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ABSTRACT

The stochastic root-finding problem (SRFP) is that of solving
a system of q equations in q unknowns using only an oracle
that provides estimates of the function values. This paper
presents a family of algorithms to solve the multidimensional
(q ≥ 1) SRFP, generalizing Chen and Schmeiser’s one-
dimensional retrospective approximation (RA) family of
algorithms. The fundamental idea used in the algorithms is
to generate and solve, with increasing accuracy, a sequence of
approximations to the SRFP. We focus on a specific member
of the family, called the Bounding RA algorithm, which finds
a sequence of polytopes that progressively decrease in size
while approaching the solution. The algorithm converges
almost surely and exhibits good practical performance with
no user tuning of parameters, but no convergence proofs or
numerical results are included here.

1 INTRODUCTION AND PROBLEM STATEMENT

Consider the well-known problem of solving a q ×q system
of linear, known and deterministic equations:

g1(x) = a1,1x1 + a1,2x2 + · · · + a1,qxq = γ1

g2(x) = a2,1x1 + a2,2x2 + · · · + a2,qxq = γ2

... (1)

gq(x) = aq,1x1 + aq,2x2 + · · · + aq,qxq = γq

where x = (x1, x2, . . . , xq)T. The equations in System
(1) are known because the coefficients, and therefore each
function gj , j ∈ {1, 2, . . . , q}, are given to us beforehand.
The equations are deterministic since there is no uncertainty
in the given coefficients. The solution to System (1) is
x∗ = A−1γ , where γ = (γ1, γ2, . . . , γq)T and A−1 is the
inverse of the matrix of coefficients ai,j , i, j ∈ {1, 2, . . . , q}.

There is no such simple solution to the stochastic root-
finding problem (SRFP), a generalization of (1) where the
equations are possibly non-linear, the form of the equations
is unknown in the sense that function values at particular x

values are available only upon request (i.e., the functions are
known only through an oracle), and the system is stochastic
in the sense that the oracle gives only estimates of the
function values.

We are motivated by stochastic simulation where γi is
the ith performance target, xi is the ith model parameter, and
the oracle is a stochastic simulation model parameterized by
xi . The simulation model, for each value of x, produces a
noisy estimate Y (x) of the underlying performance function
g(x). The objective is to find the model parameters x∗ at
which the performance function g attains the performance
targets γ .

Chen and Schmeiser (1994a) state the problem more
formally as

Given: (a) a constant vector γ ∈ Rq and (b) an or-
acle that returns, for any x ∈ Rq , a q-dimensional con-
sistent estimate Ym(x) of a continuous function g(x) =
(g1(x), g2(x), . . . , gq(x))T.

Find: the unique root x∗ ∈ �q satisfying g(x) = γ,

using only the oracle.
SRFPs occur naturally in many physical settings. For

example, consider a company that sells q products. Product
i ∈ {1, 2, . . . , q} is periodically re-ordered to a specific
threshold xi . Say we want to determine the thresholds
xi, i ∈ {1, 2, . . . , q}, such that the stock-out probability of
the ith product is γi . The performance measures are the
function g(x) = (P(D1 > x1), P(D2 > x2), . . . , P(Dq >

xq)), the stock-out probabilities for a given set of thresholds
x = (x1, x2, . . . , xq ), where Di denotes the ith product’s
periodic demand. Then the problem is

find x such that g(x) = γ. (2)

Problem (2) is a multidimensional stochastic root-finding
problem when the function g is not known but a consistent
estimator of g is available via a simulation that reflects
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the logic and probability assumptions about the inventory
system.

This paper presents a family of algorithms for solving
multidimensional SRFPs. The objective is to develop nu-
merical algorithms that perform well across a wide range
of applications without having to set algorithm parameters.
Evaluation criteria include (1) numerical stability, (2) ro-
bustness, (3) convergence, (4) computational efficiency and
(5) the ability to report solution accuracy. See Chen (1994)
for more on (1), (2), (3) and (4).

2 COMPLICATING ISSUES

The SRFP is one stochastic generalization of the problem
of solving a non-linear deterministic system of equations.
Not surprisingly, this generalization brings with it some
complications (Pasupathy and Schmeiser 2003) in addition
to the known issues that arise in the context of solving
a non-linear system of equations (Ortega and Rheinboldt
1970). We briefly discuss two of these complications in
Sections 2.1 and 2.2. These complications are general in
that they affect any SRFP algorithm.

