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ABSTRACT 

This paper explores an approach to global, stochastic, simu-
lation optimization which combines stochastic approxima-
tion (SA) with simulated annealing (SAN).  SA directs a 
search of the response surface efficiently, using a conserva-
tive number of simulation replications to approximate the 
local gradient of a probabilistic loss function.  SAN adds a 
random component to the SA search, needed to escape local 
optima and forestall premature termination.  Using a limited 
set of simple test problems, we compare the performance of 
SA/SAN with the commercial package OptQuest.  Results 
demonstrate that SA/SAN can outperform OptQuest when 
properly tuned.  The practical difficulty lies in specifying an 
appropriate set of SA/SAN gain coefficients for a given ap-
plication.  Further results demonstrate that a multi-start ap-
proach greatly improves the coverage and robustness of 
SA/SAN, while also providing insights useful in directing 
iterative improvement of the gain coefficients before each 
new start. This preliminary study is sufficiently encouraging 
to invite further research on SA/SAN.  

1 INTRODUCTION 

A principle motivation for many simulation studies is to 
compare the performance and efficacy of alterative system 
designs (Law and Kelton 2000).  When alternatives can be 
characterized by the values assumed by a discrete set of 
variables under the designers’ control, and when the basis 
for evaluation can be quantified in terms of simulation out-
puts, the comparison problem can be cast as a simulation 
optimization.  The objective is to discover an optimal set of 
control variables which minimizes a loss function of the 
simulation response.  

Methods for simulation optimization have been stud-
ied extensively over the past two decades (Fu 2002), as 
have methods for the closely related problem of ranking 
and selection of limited set of discrete design alternatives 

 

(Swisher 1999; Goldsman and Nelson 2001; Nelson et al. 
2001).  For the purposes of this paper, it suffices to note 
that the principle technical difficulties in simulation opti-
mization inhere in (1) the probabilistic nature of the simu-
lation response and the consequent need to estimate the 
value of the loss function by efficient sampling; (2) the 
lack of a closed-form loss function and the consequent 
need to approximate gradient information using neighbor-
ing estimates of the loss-function; and (3) the potential ex-
istence of local optimal and the consequent need to fore-
stall premature termination at a suboptimal solution. 

Stochastic approximation (SA) is an adaptation of de-
terministic hill-climbing (steepest-decent) for optimization 
problems in the presence of noise (Spall 1998, 2003).  Spe-
cifically, SA directs a search of the response surface using 
estimates of a noisy loss function to approximate the local 
gradient, in a way that minimizes the number of probes of 
the response surface.  SA has many properties advanta-
geous for simulation optimization, in which noise takes the 
form of estimation error in the simulation output and each 
probe corresponds to a replication of the simulation.  

Because SA is a local gradient-search method, it lacks 
the ability to escape local optima. Simulated annealing 
(SAN) provides this ability by injecting a Monte Carlo 
randomness term in the SA recursion.  This provides a 
means to escape the neighborhood of a local optimum 
through probabilistic acceptance of inferior intermediate 
solutions.  While SAN was developed for deterministic 
problems, here we combine SAN with SA to create a joint 
algorithm, exploiting the strengths of each algorithm with 
respect to simulation optimization.   

In the following section, the simulation optimization 
problem is stated formally.  The SA, SAN, SA/SAN, and 
OptQuest approaches to simulation optimization are briefly 
outlined in Sections 3-6.  Section 7 describes the two test 
cases studied and compares the results for several SA/SAN 
variants versus those for OptQuest.  Conclusions and direc-
tions for future research are provided in the final section. 
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2 PROBLEM FORMALISM 

The simulation optimization problem can be cast the fol-
lowing continuous search problem (Spall, 2003):  
 
 )],([)( min VfEL θθ =

Θ∈θ
 (1) 

 

where [ ]Tpθθθ ,,, 21 K=θ  is an p-dimensional control vec-

tor, constrained to the vector space Θ of feasible controls; 
,L(θ) is a scalar loss function, providing an aggregate meas-
ure of system performance; and f(θ,V) is a random variable 
with distribution dependent on θ, denoting realizations of the 
loss function estimated from a simulation run with associ-
ated variability V.  The sample mean from N replications of 
the simulation for a given value of the control θi: 
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is and unbiased estimator of the value of the loss function 
for this control value. 

