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ABSTRACT

We present a new random search method for solving sim-
ulation optimization problems. Our approach emphasizes
the need for maintaining the right balance between explo-
ration and exploitation during various stages of the search.
Exploration represents global search for promising solu-
tions within the entire feasible region, while exploitation
involves local search of promising subregions. Preliminary
numerical results are provided that show the performance
of the method applied to solve deterministic and stochastic
optimization problems.

1 INTRODUCTION

Consider an optimization problem of the form

max
θ∈�

f (θ) = E[Xθ ], (1)

where f : � → R is the objective function, � is the
discrete feasible region, and Xθ is a random variable whose
distribution depends on the decision parameter θ , for all
θ ∈ �. We further assume that for any given solution θ ∈ �,
the expected value in (1) cannot be computed exactly, but
instead can only be estimated via a “black-box” simulation
procedure. This feature, together with the necessity to
optimize, make the problem in (1) especially difficult (see
Fu 2002).

In past decades, there has been a growing interest in
solving discrete simulation optimization problems. The re-
cent work includes several newly developed random search
methods, such as the stochastic ruler methods of Yan and
Mukai (1992) and Alrefaei and Andradóttir (2001, 2004),
the stochastic comparison methods of Gong, Ho, and Zhai
(1999) and Andradóttir (1999), the simulated annealing al-
gorithms of Gelfand and Mitter (1989), Gutjahr and Pflug
(1996), and Alrefaei and Andradóttir (1999), and the nested
partitions methods of Shi and Ólafsson (2000) and Pichit-
lamken and Nelson (2003). For recent overviews on the
topic, including discussion of simulation optimization tech-
niques other than random search, the reader is referred to
Andradóttir (1998), Fu (2002), and references therein.

This paper focuses on developing a new random search
approach called Balanced Explorative and Exploitative
Search (BEES) for solving simulation optimization prob-
lems. We also discuss the tradeoffs between searching
the entire feasible region (exploration) and locally search-
ing promising subregions (exploitation). The proposed ap-
proach suggests adaptive use of exploration and exploitation
during various stages of the search. For more comprehen-
sive development of the approach, convergence proofs, and
additional numerical results, the interested reader is referred
to Prudius and Andradóttir (2004).

The remainder of the paper is organized as follows.
In Section 2, we present a BEES algorithm for optimizing
deterministic functions and provide preliminary numerical
results. In Section 3, we modify the BEES method of Section
2 to handle noisy responses and illustrate its performance
via a numerical example. Concluding remarks are given in
Section 4.

2 DETERMINISTIC OPTIMIZATION

In this section, we discuss the BEES approach for optimizing
deterministic objective functions. As its name indicates,
this approach attempts to maintain the appropriate balance
between exploration and exploitation. Note that if a good
subregion within � has been identified, then it is sensible
to spend more effort searching locally for better solutions.
By contrast, if a good subregion has not been found, then
more priority should be given to exploring the search space
�. This observation suggests that it is appropriate to switch
from exploration to exploitation at some point during the
search. Unfortunately, it can be difficult to determine when
this switch should take place. Observe that if this switch
is performed either too early or too late in the search, then
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the convergence to the optimal solution(s) might be slow.
Our approach takes a different perspective. We propose
maintaining the appropriate balance between exploitation
and exploration during the various stages of the search. We
now present a BEES algorithm in Section 2.1 and provide
numerical results for this algorithm in Section 2.2.

2.1 BEES Algorithm for Deterministic Problems

In this section, we describe a specific version of the BEES
method. This approach adaptively alternates between
sampling from different distributions. One sampling
distribution aims at exploring the entire feasible region
(exploration or global search), while another class of
distributions (one for each feasible point) aims at searching
promising subregions (exploitation or local search). The
search nature (global or local) is reviewed each time k

points have been sampled. Let f ∗ be the function value of
the best solution θ∗ found so far (in this case maximum,
see equation (1)) and let f ∗

l be the function value of the
best point found the last time local search was performed.
Define � to be the improvement in the function value
between the current and preceding reviews and D to
be the Euclidian distance between the points where the
corresponding function values were achieved. Then the
pseudo-code for how the sampling distribution is updated
is given in Algorithm 1 below. If the flag LocalSearch is
true, then local search is performed. Otherwise, global
search is done. Note that the sampling distribution update
procedure requires two thresholds, namely the distance
threshold d and the improvement threshold δ.

