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ABSTRACT

Global likelihood maximization is an important aspect of
many statistical analyses. Often the likelihood function is
highly multi-extremal. This presents a significant challenge
to standard search procedures, which often settle too quickly
into an inferior local maximum. We present a new approach
based on the cross-entropy (CE) method, and illustrate its
use for the analysis of mixture models.

1 INTRODUCTION

Many statistical problems involve the maximization of the
likelihood function, which, for each choice of model param-
eters gives the probability (or density) of the observed data.
A typical example occurs in cluster analysis where the data
are assumed to come from a mixture of (usually) Gaussian
densities; and the objective is to estimate the parameters of
this mixture by maximizing the likelihood function. Direct
optimization of the likelihood function in this case is not a
simple task, due to the constraints on the parameters, and,
more importantly, the complicated nature of the likelihood
function, which in general has a great number of local
maxima and saddle-points.

Traditional local search methods such as the gradient-
based quasi-Newton method are often inadequate, because
they usually fail to find the global maximum of the likelihood
function, and in some cases fail to converge altogether. The
classic Nelder-Mead method (Nelder and Mead 1965) —
which evaluates the function at the vertices of a simplex,
and then iteratively shrinks the simplex as better points are
found, until some desired bound is obtained — may have
the same convergence problems. Moreover, this method is
formulated for unconstrained optimization problems only.

A popular method to estimate the parameters of the
mixture model is the well-known EM algorithm; see for
example Dempster, Laird, and Rubin (1977) and McLach-
lan and Krishnan (1997). The EM algorithm is very fast
and general, but can only be guaranteed to converge to a
local maximum, under certain continuity conditions; see for
example Wu (1983) and Boyles (1983). Moreover, the con-
vergence of the algorithm depends strongly on the starting
values. An appropriate choice of starting values may not
always be clear. This difficulty is shared by many “global”
search algorithms, such as the genetic algorithm (Goldberg
1989), where starting values are often picked “at random”.

In this paper we present a new approach to likelihood
maximization which is based on the well-known cross-
entropy (CE) method (Rubinstein and Kroese 2004). The
purpose of this paper is to

1. explain how the CE method can be employed as a
global likelihood optimization procedure for mix-
ture models in cluster analysis,

2. introduce a useful modification of CE called the
injection method,

3. compare the CE approach with the classical EM
approach, for mixture models in cluster analysis.

The CE method has been successfully applied to a great
variety of discrete, i.e., combinatorial, optimization prob-
lems, with both deterministic and random (noisy) objective
functions; see for example Alon et al. (2004), de Boer et al.
(2004), Chepuri and Homem de Mello (2004), Dubin (2002),
Helvik and Wittner (2001), Liu, Doucet, and Singh (2004),
Mannor, Rubinstein, and Gat (2003), Margolin (2002), Ru-
binstein (1999), Rubinstein (2002), Rubinstein (2001), and
Wittner and Helvik (2002). As a consequence, the behavior
of the CE method is fairly well understood, at least from a
pragmatic point of view; see also Margolin (2004).

However, for continuous optimization problems – like-
lihood maximization being a typical example – much less
is known about the behavior of the algorithm, although the
main ideas are described in Rubinstein and Kroese (2004).

Standard implementations of the CE method sometimes
have the problem that the sampling distributions “shrink”
too fast to a degenerate (atomic) distribution, preventing
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the method from finding the good solution. We tackle this
problem by “injecting” extra noise into the sampling distri-
butions, at certain stages of the algorithm. This significantly
improves the performance in terms of accuracy.

We illustrate numerically the performance of the CE
method with that of the classic EM method, for a typical
cluster problem. We find that, when the likelihood function
is ill-behaved and highly constrained, the CE method finds
superior solutions to those found by the EM method. This
is typically the case when the number of points is not too
large and the clusters are overlapping. Moreover, we find
that the CE algorithm is quite robust under different starting
conditions, whereas the EM may require many random initial
guesses before it converges. The main advantage of EM
over CE is its fast convergence.