The efficiency of any approach to this optimization 
problem is strongly linked to the total number of probes (re-
alizations of the loss function) executed during the search, 
since each new probe requires a single replication of the 
simulation.  In general, probes are needed both to direct the 
search through a sequence of intermediary control values, as 
well as to improve the precision of the estimated loss func-
tion for any given control value.  In contrast to traditional 
mathematical programming problems, in which computing 
the value of the loss function typically is trivial, a single 
probe for a large and complex simulation might take several 
hours or even days to evaluate.  For this reason, modern 
global optimization systems, such as OptQuest (Lagune 
1997a, Lagune 1997b, Glover et al. 2000) and GROPE 
(Elder 1993) invest considerable effort and ingenuity in 
carefully managing the number of probes employed. 

3 STOCHASTIC APPROXIMATION 

SA derives from standard, deterministic, steepest-decent 
optimization methods.  The basic recursion is: 
 
 )(1 kkkk a θgθθ −=+  (3) 
 
where θk is the value the control vector at stage k; 
 
 T
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is the corresponding value of gradient of the loss function; 
and a is a (scalar) gain coefficient.  The gain coefficient de-
termines the step size to be taken at each iteration and there-
fore the rate and stability of convergence to a local optimum.  
3.1 Robbins-Monro Recursion 

In SA, at any stage the gradient of the loss function in equa-
tion (4) must be estimated, since the loss function itself is the 
expectation of a random variable.  Obviously, this can be ac-
complished by averaging a sample of the gradient observed 
multiple times the same control θk, as in equation (2).  The 
precision of the local estimate will increase probabilistically 
as the number observations increases.  

Robbins and Monro (1951) recognized that this obvi-
ous strategy is wasteful of probes. The estimated gradient 
at any stage is an intermediate calculation in finding the 
optimum control θ* and a precise local estimate is not and 
end in itself.  Rather than computing averages at each itera-
tion, therefore, it is more efficient to use a single observa-
tion at each control and instead rely on averaging estimates 
locally across iterations as the search progresses.  This is of 
particular benefit given the computational effort in evaluat-
ing the gradient using simulation.  

In SA, therefore, equation (3) is replaced by the Rob-
bins-Monro recursion: 

 
 )(ˆ1 kkkkk ga θθθ −=+  (5) 
 
Two key differences are noted.  First is just the recognition 
that the gradient must be estimated.  Second is the recogni-
tion that the gain coefficient ak must be a function of k, 
chosen to ensure convergence of the algorithm by properly 
performing across-iteration averaging. 

A typical form for gain coefficient at iteration k is: 
 

 α)1( Ak
aak
++

=  (6) 

 
where a, A, and α are positive constants (Spall 2003). The 
intended effect is to decrease the gain coefficient to zero as 
the search progresses.  Initially, large steps speed the rate 
of convergence and protect against premature termination.  
As the search progresses, however, and the algorithm ap-
proaches an optimum, increasingly smaller steps improve 
the precision of across-iteration averaging. (Note that for 
ak=0, “across-iteration averaging” is identically averaging 
over the same value of θk.) 

