
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

KNOWLEDGE REPRESENTATION FOR CONCEPTUAL SIMULATION MODELING

Ming Zhou

Mechanical Engineering Technology
Indiana State University

Terre Haute, IN 47809, U.S.A.

 Young Jun Son

Systems and Industrial Engineering
University of Arizona

Tucson, AZ 85721, U.S.A.

Zhimin Chen

College of Management
Shenzhen University

Shenzhen, Guangdong, 518060, P.R.C.

ABSTRACT

Simulation is a powerful tool that helps decision makers in
business and industry to solve difficult and complex prob-
lems, reduce cost, improve quality and productivity, and
shorten time-to-market. However the technology is still
underutilized in many applications due to several reasons.
In this study we address these issues using a knowledge
engineering approach, i.e. develop efficient and robust
models and formats to capture, represent and organize the
knowledge for developing conceptual simulation models
that can be generalized and interfaced with different appli-
cations and implementation tools. The research fits into a
larger project effort that aims to create a sustained research
program on knowledge-based simulation.

1 INTRODUCTION

Simulation has been recognized as one of the most power-
ful tools that help decision makers in manufacturing and
other industries to solve difficult and complex problems for
design, control or improvement of systems. The benefits
from using simulation include reduced costs, improved
quality and productivity, and shortened time-to-market. In
spite of its power and benefits, the technology is still un-
derutilized in many applications, and viewed, by many
practitioners, as Alladin’s lamp: -- a powerful but intimi-
dating tool for use. The main reasons are: (1) simulation
modeling is a time-consuming and knowledge intensive
process requiring not only the knowledge from application
domain, but also from the simulation and implementation
domain (Arons 1999, 2000; McLean 2001). This cross-
domain communication has caused great amount of diffi-
culties in simulation modeling, and the cost for training
and skill development is very high. (2) Most simulation
models developed with the current technology are custom-
ized “rigid” models that cannot be reused or easily adapted
to other even similar problems. (3) With the current tech-
nology, simulation modeling is still an ad-hoc process, i.e.
a craft rather than a science. The modeling quality and effi-
ciency depend largely on the skill and experience of human
modelers (Mclean 2001). The loss of “intellectual capital”
due to a high turnover rate and continuous retirement of
experienced employees has further worsened the problem.

Limited efforts have been made in both academia and
industries to address the difficulties that inhibit the de-
ployment of simulation, primarily in the following aspects:
(1) develop standard templates to address classes of simu-
lation problems; (2) develop modularized models or com-
ponent-based modeling approach; (3) develop standard in-
terface that integrates simulation with other application
systems; and (4) develop neutral data formats to facilitate
model data transfer between different systems (Pidd 1998,
Son 2003). Although there have been published results, the
problems or issues are still far from satisfactory resolution.

Our study proposes a knowledge-based (KB) approach
to address the difficulties of simulation modeling with the
assistance of artificial intelligence (AI). We focus on the de-
velopment of discrete-event simulation models (DES), and
investigate robust and efficient representations of the model-
ing knowledge and artificial systems that process this
knowledge to build valid models for DES applications. Ro-
bust representations capture the underlying logic and general
functions of a simulation model and are independent of ap-
plication and implementation specificities, and thus can be
generalized to facilitate broader application of simulation.
They can also be used to streamline and standardize the de-
cision-making activities in simulation to improve the effi-
ciency and reduce the barriers in modeling and analysis.

Zhou, Son, and Chen

Knowledge-based simulation (KBS) has been consid-
ered as a promising approach to facilitate simulation model
construction and execution. Early works of KBS can be de-
scribed in three general categories: (1) developing “ex-
tended programming languages”, i.e. general programming
augmented with simulation oriented language constructs;
(2) developing specialized simulation language based on a
flow-chart type of logic; and (3) developing better interface
to create a more interactive type (as opposed to “batch”
type) of modeling environment. In the past two decades,
the object-oriented representation of simulation concepts
has been emphasized. For instance Fox (1989) used an ob-
ject-oriented approach to developing schemata to capture
and represent knowledge in appropriate forms to ease the
creation of executable simulation models. Another ap-
proach focused on knowledge-based assistance in the im-
plementation of simulation, e.g. developing executable
model with specific commercially available tools (Arons
1999, 2000). In software vendor industry, emphasis has
also been given to the development of high-level simula-
tors for special application systems (McLean 2001; Zülch
2000). Given these developments, researchers and practi-
tioners still face great challenges in KBS, particularly in
the conceptual modeling phase. Very limited progress has
been made to help modeling at conceptual level, and there
is a significant gap between model conceptualization and
implementation. We summarize the reasons as follows: (1)
lack of knowledge-based assistance to translate or trans-
form concepts from application domain to simulation do-
main during model conceptualization; (2) lack of in-depth
study on the formulation and representation of conceptual
simulation models (CSMs), e.g. robust representations that
facilitate the specialization and generalization of modeling
and flexible interface to a diversified implementation envi-
ronment; (3) lack of rigorous analysis and definition of the
relationship between the different formats of the represen-
tation to address the difficulties in man-machine communi-
cation; (4) lack of efficient mechanism to process and
transform the knowledge and information to construct con-
ceptual models and transform them into executable models.