2.1 Discontinuous Sample Paths

Let Ym(x), the given consistent estimator of the unknown
function g : �q → �q , be defined on some probability
space (�, F, P ). (We write ym(x, ω) to denote the value
of Ym(x) at ω ∈ � when the sample size is m.) Each
ω ∈ � then implicitly generates a sample-path function
ym(x, ω) : �q → �q and a corresponding deterministic
sample-path problem:

find x∗(ω) such that ym(x∗(ω), ω) = γ. (3)

Problem (3) is an approximation to the original problem, but
with an important difference: The underlying root-finding
function ym in (3) is not guaranteed to be continuous. In fact,
ym is often a step-function when g(x) is a probability and
Ym(x) is the associated relative frequency. The implications
are two-fold:

1. the solution set of (3) can be empty;
2. the local derivative estimates obtained using the

sample path can be meaningless.

2.2 Bias Induced by Finite Sample Size

SRFPs can be solved only approximately by averaging the
solutions obtained from fixed sample size realizations of
the approximate problem (Atlason, Epelman, and Henderson
2002; Healy and Schruben 1991). The reason is that such
solutions can be biased. Consider, for example, the single-
dimensional SRFP with g(x) = x2, γ = 2, and the estimator
ym(x, ω) = x2+εm(ω). With a sample size m, the generated
approximate problem is to

find x∗(ω) such that x2 + εm(ω) = 2. (4)

The solution of (4) is thus

x∗(ω) = √
2 − εm(ω). (5)

We see from (5) that even if E[Ym(x)] = g(x),

E[x∗(ω)] �= √
2. (6)

Worse, some realizations provide imaginary roots.

3 LITERATURE REVIEW

The current literature on solving SRFPs can be classified
into methods based on Classical Stochastic Approximation
(CSA) and Retrospective Approximation. In this section,
we briefly discuss some important works, salient features
and drawbacks of both approaches.

3.1 CSA and Variants

CSA is the original stochastic root-finding algorithm de-
veloped by Robbins and Munro (1951). The algorithm as
originally proposed has the simple iterative structure

Xk+1 = Xk − ak(Y k − γ ),

where k = 0, 1, . . . , X0 is an initial guess of the root
x∗, Y k = ∑m

j=1 Yj (Xk)/m, {Y1(x), . . . , Ym(x)} is a ran-
dom sample from the distribution of Y (x), and {ak}∞k=0 is
a predetermined sequence of positive constants satisfying∑∞

k=0 ak = ∞ and
∑∞

k=0 a2
k < ∞. Owing to its simple

structure, CSA converges to x∗ in mean square under fairly
general conditions. Much of the current literature on SRFPs
are variants of CSA. For example, Kesten (1958), Venter
(1967), Fabian (1968), Wasan (1969), Kushner and Clark
(1978) and more recently Andradóttir (1990, 1991) and
Spall (1999) focus either on relaxing convergence condi-
tions, increasing convergence rates, and/or on randomizing
the step-size sequence while achieving optimal asymptotic
efficiency. CSA and its variants usually have a simple struc-
ture and extend naturally to multiple dimensions. They,
however, have three important drawbacks.

1. The algorithms are generally not black-box algo-
rithms in the sense that they are not robust to
algorithm parameters. Since little guidance exists
on the choice of algorithm parameters, the iden-
tification of good parameter values for any given
problem is often difficult.
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2. CSA and its variants usually use −(Y k −γ ) as the
movement direction. Here, Y k is the estimate of
the underlying root-finding function at the design
point Xk . This is akin to using the negative gradient
direction in the context of function minimization.
While the direction −(Y k −γ ) is convenient since
it does not rely on estimating derivatives, it has
been observed that, even for very simple problems,
using the direction −(Y k − γ ), like the negative
gradient, can lead to poor practical performance.

3. CSA and many of its variants have used a fixed
sample size and provide no guidance on what this
sample size should be.