The outline for the rest of the paper is as follows.
In Section 2 we start with the basic setting of clustering
analysis via mixture models, and describe how the EM
algorithm can be employed to estimate the model parame-
ters. The main CE algorithm is given in Section 3 along
with various modifications, including variance injection. In
Section 4 we compare the CE and EM algorithms for a
2-dimensional clustering problem. Finally, in Section 5
we list our conclusions and possible directions for future
research.

2 CLUSTERING VIA EM

We recall the basic setting of clustering problems. The data
consists of a collection of points Y = {y1, . . . , yn} in some
d-dimensional Euclidean space. We assume that the data
in Y are the outcomes of i.i.d. random vectors Y1, . . . , Yn

(we will always interpret vectors as column vectors), each
having a mixture density

f (y; θ) =
k∑

c=1

wc fc(y; ηc), (1)

where θ = (w, η) is an unknown parameter vector, which
includes the weights w = (w1, . . . , wk) and the vector η =
(η1, . . . , ηk) containing all the parameters of the densities
{fc(·; ηc)}. The standard example is where each density
fc is Gaussian with unknown expectation vector µc and
covariance matrix �c. A fundamental approach to estimating
the parameter θ from the data Y is to choose the estimate
such that the likelihood function

L(θ; Y) :=
n∏

i=1

f (yi; θ) (2)

(or, equivalently, its logarithm) is maximized. However,
finding this maximum likelihood estimate is in general not
easy for these mixture models, since the likelihood function
L is typically multi-extremal.

A different approach is to estimate θ using the well-
known EM method (McLachlan and Krishnan 1997). Here
one views the data Y as only the observed part of a more
complete data set {C, Y}. Namely, we may generate each
random vector Y via a two-step procedure: first draw a
random variable C ∈ {1, . . . , k} according to probabilities
{w1, . . . , wk} and then, given C = c, draw Y from fc.
Using this point of view, we can interpret the data Y as
only a part of the true data {C, Y}, where C = {C1, . . . , Cn}.
The value of Ci — which indicates from which distribution
Yi was drawn — remains hidden.

If θ = θo were known, then assessing to which density
fc each point y belongs would be easy. Namely, the condi-
tional distribution of C (dropping the index) given Y = y
is by Bayes’s formula equal to

po(c | y) := Pθo (C = c | Y = y) = wo
c fc(y; ηo

c)

f (y; θo)
, (3)

for c = 1, . . . , k. For a given guess θ = θo one could
compute instead of the logarithm of the likelihood function
(1), the expected log-likelihood function

E log L(θ; C, Y) := E

n∑
i=1

log(wCi
fCi

(yi; ηCi
)),

where the {Ci} are independent and distributed according
to {po(c|yi )} in (3). This is the so-called E-step of the
EM algorithm. In the M-step we maximize the expected
log-likelihood with respect to the wc and ηc. That is, we
maximize

E log L(θ; C, Y) =
n∑

i=1

E
[
log wCi

+ log fCi
(yi; ηCi

)
]

=
n∑

i=1

k∑
c=1

po(c | yi )
[
log wc + log fc(yi; ηc)

]
, (4)

under the condition that
∑

c wc = 1. Using Lagrange
multipliers in (4) and the fact that

∑
c po(c | yi ) = 1, gives

the maximum likelihood estimate (MLE)

ŵc = 1

n

n∑
i=1

po(c | yi ) . (5)

Finding the MLE for ηc follows now from optimizing∑
i po(c | yi ) log fc(yi; ηc) . For the Gaussian case this

leads to the formulas

µ̂c =
∑n

i=1 po(c | yi ) yi∑n
i=1 po(c | yi )

, (6)
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and

�̂c =
∑n

i=1 po(c | yi ) (yi − µ̂c)(yi − µ̂c)
T∑n

i=1 po(c | yi )
, (7)

which are very similar to the well-known formulas for the
MLEs of the parameters of a Gaussian distribution. The
EM algorithm in the Gaussian case now consists of iterating
equations (3), (5), (6) and (7) until convergence is reached.