3.2 Gradient Estimation 

The Robbins-Monro algorithm assumes that instances of the 
loss-function gradient are directly measurable via equation 
(4).  However, in many applications, including simulation 
optimization, the form of the gradient is unknown and must 
be approximated using only instances of the loss function 
itself. Two so-called “gradient free” approaches—Finite-
Difference Stochastic Approximation (FDSA) and Simulta-
neous Perturbation Stochastic Approximation (SPSA)—are 
described in the following subsections. 
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3.2.1 The Finite-Difference SA 

FDSA varies each of the control parameters and assesses 
the (discrete) change in the loss function. A one-sided 
measurement involves perturbing each variable by just 
positive or negative quantities, while a two-sided meas-
urement involves perturbation by both positive and nega-
tive quantities.  The two-sided method employs the follow-
ing approximate, p-dimensional, estimated gradient vector: 
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The constant ck is the step size, or perturbation gain coeffi-
cient, from the current values for θk and follows a decaying 
sequence in k similar to that of the gains ak in equation (6). 
Each of the set of p-dimensional unit vectors εi, i=1,…p, 
has all zero elements except for a one in the ith component. 
To calculate the two-sided gradient therefore requires 2p 
evaluations of the loss function. 

3.2.2 Simultaneous Perturbation SA 

SPSA randomly perturbs a subset of the p elements of θk, 
employing the following p-dimensional estimated gradi-
ent vector: 
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The constant ck is defined as in the FDSA.  In contrast to 
the FDSA, however, SPSA employs a single perturbation  
p-vector T

kpkkk ],...,,[ 21 ∆∆∆=∆ . Each of the elements of 

∆k is a Bernoulli random variable assuming a value of ei-
ther zero or one. 

SPSA therefore reduces the number of evaluations of 
the loss function from 2p to just two, independently of the 
number of control variables.  Although this local gradient 
estimate is less accurate, given the across-iteration averag-
ing of the Robbins-Monro algorithm, the accuracy of the 
two procedures is nearly the same in the region of conver-
gence. Given that the loss function is evaluated using mul-
tiple simulation replications, the savings in computation 
times can be substantial and SPSA is preferred.  
4 THE DETERMINISTIC SAN ALGORITHM 

The deterministic SAN algorithm comprises the following 
five steps:  

 Step 1.  Set the initial temperature T, and control 
θ0∈Θ, and increment counter k←0.  Evaluate the loss func-
tion L(θ0) at the initial control. 

Step 2.  Determine a new value for θnew in the 
neighborhood of the value θk according to a predefined rule 
and evaluate L(θnew). 

Step 3.  Calculate λ = L(θnew)-L(θk). If λ<0, accept the 
new value of θk+1=θnew; otherwise, generate a uniform ran-
dom variable U~UNIF(0,1) and accept the new value of 
θk+1=θnew if only if TeU /λ−≤  (the Metropolis Criterion 
(Gelfand and Mitter 1993)). 

Step 4.  Increment the counter k←k+1.  Repeat Steps 2 
and 3 until the control stabilizes or until the predefined 
number of replications for a given temperature is exceeded. 

Step 5.  Test for convergence using a predefined crite-
rion (typically based on time, probe budget, and tolerance) 
and stop if this criterion is satisfied.  Otherwise, decrease T 
according to a predefined cooling schedule and return to 
Step 2. 

The Metropolis Criterion embodies the essence of SAN.  
At Step 3, note that a smaller value of the ratio λ/T implies a 
greater probability of accepting θnew when this represents a 
local degradation in the solution.  As one would expect, for 
any given value of the temperature T, this implies that 
smaller degradations are more likely to be accepted than lar-
ger degradations.  However, this also implies that any given 
value of degradation λ is more likely to be accepted at 
higher temperatures than at lower temperatures.  In analogy 
to a physical annealing process, the search process begins 
with at a relatively high T and subsequently decreases T ac-
cording to a predefined cooling schedule.  In this way, the 
search has a greater chance of avoiding capture at local op-
timum earlier in the search. 