Spall (2000) addresses 2. above by incorporating
derivative estimates in the CSA structure. Called Adaptive
Stochastic Approximation (ASA), the method has attractive
asymptotic properties but exhibits poor practical perfor-
mance, especially when the initial solution is far from the
root. Spall (2000) suggests obtaining an initial solution by
running an algorithm such as CSA prior to running ASA.
It is unclear, however, as to how long CSA should be run
prior to running ASA. Moreover, since CSA also exhibits
poor practical performance when the initial solution is far
from the root, the benefits associated with running CSA
as a preprocessor are not apparent. Spall (2000) does not
address 1. or 3. above.

3.2 Retrospective Approximation

Retrospective Approximation (RA) methods form the other
broad category of solution techniques for solving SRFPs.
RA techniques were first suggested by Healy and Schruben
(1991) and later used by Rubinstein and Shapiro (1993),
Gürkan, Ozge, and Robinson (1994), Plambeck et al. (1996),
Shapiro and Homem-de-Mello (1997) and by Homem-de-
Mello, Shapiro, and Spearman (1999) in the context of
stochastic optimization. Chen and Schmeiser (1994b, 2001)
propose a family of retrospective approximation (RA) algo-
rithms for solving single-dimensional SRFPs. Fundamental
to their approach is the concept of sample-path approxima-
tion to the function g. At any point x, this is simply Ym(x).
Let ω = {ω1, ω2, . . . , ωm} represent the vector of random
numbers used to obtain ym(x; ω). Then for any fixed ω,
the function ym(x; ω) yields a sample-path approximation
to the function g. RA algorithms solve with increasing
accuracy the sequence of sample-path approximations

ymk
(x∗(ωk); ωk) = γ, (7)

for k = 1, 2, . . . . The approximations are generated in-
dependently and with increasing sample size. At every
retrospective iteration k, RA algorithms use a deterministic
root-finding procedure to solve (7) to a specified accuracy
εk ,{εk} → 0. Individual members of the RA family are
produced upon specifying the various algorithm parameters
and the deterministic root-finding procedure used to solve
(7).

The Bounding RA algorithm is a member of the RA
family that works well in practice. Like all members of
the RA family, the Bounding RA algorithm, during the
kth iteration, uses a deterministic root-finding procedure to
solve (7) to a specified accuracy εk . In one dimension,
this is accomplished by bounding, i.e. finding two points
xl, xu ∈ � such that |xu−xl | ≤ εk and whose images straddle
the target γ . One-dimensional Bounding RA converges
almost surely and exhibits good practical performance (Chen
1994). Three aspects help Bounding RA work well in
practice.

1. Monotonicity: The Bounding RA algorithm works
on g functions that are monotone increasing in �,
an assumption that is useful for the determinis-
tic root-finding procedure that solves (7), because
ymk

(x; ωk) approximates g and thus g’s mono-
tonicity provides a strong direction clue.

2. Termination Criterion: The kth iteration in the RA
family is terminated upon solving the kth approx-
imate problem (7) to within εk . More precisely,
the kth iteration stops when the deterministic root-
finding procedure finds two points xl, xu ∈ � such
that |xu − xl | ≤ εk and the line segment joining
ymk

(xl; ωk) and ymk
(xu; ωk) contains the target γ .

As we discuss in Section 4.2, this is a simple but
powerful idea for root finding on discontinuous
functions.

3. Deterministic Root-Finding Logic: The logic for
the deterministic root-finding procedure in the
single-dimensional Bounding RA algorithm is sim-
ple, again due to g’s monotonicity assumption.
First, sample at a specific x1 (usually the solution
from the previous iteration) and if ymk

(x1; ωk) < γ

keep stepping to the right with progressively in-
creasing step sizes until a point x2 is found such
that ymk

(x2; ωk) ≥ γ . Then use bisection search
to find xl, xu that satisfy the termination criterion
3. Similar logic holds if ymk

(x1; ωk) > γ , but by
stepping to the left.

4 THE MULTIDIMENSIONAL BOUNDING RA
ALGORITHM

The objective of this paper is to generalize a member of Chen
and Schmeiser’s RA family, the Bounding RA algorithm,
to multiple dimensions. For extending single-dimensional
Bounding RA, its various components need to be generalized
to multiple dimensions. Not all components generalize
easily though. We specifically focus on generalizing the
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three key aspects discussed in Section 3.2. We thus ask: (i)
what is the analogue of monotonicity in multiple dimensions?
(ii) what is the termination criterion in multiple dimensions?
(iii) what is the deterministic root-finding logic used to solve
(7) in multiple dimensions? Sections 4.1 – 4.3 provide
answers to these questions.

