuously-
differentiable function of θ . Observe that F̃k(θ) may or may
not belong to the immediately preceding surplus period.

Eq.(10) implies for all 1 ≤ k ≤ K(θ),

B(θ, t) = X(θ, t)−S > 0, t ∈ (Hk(θ), Gk+1(θ)). (33)

Furthermore, Eq. (11) implies for all 1 ≤ k ≤ K(θ),

dX(θ, t)

dt+
= α(t)−µ(θ, t), t ∈ (F̃k(θ), Gk+1(θ)), (34)

whence, since X(θ, F̃k(θ)) = 0,

X(θ, t) = X(θ, F̃k(θ)) +
∫ t

F̃k(θ)

[α(τ) − µ(θ, τ )] dτ

=
∫ t

F̃k(θ)

[α(τ) − µ(θ, τ )] dτ, t ∈ (F̃k(θ), Gk+1(θ)).

(35)
Proposition 5 For every θ ∈ �,

L′
B(θ) = − 1

2T

K(θ)∑
k=1

{[Gk+1(θ) − F̃k(θ)]2

−[Hk(θ) − F̃k(θ)]2}. (36)

Proof. From Eq. (5) we obtain by differentiation with
respect to θ ,

L′
B(θ) = 1

T

K(θ)∑
k=1

d

dθ

∫ Gk+1(θ)

Hk(θ)

B(θ, t) dt, (37)

since K(θ) is locally independent of θ as a consequence of
Assumption 1 and 3. Differentiating each term in Eq. (37)
with respect to θ yields,

d

dθ

∫ Gk+1(θ)

Hk(θ)

B(θ, t) dt = −B(θ, Hk(θ))
dHk(θ)

dθ

+ B(θ, Gk+1(θ))
dGk+1(θ)

dθ
+

∫ Gk+1(θ)

Hk(θ)

dB(θ, t)

dθ
dt

=
∫ Gk+1(θ)

Hk(θ)

dB(θ, t)

dθ
dt, k = 1, . . . , K(θ). (38)

To see that, note that if B(θ, T ) = 0, then by assumption,
B(θ, Hk(θ)) = B(θ, Gk+1(θ)) = 0 for all k = 1, . . . , K(θ),

while if B(θ, T ) > 0, then
dGK(θ)+1(θ)

dθ
= 0 because

GK(θ)+1(θ) = T is locally independent of θ .
Next, differentiate Eq. (33), and substitute Eq. (34)

into the result. In view of Eq. (35), we can now deduce
for every t ∈ (Hk(θ), Gk+1(θ)) the representation,

dB(θ, t)

dθ
= dX(θ, t)

dθ

= d

dθ

∫ t

F̃k(θ)

[α(τ) − µ(θ, τ )] dτ

= −[α(F̃+
k (θ)) − µ(θ, F̃+

k (θ))] dF̃k(θ)

dθ

−
∫ t

F̃k(θ)

dτ = F̃k(θ) − t. (39)

To see that, note that only two cases are possible for
−[α(t)−µ(θ, t)]: (i) either it jumps at t = F̃k(θ) (implying
dF̃k(θ)/dθ = 0, since the jumps of both {α(t)} and {µ(t)}
are locally independent of θ ), or (ii) it crosses zero contin-
uously at t = F̃k(θ) (implying α(F̃+

k (θ))−µ(θ, F̃+
k (θ)) =

α(F̃k(θ)) − µ(θ, F̃k(θ)) = 0). Either way, the first term on
the third right-hand equality of (39) vanishes, and the rest
follows from Eq. (22).
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Next, substituting Eq. (39) into Eq. (38), we can now
write for k = 1, . . . , K(θ),

d

dθ

∫ Gk+1(θ)

Hk(θ)

B(θ, t) dt =
∫ Gk+1(θ)

Hk(θ)

[F̃k(θ) − t] dt

=
K(θ)∑
k=1

{F̃k(θ)[Gk+1(θ) − Hk(θ)]

− 1

2
[G2

k+1(θ) − H 2
k (θ)]}. (40)

Eq. (36) now follows by substituting Eq. (40) into Eq.
(37).

Proposition 6 Under Assumption 1 and 3, the IPA
derivatives L′

I (θ) and L′
B(θ) are unbiased.

Proof. Condition (a) of Lemma 1 is satisfied by part
(b) of Assumption 3, so it remains to prove Condition (b)
of Lemma 1.

Observe that Eq. (11) is a special case (for an unlimited
buffer capacity) of Eq. (2.1) in Wardi and Melamed (2001).
Since our initial condition is the same as that of Wardi and
Melamed (2001), Proposition 3.2 (ibid.) implies that for
any θ, θ + �θ ∈ �,

|X(θ + �θ, t) − X(θ, t)| ≤
∫ t

0
|�θ | dτ = |�θ | t. (41)

From (41), we readily obtain by appeal to Eq. (9),

|I (θ + �θ, t) − I (θ, t)|
= |[S − X(θ + �θ, t)]+ − [S − X(θ, t)]+|
≤ max{|X(θ + �θ, τ) − X(θ, τ )| : 0 ≤ τ ≤ t}
≤ |�θ | t, (42)

and similarly,

|B(θ + �θ, t) − B(θ, t)| ≤ |�θ | t. (43)

Finally, by Eq. (42),

|LI (θ + �θ) − LI (θ)|
= 1

T

∣∣∣∣
∫ T

0
[I (θ + �θ, t) − I (θ, t)] dt

∣∣∣∣
≤ 1

T

∫ T

0
|I (θ + �θ, t) − I (θ, t)| dt

≤ 1

T

∫ T

0
|�θ |t dt = T

2
|�θ |, (44)

and by Eq. (43),

|LB(θ + �θ) − LB(θ)| ≤ T

2
|�θ |. (45)
4 CONCLUSIONS

We have derived IPA gradient formulas for the MTS system
with backorders in SFM setting for the time averaged inven-
tory level and backorders level with respect to the base-stock
level and a parameter of the production rate process. The
IPA gradients derived are unbiased, nonparametric and their
formulas are easy to compute and intuitive.

The methodology employed in this paper holds out the
promise of generalizations and extensions. First, in order to
implement IPA-based control schemes, the formulas need
to be generalized to arbitrary initial conditions. This is so,
because the system may potentially be in any state when
a control action is applied, at which point the IPA gradi-
ent computation needs to be restarted from that (general)
state. Second, control schemes can be devised and readily
implemented, based on both system state and IPA gradient
information. Finally, our methodology can be extended to
MTS systems with lost sales and beyond. Future extensions
and generalizations will be reported elsewhere.
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