5 SA WITH SAN 

The recursion for SA/SAN 
 

 kkkkkkkk bna wθgθθ +−=+ )(ˆ1  (9) 
 
adds a Monte Carlo random component to the Robbins-
Monro equation (5).  The scalar “bounce” gain coefficient 
bk is similar to the gain coefficient ak in equation (6) and 
decays to zero as k→∞.  Each element of the p-vector wk is 
an independent, identically-distributed random variable.  
These variables typically are normally distributed, however 
there is no convention for determining the distribution.  

The value of the coefficient nk is determined by Me-
tropolis Criterion as in Step 3 in deterministic SAN.  Spe-
cifically, the if difference λ = L(θk+1)-L(θk)<0, then nk=1 
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and the random perturbation in equation (9) is accepted for 
calculation of the gradient.  Otherwise, a random variable 
U~UNIF(0,1) is generated.  If TeU /λ−≤ , then nk=1 and 
the random perturbation also is accepted.  Otherwise, nk=0 
and the perturbation is rejected.   

This procedure requires one additional probe of the re-
sponse surface at stage k to reevaluate L(θk+1) when nk=0.  
As the temperature decreases and the probability of accept-
ing an inferior control decreases; however, nk may simply 
be set to one for the remaining iterations, avoiding even the 
modest cost of evaluating the Metropolis Criterion.  With 
nk=1, the recursion in equation (9) is shown to converge 
probabilistically given the appropriate gain sequences such 
as those studied by Kushner (1987), Gelfand and Mitter 
(1993), Fang and Qian (1997), and Yin (1999). 

Convergence of the algorithm to a local optimum may 
be assessed by testing the average per-iteration deviation in 
the control vector over the previous n points against some 
minimum threshold vector: 

 

 τ
θθ

≤
−∑

−

−=
−

n

k

nkl
kk

1

1

 (10) 

 
Alternately, or combination with inequality (10), conver-
gence may be determined by testing the average per-
iteration deviation in the scalar loss function.  

6 A BRIEF OVERVIEW OF OPTQUEST 

OptQuest a well-known commercial package for global op-
timization.  OptQuest was chosen as a benchmark for em-
pirical testing, in part, because of its recognized superior 
performance on a great range of problems, and, in part, as a 
convenience (OptQuest is bundled with the Arena 7.01 
simulation suite). Because OptQuest is proprietary, the 
precise details of its operation are unknown.  Several pa-
pers (Lagune, 1997a,b; Glover et al. 2000) do provide the 
following general outline of its search strategy, however.  

OptQuest employs a combination of scatter search and 
tabu search.  Scatter search, similar to genetic algorithms, 
operates on a population of controls to determine the next 
control for evaluation. This control is generated by a linear 
combination of the reference controls mapped over the fea-
sible region. Tabu search is superimposed over the process 
to prevent exploring regions of the response surface previ-
ously probed. Scatter search is an “information driven ap-
proach” deriving knowledge from the search space to find-
ing high quality solutions. 

A “Neural Network Accelerator” speeds the search by 
fitting and updating a neural-network model with each it-
eration. The neural network predicts the value of the loss 
function of a future search control. If this prediction indi-
cates an unacceptably inferior solution, the corresponding 
control is not probed. The accelerator operates at several 
risk levels. For example, a risk adverse search would dis-
card a potential probe if its predicted value is larger than 
three standard deviations above the best solution.  

7 EMPIRICAL TESTS AND RESULTS 

7.1 Testing a Q, R Inventory Simulation 

The first test problem is a Q,R-inventory model.  Daily 
demand is stochastic, as is the lead time required for a new 
order to be added to the current inventory. The objective is 
to minimize the expected yearly total cost L(θ), which is a 
probabilistic function of the continuous control θ=[Q, R]T, 
where Q∈[0,100] is the inventory re-order threshold and 
R∈[0,100] is re-order quantity.  Backordering is permitted.  
Fixed daily shortage and holding costs are assessed based 
on the inventory level at the beginning of the day. 