4.1 Monotonicity in Multiple Dimensions

We argue that the appropriate generalization of monotonicity
in multiple dimensions is as defined by Ortega and Rhein-
boldt (1970): A function g : �q → �q is strictly monotone
if (x1 − x2) · (g(x1) − g(x2)) > 0, ∀x1, x2 ∈ �q, x1 �= x2.
We chose this definition for three reasons: It is familiar
in one dimension, it is useful algorithmically, and it en-
compasses a large class of functions. We discuss each
below.

First, the definition automatically reduces to the class
of monotone increasing functions when q = 1. Moreover,
for any direction d ∈ �q and any point x0 ∈ �q , the one-
dimensional function gd,x0(t) = g(x0 + td) ·d (obtained by
projecting g onto d) is monotone increasing.

Second, the definition is useful in that direction clues
are available. Because g is strictly monotone, (x − x∗) ·
(g(x) − γ ) > 0 for every x �= x∗ and we know that the
direction g(x) − γ makes an angle less than π/2 with the
direction x −x∗. Therefore, from any point x, the direction
−(g(x) − γ ) “roughly” points in the direction of the root
x∗. When q = 1, this direction clue is especially useful
since there are only two possible directions (right or left)
and the vector −(g(x) − γ ) always points in the correct
direction.

Third, the class is large. If g is a gradient function,
i.e. ∃G : �q → � such that G′ = g, then G is strictly
convex if and only if g is strictly monotone (Hiriart-Urruty
and Lemarechal 1993). Therefore, the class of strictly
monotone functions in �q is larger than the class consisting
of the derivatives of strictly convex differentiable functions,
a possible extension of monotonicity that we have rejected.

4.2 Termination Criterion

We now answer the question, “what is the termination
criterion for the deterministic root-finding procedure used in
the multidimensional Bounding RA algorithm?”. Recall the
corresponding termination criterion S1 in one dimension:
Criterion S1: during the kth iteration, the Bounding RA
algorithm finds two points xl, xu ∈ � such that |xu−xl | ≤ εk

and the line segment joining ymk
(xl; ωk) and ymk

(xu; ωk)

contains γ .

t
I
t
C

.2.1 Multidimensional Termination Criterion

efore we generalize Criterion S1 to multiple dimensions,
e collect four definitions.

Definition 1 The polytope Pk is the closed convex
ull of j < ∞ points xk,1, xk,2, . . . , xk,j ∈ �q :

Pk ≡ {x : x =
j∑

i=1

αixk,i ,

j∑
i=1

αi = 1, αi ≥ 0}.

A polytope is thus a bounded closed convex poly-
edron that is completely characterized by the points
k,1, xk,2, . . . , xk,j .

Definition 2 The image ymk
(Pk), ymk

: �q →
q of the polytope Pk is the closed convex hull
f the points ymk

(xk,1), ymk
(xk,2), . . . , ymk

(xk,j ), where
k,1, xk,2, . . . , xk,j ∈ �q are the points whose convex hull
s Pk .

Definition 3 The distance s(A, B) between two sets
, B ⊂ �q is

s(A, B) = inf
x1∈A,x2∈B

‖x1 − x2‖2,

he smallest Euclidean distance between the two sets A and
.

Definition 4 The size v(Pk) of the polytope Pk ⊂
q is

v(Pk) = sup{‖x1 − x2‖2, x1, x2 ∈ Pk},

he largest Euclidean distance between any two points in
he polytope Pk .

To generalize Criterion S1 to multiple dimensions,
e propose stopping the iteration when the deterministic

oot-finding procedure finds a small-enough polytope whose
mage polytope is close-enough to the target γ .

Formally, the termination criterion in multiple dimen-
ions is given by Criterion SM.
riterion SM: during the kth iteration, the Bounding RA
lgorithm finds a polytope Pk of size at most εk such that
he distance between the image polytope ymk

(Pk; ωk) and
does not exceed ηk .

