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ABSTRACT 

We consider how simulation metamodels can be used to op-
timize the performance of a system that depends on a num-
ber of factors. We focus on the situation where the number 
of simulation runs that can be made is limited, and where a 
large number of factors must be included in the metamodel. 
Bayesian methods are particularly useful in this situation and 
can handle problems for which classical stochastic optimiza-
tion can fail. We describe the basic Bayesian methodology, 
and then an extension to this that fits a quadratic response 
surface which, for function minimization, is guaranteed to be 
positive definite. An example is presented to illustrate the 
methods proposed in this paper.  

1 INTRODUCTION 

In simulation output analysis, it is often more convenient to 
use a simple statistical (usually regression) model of the 
simulation output rather than to work directly with the 
simulation model.  These simplified models are termed 
metamodels (see Barton 1998). Let the output of one run of 
our simulation model be y.  We assume that this depends in 
a continuous way on p factors x = (x1, x2, …, xp)T, and can 
therefore be regarded as a function of these factors. We 
treat these factors as decision variables that are set by the 
controller of the system under investigation. We thus as-
sume the following simulation metamodel 

 
 y = q(x, θ) +  ε, (1) 
 
where q(x, θ) is a regression function describing the underly-
ing dependence of the response y on the factor variables x, 
and ε is a random noise variable, to allow for the inherent 
random variability in the observed output value. The vector 
θ = (θ1, θ2, ..., θm )T is a set of coefficients on which the re-
gression function depends. Some, possibly all, of these coef-
ficients will be unknown and have to be estimated by fitting 
the regression function to observed simulation output.  

Geometrically the regression function can be thought of 
as defining a surface in p-dimensional space that describes 

 

our estimate of the dependence of the simulation response 
on the p factors (x1, x2, …, xp). This interpretation gives rise 
to the name response surface methodology. Good basic ref-
erences are Barton (1998) and Hood and Welch (1993). 

Response surface methodology is useful if we wish to 
find the factor setting x* for which the system response is 
optimal. For example, if the metamodel describes the per-
formance of the system, so that q(x, θ) is simply a per-
formance index, then x* will be the factor setting that op-
timizes q(x, θ).  

For a discussion of simulation optimization and the 
use of response surface methodology for this, see Azadivar 
(1999), Kelton (1999), Glover, Kelly and Laguna (1999), 
Fu et al. (2000), Gonda et al. (2000), Law and McComas 
(2000) and Swisher et al. (2000). 

One serious and common difficulty remains. If the 
number of factors is large but the simulation model is com-
plex so that only few runs can be made, then it may not be 
possible to estimate all the coefficients of the metamodel us-
ing for example classical methods of maximum likelihood. 
Here a Bayesian approach has a great advantage. 

In the Bayesian approach we have a prior probability 
distribution π(θ) that expresses our prior belief about the 
likely value of the parameters, which gives us a viable 
starting point for the simulation runs. As we make our 
simulation runs we can progressively modify and make 
more precise our belief about the distribution of θ. We can 
stop the procedure at any point, with the knowledge about 
the behavior of the system output improving with the num-
ber of simulation runs made. 

One further potential problem that can occur with this 
methodology is that the response surface fitted is not posi-
tive (negative) definite when searching for a minimum 
(maximum).  For situations where we are fairly certain that 
there is an optimum (which will be assumed to be a mini-
mum in what follows) we present here a simple methodol-
ogy for a quadratic q(x, θ), based on a restriction of the pa-
rameter values, such that the response surface is always 
positive definite. 
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Thus in summary we examine the Bayesian approach 
for fitting q(x, θ) and then obtaining the factor setting x* for 
which q(x, θ) is optimized. The basic methodology was 
given by Cheng (2004). For completeness we outline the 
methodology again here for the case where we fit a quadratic 
q(x, θ). We then go on to discuss the issue of ensuring how 
to ensure that the fitted regression is positive definite, when 
it is known at the outset that the problem is well-posed so 
that q(x, θ) can be expected to satisfy this condition.  

2 BAYES METHOD 

Without loss of generality, we shall assume that the objec-
tive is to estimate the value of x which minimizes q(x, θ). 
We further assume that we can only perform a limited 
number of simulated trials but that there is some prior ex-
pert understanding of how the performance index q might 
vary as a function of x. We use the specific example first 
given by Cheng (2004) to show how the approach works.  
This allows for a clearer explanation of the methods. For 
further discussion of Bayesian methodology in simulation 
see Cheng (1999) and Chick (2000). 