The SA/SAN gain parameters are set using a initial 
guess and remain unchanged for all trials. OptQuest is exe-
cuted with (the default of) five replications at each control. 
For this reason, comparing the five-point moving average 
of the SA/SAN search trajectory ( )(ˆ

kL θ  vs. log10 k) 
against the OptQuest trajectory provides a similar compari-
son in terms of the variance of the estimate.  This form of 
comparison is used in this an all subsequent test cases, as 
displayed in Figures 1-6.  Initial conditions all the same for 
each SA/SAN and OptQuest trial. 

It is important to note that for OptQuest, each iteration 
k requires five probes, while for SA/SAN each iteration re-
quires either two or three probes.  In addition, OptQuest is  
performing neural net and other computations at each itera-
tion, while SAN is not.  While approximate, it is apparent 
the computation time and effort expended by OptQuest at 
each iteration is approximately double that for SA/SAN. 

Figure 1 shows the trajectory of five sample iterations 
of both OptQuest and SA/SAN.  OptQuest finds minimum 
at $785.74 per day, compared to that of $826.66 for 
SA/SAN.  SA/SAN initially improved the response more 
rapidly than OptQuest, but was unable to improve further 
after several hundred iterations. Four of the five OptQuest 
runs (denoted by the thicker line) have the identical trajec-
tory, while the fifth OptQuest run follows the other four 
runs closely, but converges at a slightly slower rate, indi-
cating the robustness of the algorithm. 

7.2 Testing a Tandem Queuing Simulation 

An entity arrives at the first stage and queues for service.  
Upon completion of service, the entity moves to a the sec-
ond stage and again queues for service. Upon release of the 
second server, the entity is disposed.  An entity waiting in 
either queue accrues a cost proportional to the duration of 
the wait. Waiting can be reduced by the addition of re-
source capacity for either server at a fixed cost per unit of 
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Figure 1: Comparisons for Q-R a Inventory Simulation 

 
capacity.  The objective is to minimize the overall cost by 
balancing the costs for waiting and capacity expansion. 

Figure 2 summarizes the test results.  SA/SAN per-
forms poorly and does not converge after 1000 iterations. 
Analysis suggests that estimation error in the response does 
not allow for an accurate gradient estimate, despite modifi-
cations in the gain coefficients ak and ck.. 
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Figure 2: Comparisons for Tandem Queuing Simu-
lation 

7.3 Extensions to Original SA/SAN Algorithm 

While perhaps disappointing overall, in many of the empiri-
cal tests SA/SAN did outperform OptQuest in terms of find-
ing better solutions with far fewer probes during at least 
some subsequence of the search. Further empirical testing 
demonstrated that, as expected, SA/SAN performance is 
highly sensitive to the specification of the gain coefficients.  
Figure 3 presents results for the inventory simulation that 
show just how dramatic the potential performance improve-
ment can be.  By trial and error, gain values were tuned such 
that SA/SAN consistently outperforms OptQuest after fewer 
than 40 iterations using on average about half the probes at 

SA/SAN 

OptQuest 

OptQuest 

SA/SAN 
each iteration.  In four of the five sample runs, SA/SAN 
maintains a superior solution before stalling out after several 
hundred iterations. In all cases SA/SAN converges to a good 
(if suboptimal) solution.  
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Figure 3: Comparisons After Tuning the Gain 
Coefficients 
 
Clearly, OptQuest uses a significant number of initial 

probes to survey the search region, while SA/SAN begins 
improvement immediately. This is because OptQuest at-
tempts to define the simulation response precisely, regard-
less of the depth of the search, using multiple probes at the 
same control.  In contrast, SA/SAN immediately steps in 
the direction of improvement (or non-improvement) after 
the first gradient approximation.  Equally important is the 
observation that, late in the search, OptQuest expends a 
very large number of additional probes to achieve only a 
modest improvement the solution. 