In this paper we focus on the identification and repre-
sentation of the knowledge for the conceptualization of
DES models. In Section 2, we decompose a simulation
modeling process to characterize the information transfor-
mation and knowledge utilization. In Section 3, we identify
the basic set of concepts that can be generalized to many
DES applications. Section 4 proposes a notation to formal-
ize the knowledge identified. Rules and algorithms for de-
veloping conceptual model specifications are presented in
Section 5. Section 6 gives an example for illustration, and
we give conclusions and further research in Section 7.

2 MODELING: CONCEPTUALIZATION VS.
IMPLEMENTATION

In general, we can categorize the knowledge used in a simu-
lation modeling process into three domains: application,
simulation, and implementation. The expressions for the
same concept are usually different by domains. Consider ex-
pressions for a “product” concept that is an automotive en-
gine block. In the application domain, it is labeled as “En-
gine block”; in the simulation domain: “Object” or
“Product”; in the implementation domain, it is “Entity” or
“Load” if we use Arena © and AutoMod © respectively.
This cross-domain communication has caused great diffi-
culty in simulation modeling. Most existing simulation soft-
ware use representations or modeling approaches that mix
the concepts of different domains and embed implementa-
tion requirements in conceptual modeling phase. This cre-
ates great difficulty for many practitioners who are “domain
experts” but know little or nothing about simulation and im-
plementation tools. From an information transformation
point of view, a simulation modeling process can be decom-
posed into two sub-processes that transform data and infor-
mation from one domain to another (see Figure 1). The first
sub-process corresponds to model conceptualization. trans-
lating an application problem definition (APD) from the ap-
plication domain into a simulation problem definition (SPD)
in the simulation context. The SPD specifies the logical and
structural requirements of a conceptual simulation model
(CSM). This process uses a synthesized or generalized ap-
proach to map special concepts from a specific application
into the general concepts of simulation, and results in a syn-
thesized logical model independent of implementation re-
quirements (e.g. not constrained by any specific simulation
language). The second sub-process, “implementation”, trans-
lates the logical and structural specifications of a CSM into a
special or language-specific model. This process uses an en-
tailed and implementation specific approach to produce an
executable model with a specific software tool (called -
“implemented simulation model”-(ISM)).

Application
Problem
Definition
(APD)

Simulation
Problem
Definition
(SPD)

Conceptualization

Conceptual
Simulation
model
(CSM)

Implemente
d simulation
model (ISM)

Implementation

Figure 1: Conceptualization v.s. Implementation

We separate the knowledge used in conceptualization

from that used in implementation so that modelers will not
be constrained by implementation specifics during the con-
ceptual modeling stage. This frees their ability to concen-
trate on the development of efficient, robust or generic rep-
resentations that can be implemented by a variety of tools.
From a knowledge utilization point of view, the two proc-
esses use different types of knowledge and reasoning
styles. Here we consider that the knowledge includes the-

Zhou, Son, and Chen

ory (concepts and principles), skills (know-how), and ex-
periences for simulation modeling. The conceptualization
process uses more generalized and fundamental knowl-
edge, while the implementation requires more specific
knowledge related to the software tools selected. Essen-
tially the conceptualization process redefines an applica-
tion problem in the context of simulation requirement with
an emphasis on the “system” (from which the problem was
developed) and its behavior related to the problem. The
reasoning strategies used in this generalized mapping in-
clude classification and abstraction. The classification per-
forms a “pattern recognition” function that classifies input
concepts into predefined categories. The abstraction, on the
other hand, represents the concepts at appropriate levels to
satisfy the efficiency of modeling. In general we can clas-
sify the knowledge used for conceptual modeling into two
types: application knowledge and simulation knowledge.
Application knowledge is a set of special concepts associ-
ated with a specific application domain, such as manufac-
turing, logistics and distribution or health-care systems.
Special concepts are used to define and describe the unique
characteristics of different application systems. They pro-
vide special knowledge and information required to build
models for a specific type of application. Special concepts
are used selectively in simulation models (see Figure 2),
e.g. “conveyor” is a concept typically used by manufacturing
type of models. Simulation knowledge, on the other hand, is
a set of basic concepts that are shared by all DES models,
and belong to the domain of simulation. To build a simula-
tion model, we use concepts from both domains. In Figure 2,
arrows represent the selection of concepts from a knowledge
base to construct a certain type of models. A solid arrow in-
dicates a required selection while a dashed arrow implies an
optional selection depending on the application.

Type 1
CSM

Type 2
CSM

Type n
CSM

Basic
concepts

Special
concepts

Figure 2: Two Sets of Modeling Concepts

Separating modeling knowledge in this way help us

establish an effective strategy and focus on knowledge ac-
quisition and robust representation, and facilitate the or-
ganization of the knowledge.