Our example is based on a real engineering application 
in which the aim of the modeling was to optimize the set-
up of a piece of complex equipment so that the time that it 
took to perform a given task was minimized. The time 
taken to perform the task was therefore taken to be the per-
formance measure. There were 6 factor variable settings to 
be set: A, B, C, D, E and F, and we denote their values by 
x = (x1, x2, …, x6). 

The simulation model was an accurate model of the 
real system and took some time to run. For our analysis 
only 7 simulation runs were made, each at a different value 
of the factor settings. The output from the simulation runs 
can be described by 
 
 yi = q(xi , θ) + εi , i = 1, 2, ..., 7 (2) 
 
where ε is initially taken to have mean zero with a constant 
variance. 

As we wish to carry out an unrestricted optimization, 
we only require q to be a good approximation to the un-
known true system performance in the region of its mini-
mum. We therefore use a quadratic expression for q and put 
 
 q(x , θ) = θ1 + θ2x1 + θ3x2 + . . . + θ7x6  
  + θ8x1

2 + θ9x1x2 + . . . + θ28x6
2 (3) 

 
The Bayesian approach treats θ = (θ1, θ2, ... , θ28) as being 
a random variable, with a prior distribution. We set the 
E[θj] equal to the best estimates of the factor values prior 
to the simulation experiments, and the standard deviation 
StdDev[θj]  is set to a value indicative of the confidence 
that we have in this estimate. 
Bayes' Theorem allows updating of the distribution of 
θ, as we get new data points yi, using the formula 

 
 p(θ|y)  =  K -1 p(y|θ) π(θ) (4) 
 
where, assuming a continuous distribution for simplicity, 

 
 ( ) ( ) θθθy dπ∫= pK  (5) 
 
is a normalizing constant to ensure that p(θ|y) is a proper 
probability density. 

Here )( yθp  is the posterior distribution of the pa-
rameters θ given the observed simulation values y, and 

)( θyp  is the likelihood of observing y given that the pa-
rameters have value θ. 

The main advantage of the Bayesian approach over the 
classical methods of maximum likelihood is that it allows 
the incorporation of prior knowledge.  A further attraction 
is that it allows incremental updating of θ, and hence q(x, 
θ), as additional values of x are obtained. 

The choice of design points x1, x2, …, xn at which to 
perform simulations is a classical statistical experimental 
design problem. The aim is to minimize the number of de-
sign points needed to estimate q. In our case, we need to 
estimate first and second order terms of q. 

A classical non-central composite design (see Cochran 
& Cox (1957) for details) would use 2(6-1) + 2*6 + 1 = 45 
design points, where there are 32 points to estimate the lin-
ear and mixed terms of q, and 13 points to estimate the 
squared terms. Thus the upper bound on the number of trial 
runs required is 45. The number of design points can be re-
duced if some of the mixed terms are assumed to be zero. 
We do not consider design aspects further here. 

Bayesian updating of θ, and hence q(x, θ), can be per-
formed with any number of data points, making it particu-
larly attractive in this example, where only 7 data points 
are available. 

3 NUMERICAL EXAMPLE 

We intend to investigate the properties of the method more 
fully including tests on problems where the solution is 
known. However we limit ourselves in this paper to the ex-
ample introduced in the previous section.  

A prior model for q(x) was specified as follows. We 
take, as our initial guess of the minimum point, the values 
x0 = (7.586, 2.794, 5.282, 2.313, 1.601, 1.273). These 
were obtained from discussion with engineers familiar 
with the system. 

The mixed terms xixj of q(x, θ) were all taken to be 
zero and the remaining terms of q(x, θ) were selected so 
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that q(x, θ) increases by 0.1 at a distance +1 or –1 from x0 
along any axis. This gave 

 
q(x, θ) = 82.9230  -1.52x1 -0.56x2 -1.06x3- 0.46x4 
                -0.32x5-0.26x6 + 0.1x1

2+ 0.1x2
2  

               +0.1x3
2+ 0.1x4

2 + 0.1x5
2+ 0.1x6

2          (6) 
 
This selection was made to give a starting shape for the re-
gression surface q(x, θ) with a definite, but not sharply de-
fined, minimum at the point x0 indicated by the engineers 

The uncertainty about the coefficients is not so de-
pendent on expert opinion. We therefore assume that each 
coefficient has a normal distribution, with standard devia-
tion 1. This builds in a fair amount of uncertainty about pa-
rameter values. 

The 7 seven simulation output results (y) are displayed 
in Table 1, with the corresponding factor settings (x). The 
selection of the design points was made in a rather simplis-
tic way. In the first run the settings were selected to be x0, 
the engineers’ best estimates of the optimal settings. Sub-
sequent factor settings were chosen by varying one pa-
rameter at a time and in a direction that was thought might 
give an improved performance.  
 