Note that the EM algorithm is a local search procedure
and therefore there is no guarantee that it converges to
the global maximum. Indeed, in some cases the global
maximum may be infinity; see below.

3 CLUSTERING VIA CE

As an alternative to the EM algorithm we consider the CE
approach, where we view the clustering problem as a contin-
uous multi-extremal optimization problem with constraints.
Specifically, we wish to maximize the log-likelihood func-
tion

log L(θ) =
n∑

i=1

log f (yi; θ) (8)

over the set � of all possible θ . At this point it is important
to mention that if � is chosen as large as possible —
i.e., any mixture distribution is possible — then the global
maximization of (8) is an ill-posed problem!

As an example, consider Figure 1, depicting the proba-
bility density function, f (· ; θ) say, of a mixture of two Gaus-
sian distributions. The likelihood function of the parameter
θ ⊂ R

5, is given by
∏4

i=1 f (xi; θ), where x1, . . . , x4 are
the data (indicated by dots in the figure). It is clear that by
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Figure 1: A Mixture of Two Gaussian Distributions

fixing the mixing constant w at 0.25 (say) and centering
the first cluster at x1, one can obtain an arbitrarily large
likelihood function by choosing the variance of the first
cluster arbitrarily small.
Similarly, for higher dimensional data, by choosing
“point” or “line” clusters, or in general “degenerate” clusters,
one can make the value of the (log-)likelihood infinite.
Degeneracy is a problem for both the CE and EM algorithms.
Two possible solutions are:

1. Restrict the parameter set � in such a way that de-
generate clusters (sometimes called spurious clus-
ters) are not allowed.

2. Run the given algorithm and if the solution is
degenerate, discard it and run the algorithm afresh.
Keep restarting the algorithm until a non-degenerate
solution is obtained.

The first approach is applied to the CE algorithm and
the second is used on the EM algorithm.

For an introductory treatment of the concepts and theory
behind the CE method we refer to the CE tutorial (de Boer
et al. 2004), which is also available on-line from the CE
homepage at

<http://www.cemethod.org>

In this paper we will only explain the relevant ideas with
respect to optimizing (8), which are quite intuitive.

Consider for simplicity the clustering problem with di-
mension d = 2. We may assume that θ is a vector in a
(6k − 1)-dimensional space. Namely, apart from a total of
k − 1 weights (one weight can be omitted since the sum of
the weights is 1), each of the k clusters is associated with
2 means, 2 standard deviations and 1 correlation coeffi-
cient. Let us assume that θ = (θ1, . . . , θ6k−1)

T
is such that

θ1, . . . , θ2k are associated with the means, θ2k+1, . . . , θ4k

with the standard deviations, θ4k+1, . . . , θ5k with the corre-
lation coefficients and the remaining θs with the weights.
Then, we have a constrained optimization problem over the
convex set � ⊂ R

6k−1 with

θ low
i ≤ θi, i = 2k + 1, . . . , 4k

−ρlow
i ≤ θi ≤ ρ

high
i , i = 4k + 1, . . . , 5k,

0 ≤ θi ≤ 1, i = 5k + 1, . . . , 6k − 1
6k−1∑

i=5k+1

θi ≤ 1 .

Here, the θ low
i and θ

high
i specify the lower- and upper-bounds

for the variances and correlation coefficients; this in view
of the “degeneracy” problem discussed before.

The basic procedure of CE is to iteratively

(a) generate random samples in � according to a spec-
ified sampling distribution, followed by

(b) updating of these parameters on the basis of the
best scoring samples, in order to produce better
scoring samples in the next iteration.
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The updating rules follow from cross-entropy mini-
mization and often have a simple form.