3 BASIC KNOWLEDGE FOR CONCEPTUAL
SIMULATION MODELS

In this section, we focus on the identification of a common
set of concepts that are shared by many discrete-event
simulation models, in another word, these concepts can be
generalized to many special applications of simulation. In
doing so we followed a “process-oriented” approach to
identify the related concepts. Different views of simulation
often result in different modeling concepts. Comparing
with other approaches (e.g. event-driven approach), a proc-
ess-oriented view is easier for understanding and more de-
scriptive, which is very important for knowledge based
modeling, because a logic that is more “compatible” with
human cognitive processes usually simplifies knowledge
representation and inference. In addition, being more de-
scriptive generally improves the modeling efficiency of
simulation. According to Law (1991): “A process is a time-
ordered sequence of interrelated events separated by pas-
sage of time, which describes the entire experience of an
entity as it flows through a system”. From a simulation
perspective, a conceptual model consists of a set of con-
cepts, defined at an abstraction level, that completely
specifies the structure and behavior of a simulation model.
The abstraction determines how much details should be
visible to a modeler. Too much abstraction makes a model
less descriptive or even useless, while too much detail in-
creases modeling difficulty without improving model ef-
fectiveness. Unlike implementation modeling, whose ab-
straction level is dependent on the capability of modeling
constructs provided by the tools (e.g. ARENA, AutoMod),
conceptual modeling defines abstraction through proper
representation schemes. Most practitioners use commer-
cially available tools that use high-level modularized
graphical commands, such as BLOCKS and MODULES.
Therefore we need to identify modeling concepts that are
“compatible” with the developing trend of software tools to
reduce difficulties in translating from conceptual models to
implementation models. In this study we propose modeling
concepts that are classified in the following categories.

Objects: those that flow through or “fixed” within the
system being modeled, such as parts, assemblies, orders,
machine tools, etc. It can be divided into two types:

• Entities: those objects that flow through the sys-
tem to receive services provided by a sequence of
activities, e.g. parts and assemblies. Some soft-
ware has used “external entity and internal entity”
for implementation, we prefer not to make this
differentiation. Functionally speaking, given an
appropriate definition of entity and control logic,
the needs for “internal entity” can be eliminated.

• Resources: those objects that are placed at fixed
locations of a system according to certain configu-
ration to provide means of service, e.g. operators,
machine tools, inspection equipment, queues; and
also mobile resources such as transporters.

Logical or functional activities: an “activity” is a
logical process that performs a defined function required
by simulation. These activities process entities, control or

Zhou, Son, and Chen

manipulate the flow of entities, or collect the data gener-
ated through the flow. Collectively this set of activities de-
compose the overall (functional) behavior of a simulation
model, i.e. they partition the set of functions performed by
the model. System states often change when entities flow
through these activities. The activities are usually defined
at abstract levels, and each is composed of several sub-
activities, e.g. a processing activity may contain sub-
activities such as seizing a resource, delaying for a time in-
terval, and releasing the resource. The composite nature
allows us to define simulation activities at an abstract level
to encapsulate sub-activities to simplify modeling and rep-
resent the activities in a compact and organized hierarchy.
Following is a classification of “top-level” activities based
on their functions:

• Create entities;
• Change/assign entity properties/attributes;
• Process/service entities (processing activities, in-

cluding inspection);
• Store/hold entities;
• Aggregate/disaggregate entities (e.g. assemble,

disassemble or simply batch parts);
• Transport entities (move from one location to an-

other);
• Branch the flow of entities (condition-based ver-

sus probability-based)
• Control the movement (temporal) of entities;
• Dispose entities;
• Collect data/statistics (counts, tallies)

A process flow (or control) logic: it defines the order

of activities (from an entity-flow perspective) and the inter-
actions between the entities and activities, and between the
activities, for instance, order of processing activities as
specified in a process plan; waiting for a control signal be-
tween processing activities. This logic specifies the flow
and control of simulated objects in the model completely,
but implicitly defines the events and state transitions that
impact the behavior of the model. The logic serves as a basis
for configuring the logical components to form a model. In
general there are three types of the control of entity flow:

• Control the direction of the movement, i.e. routing

entities. It does not stop the entity flow in simu-
lated time. Three main approaches are:

• Sequential: specified by a predetermined
sequence defined in a process plan

• Condition: determined by testing a pre-
determined condition

• Random sampling: determined by the
result from a random sampling (probabil-
istic routing).
• Control the timing of the movement, e.g. holding
entities until a certain event occurs. It may stop
entity flow in simulated time. Two main ap-
proaches are:

• Control by condition: hold entities until
a prescribed condition becomes true;

• Control by stimulus (or control signal):
hold entities until a predetermined type
of signal is received.

• Control the quantity of entity flow, e.g. allowing a
limited number of entities per release (of move-
ment).

A process flow logic can be captured and represented in

various forms, e.g. a “process narrative” in a textual form or
a flow-chart diagram in graphical form. For instance,
Kienbaum (1994) proposed to use a hierarchical activity cy-
cle diagram (H-ACD) to represent the logic of discrete event
simulation for object oriented design and development.

