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ABSTRACT 

Simulation is a powerful tool that helps decision makers in 
business and industry to solve difficult and complex prob-
lems, reduce cost, improve quality and productivity, and 
shorten time-to-market. However the technology is still 
underutilized in many applications due to several reasons. 
In this study we address these issues using a knowledge 
engineering approach, i.e. develop efficient and robust 
models and formats to capture, represent and organize the 
knowledge for developing conceptual simulation models 
that can be generalized and interfaced with different appli-
cations and implementation tools. The research fits into a 
larger project effort that aims to create a sustained research 
program on knowledge-based simulation.    

1 INTRODUCTION 

Simulation has been recognized as one of the most power-
ful tools that help decision makers in manufacturing and 
other industries to solve difficult and complex problems for 
design, control or improvement of systems. The benefits 
from using simulation include reduced costs, improved 
quality and productivity, and shortened time-to-market. In 
spite of its power and benefits, the technology is still un-
derutilized in many applications, and viewed, by many 
practitioners, as Alladin’s lamp: -- a powerful but intimi-
dating tool for use. The main reasons are: (1) simulation 
modeling is a time-consuming and knowledge intensive 
process requiring not only the knowledge from application 
domain, but also from the simulation and implementation 
domain (Arons 1999, 2000; McLean 2001). This cross-
domain communication has caused great amount of diffi-
culties in simulation modeling, and the cost for training 
and skill development is very high. (2) Most simulation 
models developed with the current technology are custom-
ized “rigid” models that cannot be reused or easily adapted 
to other even similar problems. (3) With the current tech-
nology, simulation modeling is still an ad-hoc process, i.e. 
a craft rather than a science. The modeling quality and effi-
ciency depend largely on the skill and experience of human 
modelers (Mclean 2001). The loss of “intellectual capital” 
due to a high turnover rate and continuous retirement of 
experienced employees has further worsened the problem.  

Limited efforts have been made in both academia and 
industries to address the difficulties that inhibit the de-
ployment of simulation, primarily in the following aspects: 
(1) develop standard templates to address classes of simu-
lation problems; (2) develop modularized models or com-
ponent-based modeling approach; (3) develop standard in-
terface that integrates simulation with other application 
systems; and (4) develop neutral data formats to facilitate 
model data transfer between different systems (Pidd 1998, 
Son 2003). Although there have been published results, the 
problems or issues are still far from satisfactory resolution.  

Our study proposes a knowledge-based (KB) approach 
to address the difficulties of simulation modeling with the 
assistance of artificial intelligence (AI). We focus on the de-
velopment of discrete-event simulation models (DES), and 
investigate robust and efficient representations of the model-
ing knowledge and artificial systems that process this 
knowledge to build valid models for DES applications. Ro-
bust representations capture the underlying logic and general 
functions of a simulation model and are independent of ap-
plication and implementation specificities, and thus can be 
generalized to facilitate broader application of simulation. 
They can also be used to streamline and standardize the de-
cision-making activities in simulation to improve the effi-
ciency and reduce the barriers in modeling and analysis.  
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Knowledge-based simulation (KBS) has been consid-
ered as a promising approach to facilitate simulation model 
construction and execution. Early works of KBS can be de-
scribed in three general categories: (1) developing “ex-
tended programming languages”, i.e. general programming 
augmented with simulation oriented language constructs; 
(2) developing specialized simulation language based on a 
flow-chart type of logic; and (3) developing better interface 
to create a more interactive type (as opposed to “batch” 
type) of modeling environment. In the past two decades, 
the object-oriented representation of simulation concepts 
has been emphasized. For instance Fox (1989) used an ob-
ject-oriented approach to developing schemata to capture 
and represent knowledge in appropriate forms to ease the 
creation of executable simulation models. Another ap-
proach focused on knowledge-based assistance in the im-
plementation of simulation, e.g. developing executable 
model with specific commercially available tools (Arons 
1999, 2000). In software vendor industry, emphasis has 
also been given to the development of high-level simula-
tors for special application systems (McLean 2001; Zülch 
2000). Given these developments, researchers and practi-
tioners still face great challenges in KBS, particularly in 
the conceptual modeling phase. Very limited progress has 
been made to help modeling at conceptual level, and there 
is a significant gap between model conceptualization and 
implementation. We summarize the reasons as follows: (1) 
lack of knowledge-based assistance to translate or trans-
form concepts from application domain to simulation do-
main during model conceptualization; (2) lack of in-depth 
study on the formulation and representation of conceptual 
simulation models (CSMs), e.g. robust representations that 
facilitate the specialization and generalization of modeling 
and flexible interface to a diversified implementation envi-
ronment; (3) lack of rigorous analysis and definition of the 
relationship between the different formats of the represen-
tation to address the difficulties in man-machine communi-
cation; (4) lack of efficient mechanism to process and 
transform the knowledge and information to construct con-
ceptual models and transform them into executable models.  

In this paper we focus on the identification and repre-
sentation of the knowledge for the conceptualization of 
DES models. In Section 2, we decompose a simulation 
modeling process to characterize the information transfor-
mation and knowledge utilization. In Section 3, we identify 
the basic set of concepts that can be generalized to many 
DES applications. Section 4 proposes a notation to formal-
ize the knowledge identified. Rules and algorithms for de-
veloping conceptual model specifications are presented in 
Section 5. Section 6 gives an example for illustration, and 
we give conclusions and further research in Section 7.  