In this paper we take the sampling distribution to be
(truncated) Gaussian with independent components. That
is, with each parameter θi in θ we associate a 1-dimensional
Gaussian distribution N(ai, b

2
i ). The updating rule in (b)

above is very simple in this case. Namely, the CE parameters
{(ai, b

2
i )} are updated via the sample mean and sample

standard deviation of a fixed number of the highest scoring
samples, the so-called elite samples; i.e., those that give the
highest likelihood. For the θi in a constrained region, that
is for i ≥ 2k + 1, we sample from a truncated Gaussian
distribution on the constrained region. It can be shown
(Rubinstein and Kroese 2004) that the updating procedure is
exactly the same as in the non-truncated case. For notational
convenience we summarize the ai and b2

i into vectors a and
b2, and denote the Gaussian R

6k−1-dimensional distribution
with independent components with means a and variances
b2 by N(a, b2). The main algorithm is summarized as
follows:

Algorithm 3.1 (CE Algorithm)

1. Initialize a0 and b2
0. Set t = 1.

2. Generate a random sample �1, . . . ,�N from
N(at−1, b2

t−1) (or its truncated version) and com-
pute the log-likelihoods according to (8).

3. Order the samples from smallest to biggest, and
select the Nelite best samples:

�(1), . . . ,�(N−Nelite+1), . . . ,�(N)︸ ︷︷ ︸ .

elite samples

Let ãt be the sample mean (vector) of the elite
samples. Similarly, let b̃2

t be the vector of variances
of the elite samples.

4. Update the a and b2 in a “smooth” way as

at = α ãt + (1 − α) at−1,

b2
t = α b̃2

t + (1 − α) b2
t−1.

(9)

5. Stop at iteration t = T if some stopping criterion
is met. Output aT . Otherwise increase t by 1 and
return to step 2.

The result is a sequence of parameters (a0, b2
0), (a1, b2

1), . . .

that tends to some (θ∗, 0) where θ∗ is the estimate of the
global maximum. Note that during the course of Algo-
rithm 3.1 the sampling distribution “shrinks” to a degenerate
distribution. That is, each variance b2

i tends to 0, so that
the mean ai corresponds to the optimal θi .

The algorithm is quite robust under the choice of the
initial parameters a0 and b2

0, provided that the initial vari-
ances are chosen large enough. A convenient choice is to
let the initial means and variances be equal to the means
and variances of the data.

3.1 Injection

When the smoothing parameter α is large, say 0.9, the
convergence to a degenerate distribution may happen too
quickly, which would “freeze” the algorithm in a sub-optimal
solution. One way to prevent this from happening is to use
dynamic smoothing (Rubinstein and Kroese 2004) where
at iteration t the variance b2 is updated using a smoothing
parameter

βt = β − β

(
1 − 1

t

)q

, (10)

where q is a small integer (typically between 5 and 10)
and β is a large smoothing constant (typically between 0.8
and 0.99). The mean parameter a can be updated in the
conventional way, with constant smoothing parameter α. By
using βt instead of α the convergence to the degenerate case
has polynomial speed instead of exponential. A difficulty
with dynamic smoothing is that when the optimal function
value is unknown it is difficult to formulate a good stopping
criterion due to the slower convergence of the algorithm.

In this paper we introduce a different technique, which
can be applied to any optimization problem, and was ob-
served to work very well for various multi-extremal opti-
mization problems. The idea is to “inject” extra variance
into the sampling distribution in order to avoid premature
shrinkage, according to the following recipe:

1. If during the course of Algorithm 3.1, at iteration
t say, the maximum of the variances in b2

t is less
than ε (say 0.01), add

∣∣S∗
t − S∗

t−1

∣∣ h,

to the variances, for some h between 0.1 and 10.
Here S∗

t is the best log-likelihood value obtained
in iteration t .

2. If the number of variance injections exceeds some
number d, say 5, then stop and display the best
solution found, namely at , otherwise increase t

by one and proceed with the next iteration of
Algorithm 3.1.

Note that 2. above gives our stopping criterion in step 5
of the CE algorithm. Different stopping criteria are possible.

Another modification that proved useful in our situation
was to update the means a and variances b2 using different
smoothing parameters.
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4 NUMERICAL EXPERIMENT

In this section we illustrate the performance of the EM and
CE algorithms for a 2-dimensional clustering problem with
6 Gaussian clusters. It is not our intention to give here an
exhaustive study, but we do believe that the present results
give an indication of the usefulness of the CE method in
comparison with the EM method.