Data/input requirements: there are two types: (a)
Numerical attributes or properties associated with objects
and activities e.g. input distributions of entity arrival, proc-
essing time and transportation distance or time. (b) Global
variables and expressions used to define and implement the
process flow logic; including those called “control ele-
ments” by other researchers (Banks, 1998).

Output requirements: including the goals and objec-
tives of simulation analysis, and the definitions on the ex-
pected results from simulation output analysis:

• Goals and objectives (e.g. comparing alternatives;

estimating/predicting performance measures; ana-
lyzing sensitivity of input variables; optimizing
system performance)

• Performance measures
• Confidence levels

Design of experiments: strategies and procedures to

achieve what has been specified by “Output requirements”,
i.e. how to collect and analyze the data through simulation
experiments? For instance:

• Type of analysis
• Plan or procedure of the analysis

These concepts provide knowledge needed for build-

ing conceptual simulation models and should be appropri-
ately represented and formatted in a knowledge base (KB).
Ideally they should be represented through a standard vo-
cabulary and taxonomic structure. In addition to being a
basis for requirement specification, these concepts also de-
fine the correspondence for mapping the knowledge from
the application domain to the simulation domain.

Zhou, Son, and Chen

4 SPECIFICATIONS OF CONCEPTUAL

SIMULATION MODEL

In general the requirement specification of a conceptual
model includes the basic concepts identified earlier and
special concepts related to the application. These specifi-
cations should be formalized to support model develop-
ment and validation, and facilitate the analysis of knowl-
edge representations and inference procedures. In this
study we propose the following sets of notation to formal-
ize a CSM specification:

CSM = 〈S1, … …, Sm〉, i.e. CSM is a partition of sets
S1, … …, Sm, where each Si, 1 ≤ i ≤ m, is a set of partial
specification of CSM. The definitions are given as follows:

• S1 = Set of simulation objects; ∃ A1 ↔ S1, A1 = A

set of attributes associated with S1. Symbol “↔” is
used as an “association” operator here. S1 = 〈E, R〉,
where E = Set of entities and R = Set of resources;
and ∃ AE ↔ E, and ∃ AR ↔ R, where AE and AR
are sets of attributes. For instance, AE = {AE1, …,
AEn}; where AE1 = Entity Name; AE2 = Entity Type;
AE3 = Arrival Pattern = Inter-arrival time distribu-
tion; AE4 = Process Plan (Routing) = An entity-
dependent sequence of processing or inspection
operations (O1, …, Ok); Set E or R can be further
decomposed into subsets, e.g. R = 〈RL, RE, RT, RQ〉;
where: RL = Set of labor requirements; RE = Set of
equipment requirements (including machines,
tools, etc.); RT = Set of transportation resources; RQ
= Set of waiting/staging spaces (queues).

• S2 = Set of logical activities = 〈P1, …, Pn〉 and ∃ A2
↔ S2. These activities are identified and defined
based on a process-oriented view: what entities see
while they flow through the system from their
“birth” to their “death” during the simulation. Note
that this is the set of activities used by ALL types
of entity, i.e. a specific entity type may not use all
of them. A2 = {A21, A22, …, A2k}, where the set of
common attributes are defined as: A21 = Activ-
ity.Name; A22 = Activity.ID, i.e. a code used by
model to identify the type of the activity; A23 = Ac-
tivity.Resource; A24 = Activity.Delay; A25 = Activ-
ity.Control, i.e. a code that identify the type of con-
trol associated with this activity (e.g. sequential,
assigning, branching, holding, combining, splitting,
assembling, etc.)∀j, 1 ≤ j ≤ n, Pj is decomposable:
Pj = 〈Pj1, …, Pjk〉, and ∃ Apj ↔ Pj, e.g. Apj includes
activity-dependent properties for sub-activities.

• S3 = Set of logic flow and controls = {LG, C},
where LG = logic graph = {N, A}, and N = Set of
activity nodes and A = Set of directed arcs connect-
ing the nodes. LG defines a logical layout of the
simulation model that embeds the physical layout
of a system, in other words, LG shows all activities
required by a simulation model, including those
having physical correspondence in real world, and
their logical relations. We use a set C to explicitly
represent the set of controls required by the appli-
cation; C = {C1, …, Ck}, and ∃ Ac ↔ C. ∀j, 1 ≤ j ≤
k, Cj = {Cjl, Cjt, Cjr}, where Cjl = Control location:
An integer represents the sequence number of the
last activity node before the control; Cjt = Control
type: A code represents the type of control, e.g. Cjt
= {SE = Sequential, RS = Random sampling, SC =
Special condition}; and Cjr = Control rules: specify
the conditions and actions.

• S4 = Set of transfer requirements = {TR, DS}. Set
TR defines a set of entity transfers between activi-
ties: TR = {Tij, ∀ ij ∈ ATR = a set of arcs that re-
quires entity transfer} and DS = A two-dimensional
array (i.e. a n×n matrix, where n = |TR|) that cap-
tures the physical distances or segments between
the points of entity transfers (i.e. processing or ser-
vicing activity nodes).