Algorithm 1: Sampling Distribution Update Procedure

1: if LocalSearch=true then
2: if � ≤ δ then
3: f ∗

l ← f ∗
4: LocalSearch ← false
5: end if
6: else
7: if � ≤ δ then
8: if f ∗ − f ∗

l ≥ δ then
9: LocalSearch ← true

10: end if
11: else
12: if D ≤ d then
13: LocalSearch ← true
14: end if
15: end if
16: end if

We now briefly discuss the motivation for the proce-
dure. Observe that the switch from local to global search
occurs only if the improvement in the objective function
value between successive reviews is small (less than δ).
Hence, if local search is not yielding much improvement
in the objective function value, then there is little merit in
continuing searching locally. On the other hand, if local
search is making good progress, then the search will stay
local.

On the other hand, there are two ways in which the
BEES algorithm switches from global to local search.
The first way occurs when the perceived improvement �

is small, but substantial improvement has been achieved
(larger than δ) since the last switch from local to global
search. The second way occurs when the improvement
between successive reviews is large and the distance D is
small (this is sensible because the improvement has been
local in nature and hence, switching to local search may
be beneficial). The pseudo-code for this BEES algorithm
is given in Algorithm 2 (one iteration of this algorithm
corresponds to one execution of the statements inside the
while loop of Algorithm 2).

Algorithm 2: BEES Algorithm

1: counter ← 0
2: LocalSearch ← false
3: Sample a solution θ from global distribution
4: Evaluate objective function at θ

5: Let f ∗
l ← f (θ) and θ∗ ← θ

6: while Stopping criterion is not satisfied do
7: if LocalSearch=true then
8: Sample a solution θ from local distribution corre-

sponding to θ∗
9: else

10: Sample a solution θ from global distribution
11: end if
12: Evaluate objective function at θ

13: Update θ∗ and f ∗ (if needed)
14: counter ← counter+1
15: if counter=k then
16: Update � and D

17: Update search nature (use Sampling Distribution
Update Procedure)

18: counter ← 0
19: end if
20: end while
21: Present θ∗ as the estimate of the optimal solution

2.2 Deterministic Example

Consider the optimization problem (1) with

f (θ) = max{f1(θ), f2(θ), 0} (2)
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and � = {θ = (θ1, θ2) ∈ N
2 : 0 ≤ θ1, θ2 ≤ 49}, where

f1(θ) = −(0.4θ1 − 5)2 − 2(0.4θ2 − 17.2)2 + 7 and f2(θ) =
−(0.4θ1 − 12)2 − (0.4θ2 − 4)2 + 4. This objective function
is of interest because it has two hills of different heights (4
and 6.96), located relatively far apart (the hill of height 4 is
centered at (30, 10) and the hill of height 6.96 is centered
at (12, 43) and (13, 43)), and separated by a flat valley (of
height 0).

We now describe the implementation details of the
BEES method specified in Algorithm 2 applied to solve the
optimization problem (2). The global sampling distribution
is the uniform distribution on the feasible space � and the
local sampling distribution for each θ ∈ � is the uniform
distribution on N(θ∗), where N(θ) = {(x1, x2) ∈ � \
{θ} : |xi − θi | ≤ 1 for i = 1, 2}. Finally, the algorithm
is terminated after a fixed number of objective function
evaluations have been performed.

The performance of this BEES algorithm with param-
eters k = 20, δ = 0.01, and d = 5 was compared to the
Simulated Annealing (SA) algorithm with constant temper-
ature (see Alrefaei and Andradóttir 1999). We used two
different neighborhood structures and refer to the resulting
implementations of the SA method as Global SA and Lo-
cal SA. The neighborhood structure for Global SA is such
that each solution is a neighbor of every other solution.
By contrast, the neighborhood of a solution θ is N(θ) for
Local SA. The temperature parameter is set to 0.1 and 1,
respectively for the Global and Local SA algorithms. The
initial state is selected randomly for all three algorithms.
The performance of the algorithms was compared based on
100 replications. Figure 1 shows the average performance
of the three approaches as the simulation effort increases.