For the EM algorithm we used the recent Matlab im-
plementation in the Matlab classification toolbox (Stork and
Yom-Tov 2004); see also Duda, Hart, and Stork (2001). In
the EM experiments we used “uniform” starting values as
in McLachlan and Krishnan (1997).

In the CE experiment we used a sample size of N = 90
and an elite sample size of Nelite = 12. Each mean a was
updated using a smoothing parameter of 0.9. The variances
were updated using a smoothing parameter of 0.3. The
initial means and variances (in a0) were chosen equal to
the mean and variance of the data. The initial weights (in
a0) were chosen equal. The values in b2

0 were chosen large
enough in order to provide a uniform sample from � in the
first iteration. The injection parameters were ε = 0.01 and
h = 2. Note that the CE method is fairly insensitive to the
choice of the parameters. We stop the CE algorithm after
d = 5 injections.

In the experiment n = 200 data points are drawn from
a Gaussian mixture distribution with parameters given in
Table 1.

Table 1: Parameters for the Experiment

µ σ 2 Cov w
(0.60,6.00) (1.00,1.00) 0.90 0.10

(1.00,-10.00) (1.00,1.00) -0.90 0.10
(10.00,-1.00) (2.00,2.00) 0.00 0.20
(0.00,10.00) (2.00,2.00) 0.00 0.20
(1.00,-3.00) (2.00,2.00) -0.00 0.20
(-5.00,5.00) (2.00,2.00) 0.00 0.20

The first column gives the mean vectors for the six
Gaussian distributions in the mixture, the second column
the variances, the third column the covariances and the last
column the mixture weights.

To complete the specification of our test problem, we
need to give the constraints θ low and θhigh. For the present
case we allow only variances greater or equal to 0.75, and
correlation coefficients between -0.95 and 0.95.

Table 2 gives the evolution of a typical run of the CE
algorithm for this data set, and the above constraints. In
the table we list, from left to right, the best value for the
negative of the log-likelihood in each iteration, the overall
best value and the maximum CE variance. Note that we
want to minimize the negative of the log-likelihood. For
this run the CPU time — using a Matlab implementation
on a 2.4 GHz computer — was 38 seconds.

Table 2: Typical Evolution of the CE Algorithm

t S∗
t minu≤t S∗

u maxi b2
t (i)

20 1160.89 1142.00 35.30
40 1053.52 1052.65 24.62
60 1013.71 1013.38 3.01
80 1005.13 1005.13 0.98

100 1001.60 1001.55 0.91
120 998.45 998.45 0.06
140 1028.42 997.96 0.12
160 1002.02 997.96 0.05
180 998.81 997.96 0.03
200 997.00 997.00 0.02
220 1023.58 996.03 0.12
240 1000.91 996.03 0.19
260 990.64 990.64 0.08
280 982.11 982.11 0.02
300 1013.77 981.52 0.22
320 988.15 981.52 0.15
340 981.94 981.52 0.05
360 980.53 980.34 0.01
380 994.29 980.34 0.08
400 983.26 980.34 0.05
420 980.73 980.34 0.02
440 1015.13 980.34 0.21
460 985.78 980.34 0.13
480 981.75 980.34 0.04
500 980.43 980.34 0.01

In order to make a fair comparison we run multiple
copies of the EM algorithm, so that the total time for all
EM runs is no less than the time taken by the CE algorithm
(38 seconds, here). Solutions of the EM algorithm that do
not satisfy the constraints are discarded.

Table 3 gives the estimates using EM (using the best
of all the multiple EM runs) and CE. In this case CE finds
the global maximum but EM fails to do so. The difference
in estimates is quite significant. Note that in this case EM
finds only 5 clusters.

Figure 2 illustrates the quality of the estimates. The
0.95-quantile ellipses found with CE correspond exactly
with the data, whereas EM only “recognizes” one cluster.