• S5 = Set of system states and control variables, and
other parameters used to implement control logic
and other system level execution; V = {V1, …, Vp},
∃ AV ↔ V, and AV Includes: (variable) name, (data)
type, usage (code), etc.

• S6 = Set of goals/objectives or performance meas-
ures specifications; S6 = {G, M}, where G = Set
of codes for goals/objectives = {G1, …, Gk} and
M = Set of codes for performance measures =
{M1, …, Mh}.

• S7 = Experimental design specifications = {ES1, …,
ESm}, where the elements can be set as ES1 = Type
of the experiment; ES2 = Replication design pa-
rameters = {Length, Number of replications}; ES3
= Factorial design parameters = {Factors, Treat-
ment combinations}; ES4 = Statistics under study
or response variables; ES5 = Confidence level
specification, and so on.

• Other special specifications (e.g. application do-
main specific requirements)

5 RULES AND ALGORITHMS TO
SPECIFY LOGICAL ACTIVITIES

To determine the logical activities required by a simulation
model, we need modeling knowledge to transform con-
cepts from application to simulation domain. This type of
knowledge is represented in the form of logic rules, i.e. a
set of rules Rs to determine the type and the number of in-
stances of the activities required by a conceptual model.
These rules have a generic form:

 s = {∀j, If Xj Then Yj Else …; or Xj ⇒ Yj}

Zhou, Son, and Chen

Where X is a conjunction of antecedents (premises or
conditions) and Y is a conjunction or disjunction of conse-
quents (decisions about the activities). Some of the rules
are listed below as examples:

• If (More than one entity type share the same arri-

val pattern)Then (Recommend a single CreateAc-
tivity for this group of entity types) Else (Add one
CreateActivity for each entity type);

• If (Function(Activity) == “Process”) Then (Add a
ProcessActivity);

• If (Function(Activity) == “Hold entity temporar-
ily”) Then (Add a HoldActivity);

• If (TransferType(After an activity i) ≠ “Instant
connect”) Then (Add a TransportActivity(i));

• If (Entities need to be batched before an activity i)
• Then (Add an AggregateActivity(i));
• If (A batched entity needs to be split after an ac-

tiveity i) Then (Add a DisaggregateActivity(i));
• If (PossibleRoutesAfter(j) > 1) ∧ (RoutingType =

= k) Then (Add a BranchActivity of type k after
activity j);

• If (An activity i is the last activity in a process
plan) Then (Add a DisposeActivity after i);

• If (A ProcessActivity P is shared by more than one
entity type) Then (Recommend P.ProcessTime =
Variable) ∧ (NeedAssignment = True); //Assign
each entity type an attribute for “Processing time”

• If (Goal(j) = “Estimate flow time” for entity type
k) then (NeedAssignment = True) ∧ (AssignType
= “Arrival time”) ∧ (Entity type = k) ∧ (NeedCol-
lectData = True) ∧ (CollectType = Time-interval);

• If (NeedAssignment == True) ∧ (AssignType =
“j”) ∧ (Entity type == k) Then (Add an AssignAc-
tivity (j) after the creation of entity k);

• If (NeedCollectData ∧ CollectType == “j”) Then
(Add a CollectActivity(j));

• If (NeedTransfer(After j) == True)∧(Destination
== k) then (Mark the Arc(jk));

As we mentioned earlier, conceptually a simulation

model can be defined through a graphical specification, i.e.
a graphical representation that shows the logic flow of
simulated entities. Several researchers have proposed vari-
ants of activity cycle diagram (ACD) based representation
(Kienbaum 1994). Like a textual specification, a graphical
specification has been used primarily to facilitate user level
communication. We enhance this representation through a
knowledge-based approach to construct and validate the
logic graphs utilizing the knowledge that has been or can
be captured and represented. We define a logic graph LG =
{N, A}. Every node j ∈ N is a logical activity required by
the model, and it is an instance of some activity type de-
fined in S2. Every arc l ∈ A connects two nodes and repre-
sents a precedence relationship between the two nodes. A
logic graph LG looks like an inverted tree starting with a
dummy root node S, the “children” of S are a set of “Cre-
ate” activity nodes. A “leaf” node (a node that has no
child) corresponds to a “Dispose” activity. Unlike a pure
hierarchical tree, loops are allowed in the LG to accommo-
date the situation such as sharing of resource and assem-
bling activities. Figure 3 shows part of a logic graph. In the
figure, S is a dummy starting node (with dashed arcs ema-
nating from it), nodes 1 and 2 are the nodes of Create type,
while nodes 8 and 9 are Dispose type. All other intermedi-
ate nodes are of certain activity type.