Table 1:  Results of 7 Simulation Runs 
Run 1 2 3 4 5 6 7 
A 7.586 7.586 7.586 6.597 7.586 7.586 7.586 
B 2.794 2.794 2.794 2.794 4.348 2.794 2.794 
C 5.282 4.124 5.494 5.282 5.282 5.282 5.282 
D 2.313 2.649 4.319 2.313 2.313 2.313 2.313 
E 1.601 1.601 1.601 1.601 1.601 2.402 1.601 
F 1.273 1.273 1.273 1.273 1.273 1.273 0.909 
Y 72.55 72.6 72.67 72.57 72.56 72.55 72.56 

 
Only factors C and D could not be varied independ-

ently, and these were instead varied simultaneously in runs 
2 and 3, in a way that was physically possible. 

Updating the model, using this simulation data, was 
carried out by calculating the posterior distribution as 
given by Bayes' formula (5). There are many ways of do-
ing the calculation and many packages exist for doing this. 
We used the WinBUGS package available on the Internet. 
The updated values of the parameters are given in Table 2. 
The updated function q has a minimum of 72.43 at the 
point x* = (7.394, 3.502, 5.091, 3.019, 1.814, 1.362). 

There are two points to note about this procedure.  
Firstly, the updating moved the minimum from x0 to 

x*. This shows the influence of the observations in chang-
ing our view of the minimum point. Note also that the 
value of the updated minimum is q(x*) = 72.43. This is 
slight improvement compared with the value at the initial 
guess of q(x0) = 72.55. 

Secondly, the standard deviations of all the θ coeffi-
cients are reduced. This is reassuring, and suggests that our    
Table 2: Prior and Posterior Parameter Distributions 
 Prior Posterior 
Parameter Mean Std Dev Mean Std Dev 
θ[1] 82.92 1 82.93 0.9866 
θ[2] -1.52 1 -1.525 0.8789 
θ[3] -0.56 1 -0.5436 0.9783 
θ[4] -1.06 1 -1.066 0.9322 
θ[5] -0.46 1 -0.4723 0.9744 
θ[6] -0.32 1 -0.3268 0.9915 
θ[7] -0.26 1 -0.2691 0.9991 
θ[8] 0.1 1 0.1005 0.3642 
θ[9] 0 1 2.84E-04 0.7717 
θ[10] 0 1 0.01587 0.7022 
θ[11] 0 1 -0.01009 0.7412 
θ[12] 0 1 -0.00298 0.7123 
θ[13] 0 1 -0.00525 0.6889 
θ[14] 0.1 1 0.08672 0.7811 
θ[15] 0 1 -0.00476 0.8783 
θ[16] 0 1 -0.0107 0.9405 
θ[17] 0 1 -0.00605 0.9434 
θ[18] 0 1 0.001177 0.9564 
θ[19] 0.1 1 0.09316 0.6225 
θ[20] 0 1 -0.00251 0.8703 
θ[21] 0 1 0.00933 0.8667 
θ[22] 0 1 0.005517 0.8551 
θ[23] 0.1 1 0.09786 0.7854 
θ[24] 0 1 -0.00139 0.956 
θ[25] 0 1 0.00652 0.9567 
θ[26] 0.1 1 0.09282 0.9263 
θ[27] 0 1 -0.00733 0.9843 
θ[28] 0.1 1 0.09889 0.9826 

 
knowledge about the coefficients has been improved by the 
information obtained from the simulation data points. 

The posterior estimate x* depends on x0. This depend-
ence will decrease as we get more data. However, the better 
our initial guess, the faster we converge to the true optimum. 

4 POSITIVE DEFINITENESS 

A weakness of the above methodology is that there is no 
guarantee that the posterior distribution of the regression 
metamodel will possess a minimum, even if we are confi-
dent that a minimum exists in the true model. We therefore 
consider a modification of the above procedure where we 
use a model for which the quadratic regression function is 
guaranteed to have a minimum. We write θ as 3 separate 
parameters: µ, a and Σ. The regression function q(x, θ) can 
then be written as 
 
 )()(),( axΣaxθx −−+= Tq µ  (7) 
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where Σ is symmetric. This is a slightly different definition 
from that used in (3) which used an essentially upper tri-
angular form.  We now ensure that Σ is positive definite by 
defining the elements of the matrix to be 

 

 pji
m

k jkikij ≤≤∑
=

=Σ ,1  
1

δδ   (8) 

where ∑
=

=
m

k ik1
0δ  for pi ≤≤1 . 