It is obvious from Figure 1 that the BEES method per-
forms considerably better than both versions of the simulated
annealing algorithm. This numerical example supports the
idea that the search should be well balanced in the use
of exploration and exploitation. Observe that Global SA
essentially performs explorative search only, while Local
SA is exploitative in nature. The substantially worse be-
havior of Local SA in this example can be explained by
the fact that an initial solution might be far away from the
subregions containing good designs and the SA algorithm
might take a while identifying a good subregion using the
local neighborhood structure.

3 STOCHASTIC OPTIMIZATION

This section extends the BEES algorithm described in Sec-
tion 2 to optimizing stochastic objective functions. The
modifications of this BEES algorithm are described in Sec-
tion 3.1 and a numerical example is provided in Section

3.2.
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Figure 1: Average Objective Function Value at the Estimated
Optimal Solution for the Deterministic Problem

3.1 BEES Algorithm for Stochastic Problems

We first discuss how we modify the BEES algorithm de-
scribed in Section 2. Define the best point θ∗ at any time as
the solution with the best estimated objective function value
and let � be the improvement in the estimated objective
function value between the two most recent reviews. By
estimated objective function at any solution, we mean the
cumulative average of all observations taken at this solu-
tion. Algorithm 2 is generalized as follows. First, the best
point θ∗ is sampled with probability α, and with probability
1 − α, the sampling is done as explained in Section 2.1
(depending on the nature of the search). Second, the local
(global) search is conducted for kl (kg) iterations before
attempting to switch to global (local) search (by invoking
Algorithm 1). Typically, the parameters kl and kg satisfy
kl ≥ kg . Third, we modify Algorithm 1 to switch to local
search if global search has been conducted for g consec-
utive reviews. Finally, whenever a solution is sampled, m

simulation replications are conducted at it.
As the estimator of the optimal solution in this BEES

approach, we propose to use the estimator of Andradóttir
(2004). More specifically, θ ∈ � is chosen to be the
estimate of the optimal solution if it has the best estimated
objective function value among solutions which have been
replicated at least nγ times, where n is the iteration number
and 0 ≤ γ < 1 (and hence the estimated optimal solution
may be different from θ∗ if γ > 0). If the set of systems
which have been sampled at least nγ times is empty, then
the estimate of the optimal solution is the solution θ∗.



Prudius and Andradóttir
3.2 Stochastic Example

The test problem used here is the same as in (2) but with
white noise added. The noise is a normally distributed
random variable with mean 0 and variance 50. Observe
that the standard deviation of the noise is roughly the same
as the range of the objective function values. This makes
the response surface highly noisy and hence this problem
is relatively difficult to solve.

For the numerical studies, the additional parameters
of the BEES algorithm under consideration were set as
follows: kl = 25, kg = 20, g = 5, α = 0.3, m = 10,
and γ = 0.5. As before, the SA method is implemented
as described by Alrefaei and Andradóttir (1999) with
the parameter values given in Section 2.2. The number
of replications at the current and candidate solutions
conducted in each iteration of the Local and Global SA
approaches was set equal to 10. Again the performance of
the algorithms was compared based on 100 replications.
Figure 2 shows the average performance of the estimated
optimal solution at each point in time as the simulation
effort increases. The considerably worse performance of
the Global SA approach in this example can be explained
by the fact that the estimator of the optimal solution is very
noisy in this case. The remaining conclusions are similar
to those in Section 2, except that convergence is slower
for all three algorithms due to the noise in the estimated
objective function values.
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Figure 2: Average Objective Function Value at the Estimated
Optimal Solution for the Stochastic Problem
4 CONCLUSIONS

This paper has presented a new random search method for
simulation optimization. The approach emphasizes the need
for maintaining the right balance between exploration and
exploitation during various stages of the search. Prelimi-
nary numerical show promising performance of the method.
More numerical studies are of course required to understand
better the behavior of the approach. We are also interested in
exploring whether the performance of existing methods for
simulation optimization can be improved by incorporating
ideas from this paper.
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