S

1

3

2

7

54

6

98

Figure 3: A Logic Graph (LG) for Conceptual Model

In the following we propose two algorithms: Gener-
ate_CSMLG and Validae_CSMLG. Generate_CSMLG
interacts with a user to construct a logic graph based on the
partial information captured and structured by the notation
presented earlier. The execution of this procedure is inter-
active and iterative. It first tries to establish a logic flow
with the activities having physical correspondence (e.g.
processing activities); then modify it by inserting addi-
tional activities required by simulation (e.g. assigning at-
tributes or collecting statistics). Procedure Vali-
dae_CSMLG automatically validatea the generated graph,
e.g. check the consistency and completeness between the
graphical entities (nodes and arcs) and their definitions or
implications established in a knowledge base (KB). These
algorithms have been essentially modified from a depth-
first enumeration procedure (Ginsberg, 1993) by address-
ing the unique requirements of logic configuration for
simulation models. The pseudo-codes are shown below:

 Algorithm Generate_CSMLG:

Initialize Σ; // Σ = a list of initial activities, e.g. Cre-
ate activities;

Zhou, Son, and Chen

If (Σ = Φ) then return failure;
Set k = Front (Σ); //Set k = 1st activity in the list Σ;
While (Σ ≠ Φ)
{
 Current_Node = k;
 Add_Node (k); //Add a node for activity k;
 If (Function (k) == “Dispose”)
 Then Backtrack (k);
 Else {
 Update_List (Σ); //Σ = Σ \ k;
 Insert_Children (k);
 }
} //end of while loop;
Add_Missing_Arcs();

 Agorithm Validate_CSMLG (Given a constructed
CSM configuration graph):

Initialize Ω, //Set Ω = list of initial nodes (i.e. set of
 //CreateActivitiy nodes);
If (Ω = = Φ) then return failure
Set j = Front (Ω); //Set node j = first node in the
 //list Ω;
While (Ω ≠ Φ) //while set Ω is not empty;
{
 Remove_Front(Ω); //Set current node to be j;

 CheckNode (j); //Call a procedure to
 //validate node j;

If ((Function(j) == “Dispose”) ∨ (Checked(j) ==
True))

 Then BackTrack (j) ; //Backtrack
 // from node j;

 Else
 {
 Update_List(j); //Remove node j from Ω:
 //Ω = Ω \ j;
 Insert_Children(j); //Add to the front of Ω
 //all of j’s children;
 }
} //End of the while loop.

Where procedure CheckNode(j) is given as follows:

Procedure CheckNode (NodeID)
{
 For each attribute A2j ∈ A2

 {
 Initialize_Attributes (NodeID);
 Check_Attribute (NodeID, A2j);
 If Valid(NodeID) == False
 Then present an error message;
 Else Checked (This node) = True;
 }

}
For Procedure Generate_CSMLG, Insert_Children (k)
has several functions: it must identify and insert the set of
activities that are needed and qualify to be the “Children”
of k and establish the links between k and its children (de-
termining entity transfers); it must exclude those that have
been added, and if a potential child is an added Dispose ac-
tivity, it will return 0 and backtrack from the current node.
In Validate_CSMLG, Insert_Children(j) has two main
functions: identify the set of nodes that qualify to be the
“Children” of node j; and add the children nodes to the
“front” of existing list Ω. Similarly it will exclude those
that have been checked and return 0 for backtrack.

For this we need to define the concept of “child” and
the condition under which a node can be identified as a
child. Let n be a parent node (a node that is the root of a
sub-tree T(n)), and L(n) = a list of nodes ∈ T(n) that are di-
rectly linked to n by the arcs emanating from n. Further let
a node k ∈ L(n), and C(n) = the list of children of n = set of
nodes that are uniquely linked (only one path) to n by the
arcs emanating from n. Apparently, C(n) ⊆ L(n), i.e. C(n)
is a subset of L(n). We make the following proposition:

Proposition: ∀ k∈ L(n), k ∈ C(n) if and only if Par-
ent(k) ∩ L(n) = Φ, i.e. none of the parents of k is in
L(n), or there is only one path from n to k: (n → k).
(Note that in CSM logic graph, it is possible for a node
k to have more than one parent nodes)

Proof: Assume k ∈ C(n), this ⇒ n ∈ Parent(k), also n ∩
L(n) = Φ; let x ∈ Parent(k) ⇒ exist a path (x → k); If x ∩
L(n) ≠ Φ ⇒ x ∈ L(n) and exist another path (n → x → k);
this contradicts to the assumption k ∈ C(n). Now assume n
∈ Parent(k) and Parent(k) ∩ L(n) = Φ; this ⇒ no x ∈ L(n)
can directly connect k, and the only possible path from n to
k is (n → k), therefore k ∈ C(n) ■

To further illustrate this proposition, we give some ex-
amples from Figure 3. First we look at node 2, L(2) = {3,
4, 5, 6} and C(2) = {3, 4, 5}. Since Parent(6) = {2, 5}, i.e.
Parent(6) ∩ L(2) ={5} ≠ Φ, therefore node 6 ∉ C(2). For
node 5, L(5) = C(5) = {6, 7}. Since Parent(6) = {2, 5}, and
Parent(6) ∩ L(5) =Φ, so 6 ∈ C(5).