The termination criterion SM reduces to Criterion S1

or q = 1 by setting ηk = 0.

.2.2 Rationale

he key idea in Criterion SM is to find a small-enough
olytope whose image bounds or comes close to bounding the
arget γ . Could we have used points rather than polytopes?
n other words, what advantages does SM have compared
o an alternative termination criterion such as S′

M
?

riterion S′
M

: during the kth iteration, the Bounding RA
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algorithm finds a point Xk such that the distance between
its image ymk

(Xk; ωk) and the target γ does not exceed ηk .
This question is especially relevant since many deterministic
root-finding algorithms have a termination criterion such as
S′

M
.
The problem with Criterion S′

M
is that it may never

be satisfied when the function ymk
is discontinuous in x.

We provide one- (Figure 1) and two-dimensional (Figure 2)
examples to illustrate this point, but we discuss only Figure
1. Say ymk

is the step function shown in Figure 1 and say
ηk = 0.1 in Criterion S′

M
. Then the deterministic root-

finding procedure can never terminate because there exists
no point x whose image ymk

(x; ωk) is within ηk = 0.1
units from the target γ = 0.6. Therefore, with ηk = 0.1,
the Criterion S′

M
is unattainable. In addition, since we

don’t know before hand as to how close we could get to the
target γ during a particular iteration, choosing an attainable
ηk value is not guaranteed.
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Figure 1: Estimator of g in One Dimension

The above problem does not arise with Criterion SM.
Since Criterion SM seeks a polytope (polytopes in one
dimension are line segments obtained by connecting two
points), the identification of points x3 and x4 terminates the
kth iteration since the distance between the image polytope
(the line segment obtained by joining ymk

(x3; ωk) = 0.4
and ymk

(x4; ωk) = 0.8) and the target γ = 0.6 is zero.

4.3 Deterministic Root-Finding Logic

Having generalized to multiple dimensions the notions of
monotonicity and the termination criterion, we now present
the logic for solving the deterministic root-finding problem
that arises from the kth sample size. In other words, we
answer the question, “how does the Bounding RA algorithm
attain the termination criterion SM during each iteration?”
We first state one more definition.
Definition 5 The point x2 ∈ �q is γ -feasible at
x1 ∈ �q under ymk

: �q → �q if

ymk
(x1; ωk) · d − γ · d < 0 and ymk

(x2; ωk) · d − γ · d < 0.

where d = x2 − x1.
In other words, x2 is γ -feasible at x1 under ymk

: �q →
�q if the projections of ymk

(x1) and ymk
(x2) onto x2 − x1

do not straddle the projection of γ onto x2 − x1. In the
single-dimensional case (q = 1), if x2 is greater (lesser)
than x1, x2 being γ -feasible at x1 under ymk

implies that
both ymk

(x1; ωk) and ymk
(x2; ωk) are lesser (greater) than

the target γ .
The point x2 ∈ �q is γ -infeasible at x1 ∈ �q under

ymk
if it is not γ -feasible. The phrase “under ymk

” in the
above definitions is used only when necessary for clarity.

The rudimentary version of the deterministic root-
finding logic proceeds as follows. Starting with the point
Z = Xk−1, where Xk−1 is obtained during the previous
iteration, points V1, V2, . . . are sampled on the εk sphere
centered on Z until a point Vn is obtained so that Vn is
γ -feasible at Z. The point Vn now becomes the new Z,
i.e. Z is reset to the point Vn, and the sampling procedure
restarts on the sphere of radius εk centered on the new Z.

The deterministic root-finding logic, at all times, main-
tains a polytope Pk formed from the current Z and each of
the γ -infeasible points V1, V2, . . . sampled on the εk sphere
centered on Z. The termination criterion SM is checked
after each new γ -infeasible point, Vi , sampled. The deter-
ministic root-finding logic is stated in more detail in Step
3 of the Bounding RA algorithm in Section 5.

5 BOUNDING RA ALGORITHMS

Algorithm Parameters

x0: Initial solution, x0 ∈ �q .
σ̂1: Initial q × q covariance parameter matrix.
m1: Initial sample size, m1 ∈ {1, 2, . . .}.
c1: Sample-size multiplier, c1 > 1.
c2: Step-size multiplier, c2 ≥ 1.