The practical difficulty, of course, lies in specifying a 
priori an appropriate set of gain coefficients to direct the 
SA/SAN search for a given application. Further analysis of 
the results does provide at least some hint as to how this 
might eventually be achieved. At least for this particular 
problem, the suggestion is that SA/SAN performance bene-
fits by selecting gains that provide rapid initial improvement, 
combined with quick convergence to a good (subpotimal) 
solution. Referring to the gain equation (6), this in fact was 
the result of the trial-and-error tuning. By increasing the 
numerator a, the initial per-iteration influence of the gradient 
term was increased. By also increasing α, rapid convergence 
was achieved. 

This insight is promising and suggests the direction for 
future research on the optimal selection of gain coeffi-
cients. It suggests that, upon suboptimal termination, 
SA/SAN may be reinitialized with smaller gain coeffi-
cients to refine the precision of subsequent probes. 

7.3.1 Random Multi-Start 

This multi-start extension was partially explored using the 
inventory simulation. The SA/SAN gain coefficients were 

OptQuest 

SA/SAN 
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selected a priori to provide an aggressive search (rapid ini-
tial improvement and early termination), but the gain val-
ues remained the same across all of the multi-starts.  In the 
first test, the algorithm was restarted at five randomly se-
lected initial controls. 

Figure 4 summarizes the results. The individual 
dashed lines denote the five SA/SAN random starts; the 
thin solid line is the average of these results; and the thick 
solid line is the OptQuest search trajectory. The number 
associated with the dotted line indicates the order in which 
the multi-starts were performed. The SA/SAN results are 
superior to OptQuest on the second and third starts, be-
cause of the fortuitous (but entirely random) selection of 
initial controls.  In all cases, SA/SAN yields better solu-
tions than OptQuest after approximately 125 iterations and 
maintains this advantage through 725 iterations. In situa-
tions in which the cost of probes is significant, this advan-
tage may be extremely valuable. 
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Figure 4. Comparisons Using Multiple Random Starts 

7.3.2 Grid Multi-Start 

In this instance, six initial controls are chosen, uniformly 
dispersed within the decision space. The gain coefficients 
are the same as those employed in the random multi-start 
tests.  Results are shown in Figure 5. 

This case yields a slightly better overall performance 
than the random multi-start and SA/SAN outperforms  
OptQuest for much of the probe budget. OptQuest has a 
superior solution through 35 iterations; SA/SAN wins out 
between 36 and 50 iterations; OptQuest regains the advan-
tage on iterations 51 through 65; and SA/SAN finds the 
better solution from 66 to approximately 750 iterations.   

The grid multi-start search also provides a much 
broader coverage of the response surface in comparison to 
the empirical results initially obtained. The non-restarting 
algorithm searches a comparatively narrow region of the 
search before termination. In contrast, each of the six grid 
multi-starts begin in widely separated regions of the re-
sponse surface, quickly converging in approximately 50 
iterations. This provides improved confidence in final con-
trol, given the broader coverage of the search area. Addi- 

SA/SAN 
OptQuest 
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Figure 5. Comparisons Using Grid-Structure Multiple 
Starts 

 
tionally, three of the six restarts converge to a similar 
neighborhood providing a greater degree of confidence in 
the optimal control parameters.  

7.3.3 Random Start, Previous-Best  
Next-Starting Location 

For this test, the first SA/SAN start is initiated at a random 
control.  Subsequent restarts are initiated at the final con-
trol determined from the search immediately preceding. 
Each restart searches through 50 iterations.  Results are 
given in Figure 6.  Again, the SA/SAN summary line indi-
cates far superior performance over OptQuest from 20 to 
approximately 740 iterations.  Although not explored in 
this test, as suggested previously, performance may well be 
further improved by appropriately retuning the gain coeffi-
cients to improve precision with each new start. 
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Figure 6. Comparisons Using Previous-Best Next-
Starting Location 
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8 SUMMARY AND CONCLUSIONS 