The goal of knowledge representation (KR) is to rep-
resent the knowledge in the most appropriate ways for ef-
fective and efficient reasoning/inference. KR also depends
on the characteristics of the knowledge. Generally there are
following types of KR schemes: (1) Semantic networks
and frames (Ginsberg 1993): they are easy for understand-
ing; possess good properties such as inheritance, encapsu-
lation and taxonomic structure, and are appropriate for rep-
resentation of declarative or factual knowledge. (2) Rules
(Durkin 1994): infer new knowledge from known informa-
tion; has a unique role in building cognitive architectures
for human reasoning, therefore made it popular in develop-
ing practical problem-solver/advisors. (3) Logic (predicate
logic) (Ginsberg 1993): more expressive or more flexible.

Zhou, Son, and Chen

In addition to be valid, “good” knowledge representations
are (1) efficient: facilitate efficient reasoning with the
knowledge, e.g. easy to map concepts from the application
domain to simulation domain. Classification, generaliza-
tion, and structured search/inquiry are techniques that can
help given appropriate KR scheme; (2) robust: should not
be sensitive to the changes of knowledge, or the
change/update of the knowledge should be “local”. This is
good for incremental development and maintenance of a
knowledge base; and implementation free, i.e. independent
of specific tool selected by user for implementation; and
(3) consistent: allow co-existence of different views and
multiple levels of abstraction in the same modeling concept
or simulation model. This is also called “issue of semantic
compatibility” (Zulch 1998).

As described earlier, the knowledge and information
contained in a CSM and those used for building a CSM are
of two types: declarative or factual knowledge; and proce-
dural or inferential knowledge. For instance, declarative
knowledge includes entities, resources, queues, and statis-
tics; while procedural knowledge includes control and
routing rules, as well as rules for concept transformation or
model construction. We propose the following general
strategy for knowledge representation: (1) Use an object-
oriented (OO) approach, or a collection of taxonomic
structures to model the concepts that are the type of de-
clarative or factual knowledge. These structures possess
good properties such as knowledge encapsulation and in-
heritance, and (2) Use a collection of logic rules to model
the concepts that are the type of procedural or inferential
knowledge, such as control rules and concept mapping
rules. Therefore our knowledge base will generally contain
a set of “objects” (a taxonomic structure) and a set of rules
that interact with these objects.

6 AN EXAMPLE

In this section, we illustrate the notation and algorithms
proposed earlier to construct a logic graph for a simple ex-
ample. The system manufactures two types of products A
and B, where each has a different arrival pattern. A requires
a process P1, then an inspection process (P3). B requires a
process P2, then the same inspection process P3. If the part
(A or B) passes the inspection (90% chance), it goes to a
ship-out exit; otherwise to a rework process (P4). After re-
work, with 80% chance the part becomes useful and is sent
to a salvaged-part-exit; otherwise sent to a scrapped-part-
exit. Two transporters are used to transfer parts between
P1-P3, P2-P3, P3-P4, and from P3 (P4) to corresponding
exits. The goals of simulation are to estimate the average
flow time and the number of each type of “outputs” (i.e.
good parts, salvaged parts and scrapped parts).

For this example, S1 = {e1, e2, r1, r2, r3, r4}, where e1
= A, e2 = B, r1, r2, r3 and r4 are the resources used at
processing activity P1, P2, P3 and P4 respectively. Process
plans associated with two entities are Ae(e1) = (P1, P3,
P4|P3) and Ae(e2) = (P2, P3, P4|P3), where Pj|Pi means
that routing to Pj depends on the result of Pi. S5 = {g1, g2},
where g1 = estimated flow time and g2 = number of each
type; Control C = {c1, c2}, where c1 = {P3, RS(1, 90%; 2,
10%), c1r} and c2 = {P3, RS(1, 80%; 2, 20%), c2r}. Ap-
plying the rules in Rs we obtained S2 = {Cr1, Cr2, As1,
As2, P1, P2, P3, P4, Br1, Br2, R1, R2, R3, D1, D2, D3).
Note that S2 includes 2 instances of Create activity (Cr1,
Cr2); four instances of Process activity (P1, P2, P3, P4)
and so forth. Set TR = {T1, …, T6}, where T1 = entity trans-
fer between P1 and P2, and so forth. The graphical model
constructed and validated is shown in Figure 4. This logic
model communicates clearly about the logic and structure
of a conceptual simulation model, and its database repre-
sentations can then be interfaced with selected imple-
mentation tools to create an executable model.

Figure 4: An Example LG Generated by Pro-
posed Rules and Algorithms

7 CONCLUSION

We discussed knowledge-based simulation modeling in
this paper, especially the knowledge and its representations
for conceptualization modeling. We also presented a nota-
tion to formalize the representations to support model de-
velopment and validation and facilitate the analysis and
translation of the representations. We have demonstrated
that simulation modeling, especially conceptualization, can
be facilitated by identifying and separating knowledge
from different domains, and representing them in proper
forms, and developing algorithms for structured and auto-
mated reasoning. This work fits into a larger project that
tries to conduct in-depth study on the knowledge represen-
tation and construction of knowledge base for conceptual
modeling and facilitate the interface between model con-
ceptualization and implementation.