We have repeated this experiment 10 times, in which
CE found the correct clusters 4 out of 10 times, but EM
failed. The results are given in Table 4. Note that here,
again, the negative of the log-likelihood values are given.

It is important to note that the CE method is not sensitive
to the initial conditions. This is in sharp contrast with the
performance of the EM method, the convergence of which
is heavily dependent on an initial guess that is not too far
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Table 3: Estimates for the Experiment

µ σ 2 Cov w
(4.07, 4.34) (2.12, 1.75) -1.73 0.09
(5.16 5.94) (1.00, 1.58) -0.51 0.10

EM (10.11, -0.94) (2.61, 1.90) 0.26 0.20
(1.09, -5.01 ) (1.79 14.678) -0.06 0.31
(0.25, 8.73) (1.97, 5.25) 0.20 0.29

(0, 0) (1 , 1) 0 0

(0.24, 5.91) (0.81,0.75) 0.72 0.08
(1.05 , -10.01) (0.79,0.76) -0.71 0.11

CE (10.10, -0.90) (2.52,1.98) 0.14 0.21
(0.07, 9.97) (2.31,2.17) 0.53 0.19
(1.11, -2.78) (2.44,1.67) 0.25 0.20
(-4.45 ,5.25 ) (1.88,2.66) -0.55 0.21

away from the optimal solution. This explains why the CE
method appears more consistent than the EM method.

able 4: The Negative of the Log-Likelihood Values for CE
and EM for 10 Repetitions

CE EM time
980.33 1048.62 38
982.75 1052.99 32
998.01 1041.86 34
980.36 1047.83 31
980.32 1047.83 36
997.98 1052.99 34
994.19 1047.83 40
1004.76 1057.18 39
994.08 1052.99 35
980.62 1052.99 34

CONCLUSIONS AND FUTURE RESEARCH

e have introduced a constrained global likelihood op-
imization approach to (mixture) model-based clustering
nalysis, based on the CE method. Numerical experiments
ndicate that the new method is very effective and could
e used as an alternative to the ubiquitous EM algorithm.
hen comparing the two, the main advantage of EM is its

peed. We observed that, typically, EM converges 10–100
imes faster than CE. However, this was using a state-of-the
rt implementation for EM and a non-optimized implemen-
ation for CE. The disadvantages of EM are that (1) EM
equires “appropriate” starting values and (2) it is difficult to
eal with constrained parameters, other than just accepting
r rejecting a candidate solution generated by EM.
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Figure 2: Illustration of the Experiment

The advantages of CE is that it deals better with both
starting values and constraints. The differences between CE
and EM become more clear when the data set is small to
medium, 20–300, and the clusters are superimposed. In that
case the log-likelihood function has many local maxima.

Under what conditions exactly CE outperforms EM
in clustering analysis remains an issue for future research
and requires more numerical experimentation. Moreover,
there are various other approaches to clustering analysis,
including the K-means and the linear vector quantization
algorithms (Duda, Hart, and Stork 2001). Another direction
for future research is to compare CE with these algorithms.
Early results indicate the superior accuracy of CE (Kroese,
Rubinstein, and Taimre 2004).

One advantage of the CE method which we have not
mentioned yet is that it can be readily applied to other
multi-extremal optimization problems. The core code re-
mains virtually the same; only the objective function needs
changing. A study on the performance of the CE method,
when applied to a whole range of difficult optimization
problems, be it likelihood optimization or otherwise, is
an interesting direction for future research. Another issue
worth considering is the “optimal” choice of the internal CE
parameters. As we mentioned, the algorithm is fairly in-
sensitive to the choice of the initial mixture parameters, but
additional information about for example the selection of the
injection parameter h would be useful. Other modifications
for clustering problems include the “gradual feeding” of
data, where one starts with say 20% of the data to identify
the clusters quickly and then gradually increases the data
set to determine the actual clusters. Also a different choice
of the sampling distribution may be considered. Examples
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are the class of beta distributions and the class of double
exponential distributions.
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