 
If we assume normal errors, the likelihood of the data, 

given the parameters µ, a and Σ is given by 
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We now have to consider the prior for a and Σ. If we 
consider them as being the mean and variance of a p-
multivariate normal distribution, then in this case, conven-
ient priors for a and Σ -1 would be a normal and a Wishart 
distribution:  
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The prior distribution for a is then 
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whilst the prior for Σ is 
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We also need a prior for the other two parameters µ 
and σ. For µ we have used a normal prior so that 
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2
1exp  ,0 µµτµµπ   (14) 
 2τ
whilst for σ we have used the Jeffreys reference prior 
 

    2)( −∝ σσπ .       (15) 
 
The posterior distribution is proportional to the prod-

uct of (9), (12), (13), (14) and (15), i.e. 
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We also have that 
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where 
 

    ij
ij )1( −= Wω . 

 
The hyperparameters, n0, ξ, χ and W, 0µ  and τ are set 

by the user, given the available prior information (see 
Robert (2001) for more detail). In our case they are chosen 
as follows in order to correspond reasonably closely with 
the values used in the original formulation of the problem 
given in Section 2. 

We let ( ) 1.0=Σ iiE . Moreover we set ( ) 1=ΣiiVar and 

because we use a symmetric matrix for Σ, rather than an 

upper triangular form we set 2/1=




ΣijVar  when ji ≠ . 

Then use of (16) and (17) where p = 6 in our example 

yields 202.0=iiω 1428.02/202.0 ≅=ijω  when ji ≠  

and 2/1.0=




ΣijE , again when ji ≠ , and 02.2=χ . 

Also we set 0µ = 72.5 so that the mean corresponded  
approximately to the prior estimate of the optimum as 
given by the engineers. Similarly the value of ξ was taken 
to be the prior estimates of the optimum factor values as 
given by the engineers. To allow for our uncertainty about 
the prior values  we set n0 = 10-10 and τ = 105 . 

We did not carry out a full Bayesian analysis for this 
model but instead carried out a numerical optimization to 
identify the mode of the posterior distribution 

),|,,,( xyΣa σµπ .  
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Minimization of ),|,,,(log xyΣa σµπ−  was carried 
out using the Nelder-Mead numerical method. We did not 
attempt to alter Σ directly but instead, together with a, ,µ  
and σ , treated the ijδ in (8) as being variables in the 

Nelder-Mead procedure, subject to ∑
=

=
m

k ik1
0δ  for 

pi ≤≤1 . 
The choice of m was based on the following consid-

eration. We need to have sufficient flexibility to allow a 
free choice of the elements of Σ. Now, as it is symmetric, 
there are 0.5p(p+1) distinct elements in Σ.  Now we have 
p(m-1) distinct choices for the pm ijδ , as they are subject 

the m restrictions ∑
=

=
m

k ik1
0δ , pi ≤≤1 . To retain the 

same degree of freedom of choice we therefore need to  
have p(m-1) ≥  0.5p(p+1), i.e. m ≥  (3+p)/2. With p = 6 we 
therefore must have m  ≥  5. In the example we took m = 7. 

This gave a minimum at x* = â  = (8.13, 2.86, 5.13, 
2.53, 1.76, 1.29); with 
 

 Σ̂  =



























−

028.0.....
0029.00098.0....
025.00029.0035.0...
029.0001.0031.0043.0..
013.00032.0012.0016.0011.0.
011.00024.0012.0013.00065.00082.0

 

 
with minimum value 72.54.  The value of σ was σ = 
5.45E-8. indicating a good fit to the  data points which is to 
be expected. 

The minimized value in this case was actually still 
close to the initial estimate provided by the engineers. 

An interesting aspect of the model is that if we had 
been able to obtain a set of normal deviates Z, with suffi-
cient statistics z  and S, directly then the posterior distribu-
tion for a and Σ is given directly by 
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which is written in terms of the sufficient statistics for Z 
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5      SUMMARY AND CONCLUSIONS 

In summary, we have shown how simulation metamodels 
can be used to find the optimal factor settings for a system. 

The example considered illustrates how Bayesian 
methods can be used in practice when time permits only a 
few runs of a simulation model to be made, but the number 
of factors to be considered is large. 

When the response surface is constrained to be posi-
tive definite, the optimum obtained is similar to that ob-
tained without this constraint.  Having a positive definite 
response surface also ensures that a minimum does exist. 

Although we have not constructed a full posterior dis-
tribution for the data, we have carried out an estimate of 
optimal coefficient values (using modal estimators) which 
incorporates prior knowledge to better inform the optimi-
zation routine used to find the modal estimators.  In the fu-
ture, we hope to refine this method to find the true poste-
rior distribution of the parameters. 
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