C1

A1

C1

A2

P1 P2

P3

Br1

R1

D2

Br2

D1

R3
R2

P4

D3

Zhou, Son, and Chen

REFERENCES

Arons, H.D.S. 1999. Knowledge-based modeling of dis-
crete-event simulation systems. In Proceedings of the
1999 Winter Simulation Conference, ed. P. A. Farring-
ton, H. B. Nembhard, D. T. Sturrock, and G. W. Ev-
ans, 591-597. Institute of Electrical and Electronics
Engineers. Piscataway, New Jersey.

Arons, H. D. S. and E. V. Asperen. 2000. Computer Assis-
tance for Model Definition. In Proceedings of the
2000 Winter Simulation Conference, ed. J. A. Joines,
R. R. Barton, K. Kang and P. A. Fishwick, 399-408.
Institute of Electrical and Electronic Engineers. Pis-
cataway. New Jersey.

Banks, J. (editor). 1998. Handbook of Simulation, Princi-
ples, Methodology, Advances, Applications, and Prac-
tice. John Wiley & Sons, Inc. New York.

Durkin, J. 1994. Expert Systems, Design and Development.
acmillan Publishing Company, New York.

Fox, S. M., N. Husain, M. McRoberts and Y.V. Reddy.
989. Knowledge-Based Simulation: An Artificial In-
telligence Approach to System Modeling and Auto-
mating the Simulation Life Cycle. In Knwoledge
Based Simulation, 447-485. John Wiley & Sons.

Ginsberg, M. 1993. Essentials of Artificial Intelligence.
organ Kaufmann Publishers. San Mateo, CA.

Kienbaum, G. 1994. H-CAD: Hierarchical Activity Cycle
iagrams for Object-Oriented Simulation Modeling.
Proceedings of the 1994 Winter Simulation Confer-
ence, ed. J. D. Tew, S. Manivannan, D. A. Sadowski
and A. F. Seila, 600-610.

Law, A. M. and W. D. Kelton. 1991. Simulation Modeling
nd Analysis. 2nd ed. McGraw Hill, New York.

McLean, C. and S. Leong. 2001. The Expanding Role of
Simulation in Future Manufacturing. Proceedings of
the 2001 Winter Simulation Conference, ed. B. A. Pe-
ters, J. S. Smith, D. J. Medeiros and M. W. Rohrer,
1478-1486. Institute of Electrical and Electronics En-
gineers. Piscataway, New Jersey.

Pidd, M. and R. B. Castro. 1998. Hierarchical Modular
Modeling in Discrete Simulation. Proceedings of the
1998 Winter Simulation Conference. ed. D. J.
Medeiros, E. F. Watson, J. S. Carson and M. S. Mani-
vannan, 383-389.

Russell, S. and P. Norvig. 1995. Artificial Intelligence, A
Modern Approach. Prentice Hall, Upper Saddle
River, NJ.

Son, Y. J., R. A. Wysk and A. T. Jones. 2003. Simulation-
based shop floor control: formal model, model genera-
tion and control interface. IIE Transactions, 35:29-48.

Zulch, G., J. Fisher and U. Jonsson. 2000. An Integrated
Object Model for Activity Network Based Simulation.
Proceedings of 2000 Winter Simulation Conference.
ed. J. A. Joines, R. R. Barton, K. Kang and P. A.
Fishwick, 371-380. Institute of Electrical and Elec-
tronic Engineers. Piscataway. New Jersey.
AUTHOR BIOGRAPHIES

MING ZHOU is an associate professor and program coor-
dinator of Mechanical Engineering Technology at Indiana
State University. He received a Ph.D. in Systems & Indus-
trial Engineering from The University of Arizona in 1995.
Dr. Zhou’s research interests include knowledge based
simulation and intelligent decision support systems for
manufacturing, logistics and distribution systems. He has
been a member of IIE and the Editorial Board, Interna-
tional Journal of Industrial Engineering since 1997. His
email address is <imming@isugw.indstate.edu>.

YOUNG JUN SON is an assistant professor in the De-
partment of SIE at The University of Arizona. Dr. Son re-
ceived his BS degree in IE with honors from POSTECH in
Korea in 1996 and his MS and Ph.D. degrees in IME from
Penn State in 1998 and 2000, respectively. His research
work involves distributed and hybrid simulation for analy-
sis and control of automated manufacturing system and in-
tegrated supply-chain. He is an associate editor of the In-
ternational Journal of Modeling and Simulation.

ZHI-MING CHEN is a professor and the Associate Dean
of the College of Management, Shenzhen University,
China. He received a Ph.D. in Engineering from Beijing
Areospace University, and had been a visiting professor at
the Boston University during 1999 and 2001.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 450
	02: 451
	03: 452
	04: 453
	05: 454
	06: 455
	07: 456
	08: 457
	09: 458