{εk}: Sequence of domain-space tolerances, εk > 0.
{ηk}: Sequence of range-space tolerances, ηk ≥ 0.

Algorithm Logic

Given: default algorithm-parameter values.
Find: the root x∗ using

0. Initialize k = 0, x0 = x0.
1. Set k ← k + 1, xl = xk−1.
2. Independently generate

ωk = {ω1, ω2, . . . , ωmk
}.
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Figure 2: Estimator of g in Two Dimensions
3. Find a polytope Pk such that v(Pk) ≤ εk and
s({γ }, ymk

(Pk, ωk)) ≤ ηk:

3.1 Find points xl, xu ∈ �q such that
‖xl − xu‖2 ≤ εk and the direction xu − xl is
γ -infeasible.

3.1.1 Initialize cs = 1, xu = xl and
d = γ − ymk

(xl, ωk).

3.1.2 While ymk
(xl, ωk) · d − γ · d < 0 and

ymk
(xu, ωk) − γ · d < 0, repeat Steps

3.1.2 (a)–(f).

(a) Set xl = xu.

(b) Generate a unit direction vector d

such that ymk
(xl, ωk) · d − γ · d < 0.

(c) Compute step-size δ = csd
T σ̂kd,

where σ̂k is from Step 6 of the
(k − 1)th iteration.

(d) Set cs = c2cs .

(e) Set xu = xl + dδ.

(f) Simulate to obtain ymk
(xu, ωk).

3.1.3 While ‖xl − xu‖2 > εk repeat Steps 3.1.3
(a)–(c).

(a) Set x = (xl + xu)/2.

(b) Simulate to obtain ymk
(x, ωk).
(c) If ymk
(x, ωi) ·d −γ ·d < 0, then set

xl = x. Otherwise set xu = x.

3.2 Set Pk ≡ {xl, xu}.
3.3 From among xl, xu, select the point x whose

image is closest to γ :
If ‖ymk

(xl, ωk)− γ ‖2 ≤ ‖ymk
(xu, ωk)− γ ‖2,

set x = xl . Otherwise, set x = xu.

3.4 While s({γ }, ymk
(Pk, ωk)) > ηk, repeat Steps

3.4 (a)–(c).

(a) Given Pk , generate the next unit direction
vector d.

(b) Simulate to obtain ymk
(x + dεk, ωk).

(c) Update Pk or move the search region:
If

ymk
(x, ωk) · d − γ · d ≥ 0 or

ymk
(x + dεk, ωk) · d − γ · d ≥ 0,

set Pk = {Pk, x + dεk}; otherwise, set
xl = x + dεk and go to Step 3.1.1.

4. Compute the retrospective solution through linear
interpolation:
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xk =
nk∑

j=1

αjvj

where vj ∈ �q, j ∈ {1, 2, . . . , nk}, form Pk; αj ≥
0,

∑nk

j=1 αj = 1, j ∈ {1, 2, . . . , nk}; and γP =∑nk

j=1 αjymk
(vj , ωk), where γP is the projection

of γ onto ymk
(Pk, ωk).

5. Compute the root estimate through weighted aver-
aging of retrospective solutions:

xk =
k∑

j=1

mjxj/

k∑
j=1

mj .

6. Compute V̂ar(xk).
7. If V̂ar(xk) is small enough, return xk . Otherwise,

set mk+1 = c1mk and go to Step 1.

The stopping rule in Step 7. is purposely imprecise to
allow the user to stop whenever desired.

6 CONVERGENCE

The convergence proof of the Bounding RA algorithm in-
volves two steps. First, it can be shown that if each iteration
of the algorithm terminates, i.e. if a small-enough poly-
tope is found during each iteration whose image polytope
is close-enough to the target γ , then the sequence of solu-
tions obtained from the algorithm converges to the true root
almost surely. Second, it can be shown that, under certain
conditions, each iteration of the Bounding RA algorithm
terminates. Convergence proofs are not included in this
paper.