The approach adopted to compare simulated alternatives is a 
function of the broader systems engineering design process 
and depends on the specific problem at hand, the objectives 
of the study, and the resources available for analysis. If ap-
propriate in this broader context, it is best to make compari-
sons using ranking and selection over a set of discrete design 
alternatives. Powerful and proven ranking-and-selection 
techniques are available. Given an exhaustive list of feasible 
possibilities a priori, obviously it is not possible to neglect a 
region of the search space (Goldsman and Nelson 2001, 
Swisher 1999). Further, ranking-and-selection methods pro-
vide statistical metrics as a basis for comparisons, while us-
ing a minimal number of simulation replications (Fu 2002). 
However, in the event that the search space is not holistically 
defined using a discrete set of alternatives, or the number of 
feasible discrete alternatives is large (Nelson et al. (2001) 
suggest thirty alternatives as a practical upper limit), simula-
tion optimization is the preferred choice. 

Among the methods available for simulation optimiza-
tion, OptQuest certainly has many advantages.  OptQuest 
is readily available and, in its commercial implementation, 
has only one adjustable parameter that must be determined 
a priori (the number of probes per iteration).  OptQuest 
yields good solutions and appears to be robust.   

As demonstrated in this research, however, SA/SAN 
can potentially outperform OptQuest and may be preferred 
when simulation runs are expensive and the budget for 
probes is limited.  While the OptQuest methodology is pro-
prietary and can not be modified by the user, SA/SAN is 
open source and contained within 250 lines in a C++ routine.  
Therefore a tradeoff clearly exists between the simplicity of 
OptQuest, in terms of requiring a single adjustable input pa-
rameter, and the flexible control over the algorithm and 
search provided by SA/SAN. Tuning the SA/SAN gain coef-
ficients allows the user to define precisely the direction and 
convergence of the search, something not attainable in the 
commercial implementation OptQuest. Further research is 
needed to illuminate rules for selecting optimal SA/SAN 
gain coefficients, based on the structure of the application at 
hand and making use of information derived during the 
search, perhaps based on a multi-start approach. 

In the multi-start approach, the gain coefficients are set 
to encourage rapid movement and quick convergence to a 
local optimum with a restricted number of surface probes.  
Repeatedly restarting an aggressive search appears to use 
surface probes more efficiently than a less aggressive, sin-
gle-start approach. Furthermore, the information gained 
from the prior starts may provide insight into the definition 
of the gain coefficients for future starts, providing a method 
for selecting the gain coefficients. This rapid improvement 
approach provides a great deal of promise for continued de-
velopment of SA/SAN. 

Although not explored in this research, higher dimen-
sional searches may provide a domain in which SA/SAN is 
preferable to OptQuest.  Comparatively little public informa-
tion is available regarding the scalability for OptQuest with 
respect to the number of control variables, although the docu-
mentation states that the performance of OptQuest quickly 
deteriorates beyond 100 controls. In contrast, SA/SAN 
should scale extremely well, requiring only two probes in the 
SPSA gradient approximation regardless of the number of 
controls. Although the bias and variance of the individual 
gradient estimate increases with the dimensionality of the 
search, SA/SAN may provide a quick and dirty approach, 
given a limited probe budget. SA/SAN should also be 
preferable to Response Surface Methodology (Fu and Hill 
1997) in higher dimensional searches for the same reason.   

SA/SAN exhibits the  first-order Markovian property, 
as the (i+1)st control is a function of the ith control alone, ig-
noring information collected previously in the search.  Garai, 
Ho, and Sreenivas (1992) discuss this limitation.  Another 
potential extension would be to augment SA/SAN with in-
telligent global search heuristics, such as a neural network 
overlay in and/or tabu search, in imitation of OptQuest.  

The selection of the search algorithm is entirely a 
function of the system requirements and limitations. This 
paper suggests a significant potential for SA/SAN and in-
vites further research into the multi-start approach.  
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