7 IMPLEMENTATION ISSUES

Algorithm convergence alone is insufficient to guarantee
good practical performance. An example is CSA, which
converges in mean square, but its practical performance is
not robust with respect to algorithm parameters. CSA often
requires experimentation with algorithm parameter settings
before good practical performance can be achieved. The
objective here is to develop black-box algorithms to solve
SRFPs, i.e. algorithms that work well in practice with no
user-tuning of algorithm parameters.

Empirical investigation using the multidimensional
Bounding RA algorithm shows that three parameter se-
quences affect its performance: the sequence {εk} of error
tolerances in the X-space, the sequence {ηk} of error tol-
erances in the Y -space and the sequence {mk} of sample
sizes used across iterations. Recall from criterion Sm of
Section 4 that the Bounding RA algorithm, during the kth
iteration, finds a polytope Pk of size at most εk such that the
distance between the image polytope ymk

(Pk; ωk) and the
target γ does not exceed ηk . Thus, while the parameter mk

is a measure of the quality of the kth approximate problem,
the parameters εk and ηk together decide how accurately
the kth approximate problem is solved. These parameters
are intimately linked in the sense that more approximate
(small mk values) problems should be solved with less ac-
curacy (large εk , ηk values) while less approximate (large
mk values) problems should be solved with greater accuracy
(small εk , ηk values).

To guide choice of the sequence {εk}, we assume that the
retrospective solution Xk to the kth approximate problem
has the variance σ 2/

√
mk where σ 2 is some underlying

matrix of variance constants. If X1, X2, . . . , Xk are the
retrospective solutions obtained after the first k iterations,
an estimator σ̂ 2 of σ 2 is

σ̂ 2 = 1

k − 1

k∑
j=1

mj(Xj − Xk)(Xj − Xk)
T,

where Xj , j = 1, 2, . . . , k is a column vector and Xk =∑k
j=1 mjXj/

∑k
j=1 mj . This motivates choosing εk+1 =

h(̂σ ), where σ̂ is the q × q matrix whose (i, j)th element
is the square-root of the (i, j)th element of σ̂ 2, and h(̂σ ) is
some function of σ̂ . In practice, two good choices of h(̂σ )

are det(̂σ ) and dTσ̂ d where d is the unit vector along the
initial search direction for the (k + 1)th iteration.

The parameter ηk can be chosen as the size of the image
polytope ymk

(Pk, ωk). This choice ensures that the distance
between the image polytope ymk

(Pk, ωk) and the target γ

is less than the image polytope’s size. Finally, for the
sample-size sequence {mk}, setting m1 = 1 and increasing
sample size by a fixed percentage (e.g. 10 percent) each
iteration seems to work well in practice.

8 CONCLUDING REMARKS AND FUTURE
RESEARCH

The RA family of algorithms presents a promising frame-
work for solving SRFPs. The RA structure is central to
the simultaneous goals of proving convergence and achiev-
ing good practical performance. RA algorithms use, by
definition, increasing sample sizes and decreasing error tol-
erances. The key idea for computational efficiency in RA
algorithms is that previous retrospective iterations, based
upon small sample sizes, provide information for efficient
numerical solution in future retrospective iterations. Com-
puting in early iterations is inexpensive because sample
sizes are small; computing in later iterations is inexpensive
because the approximate location of the retrospective root
is known.
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The multidimensional Bounding RA is a member of
the RA family of algorithms. Numerical results on solving
a class of one- and two-dimensional problems using the
multidimensional Bounding RA algorithm suggests that the
algorithm is robust with respect to its parameters. In other
words, the algorithm exhibits good practical performance
and requires no user tuning.

Four issues are currently under investigation. First,
we have been able to prove convergence of the Bounding
RA algorithm assuming that the sequences {εk}, {ηk} and
{mk} are deterministic and satisfy {εk} → 0, {ηk} → 0,
{mk} → ∞. We would like to extend the convergence proofs
to include stochastic sequences such as those suggested in
Section 7. Second, how should the sample size sequence
{mk} be chosen if one is to ensure some sort of optimal
algorithm performance? Analytical results on sample size
increase in the RA context would be useful even to a
wider audience. Third, performance of the multidimensional
Bounding RA algorithm in dimensions higher than q = 2
is yet to be studied. Last, Bounding RA algorithms have
been developed for unconstrained problems. Extensions to
include problems defined on constrained spaces would be
useful.
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