2 MODELING: CONCEPTUALIZATION VS. 
IMPLEMENTATION 

In general, we can categorize the knowledge used in a simu-
lation modeling process into three domains: application, 
simulation, and implementation. The expressions for the 
same concept are usually different by domains. Consider ex-
pressions for a “product” concept that is an automotive en-
gine block. In the application domain, it is labeled as “En-
gine block”; in the simulation domain: “Object” or 
“Product”; in the implementation domain, it is “Entity” or 
“Load” if we use Arena © and AutoMod © respectively. 
This cross-domain communication has caused great diffi-
culty in simulation modeling. Most existing simulation soft-
ware use representations or modeling approaches that mix 
the concepts of different domains and embed implementa-
tion requirements in conceptual modeling phase. This cre-
ates great difficulty for many practitioners who are “domain 
experts” but know little or nothing about simulation and im-
plementation tools. From an information transformation 
point of view, a simulation modeling process can be decom-
posed into two sub-processes that transform data and infor-
mation from one domain to another (see Figure 1). The first 
sub-process corresponds to model conceptualization. trans-
lating an application problem definition (APD) from the ap-
plication domain into a simulation problem definition (SPD) 
in the simulation context. The SPD specifies the logical and 
structural requirements of a conceptual simulation model 
(CSM). This process uses a synthesized or generalized ap-
proach to map special concepts from a specific application 
into the general concepts of simulation, and results in a syn-
thesized logical model independent of implementation re-
quirements (e.g. not constrained by any specific simulation 
language). The second sub-process, “implementation”, trans-
lates the logical and structural specifications of a CSM into a 
special or language-specific model. This process uses an en-
tailed and implementation specific approach to produce an 
executable model with a specific software tool (called -
“implemented simulation model”-(ISM)).  

 
Application 
Problem 
Definition 
(APD) 

Simulation 
Problem 
Definition 
(SPD) 

Conceptualization 

Conceptual 
Simulation 
model 
(CSM) 

Implemente
d simulation
model (ISM) 

Implementation 

 
Figure 1: Conceptualization v.s. Implementation 

 
We separate the knowledge used in conceptualization 

from that used in implementation so that modelers will not 
be constrained by implementation specifics during the con-
ceptual modeling stage. This frees their ability to concen-
trate on the development of efficient, robust or generic rep-
resentations that can be implemented by a variety of tools. 
From a knowledge utilization point of view, the two proc-
esses use different types of knowledge and reasoning 
styles. Here we consider that the knowledge includes the-
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ory (concepts and principles), skills (know-how), and ex-
periences for simulation modeling. The conceptualization 
process uses more generalized and fundamental knowl-
edge, while the implementation requires more specific 
knowledge related to the software tools selected. Essen-
tially the conceptualization process redefines an applica-
tion problem in the context of simulation requirement with 
an emphasis on the “system” (from which the problem was 
developed) and its behavior related to the problem. The 
reasoning strategies used in this generalized mapping in-
clude classification and abstraction. The classification per-
forms a “pattern recognition” function that classifies input 
concepts into predefined categories. The abstraction, on the 
other hand, represents the concepts at appropriate levels to 
satisfy the efficiency of modeling. In general we can clas-
sify the knowledge used for conceptual modeling into two 
types: application knowledge and simulation knowledge. 
Application knowledge is a set of special concepts associ-
ated with a specific application domain, such as manufac-
turing, logistics and distribution or health-care systems. 
Special concepts are used to define and describe the unique 
characteristics of different application systems. They pro-
vide special knowledge and information required to build 
models for a specific type of application. Special concepts 
are used selectively in simulation models (see Figure 2), 
e.g. “conveyor” is a concept typically used by manufacturing 
type of models. Simulation knowledge, on the other hand, is 
a set of basic concepts that are shared by all DES models, 
and belong to the domain of simulation. To build a simula-
tion model, we use concepts from both domains. In Figure 2, 
arrows represent the selection of concepts from a knowledge 
base to construct a certain type of models. A solid arrow in-
dicates a required selection while a dashed arrow implies an 
optional selection depending on the application.  

 

Type 1 
CSM 

Type 2 
CSM 

Type n
CSM 

Basic 
concepts 

Special 
concepts 

 
Figure 2: Two Sets of Modeling Concepts 

 
Separating modeling knowledge in this way help us 

establish an effective strategy and focus on knowledge ac-
quisition and robust representation, and facilitate the or-
ganization of the knowledge. 

3 BASIC KNOWLEDGE FOR CONCEPTUAL 
SIMULATION MODELS 

In this section, we focus on the identification of a common 
set of concepts that are shared by many discrete-event 
simulation models, in another word, these concepts can be 
generalized to many special applications of simulation. In 
doing so we followed a “process-oriented” approach to 
identify the related concepts. Different views of simulation 
often result in different modeling concepts. Comparing 
with other approaches (e.g. event-driven approach), a proc-
ess-oriented view is easier for understanding and more de-
scriptive, which is very important for knowledge based 
modeling, because a logic that is more “compatible” with 
human cognitive processes usually simplifies knowledge 
representation and inference. In addition, being more de-
scriptive generally improves the modeling efficiency of 
simulation. According to Law (1991): “A process is a time-
ordered sequence of interrelated events separated by pas-
sage of time, which describes the entire experience of an 
entity as it flows through a system”. From a simulation 
perspective, a conceptual model consists of a set of con-
cepts, defined at an abstraction level, that completely 
specifies the structure and behavior of a simulation model. 
The abstraction determines how much details should be 
visible to a modeler. Too much abstraction makes a model 
less descriptive or even useless, while too much detail in-
creases modeling difficulty without improving model ef-
fectiveness. Unlike implementation modeling, whose ab-
straction level is dependent on the capability of modeling 
constructs provided by the tools (e.g. ARENA, AutoMod), 
conceptual modeling defines abstraction through proper 
representation schemes. Most practitioners use commer-
cially available tools that use high-level modularized 
graphical commands, such as BLOCKS and MODULES. 
Therefore we need to identify modeling concepts that are 
“compatible” with the developing trend of software tools to 
reduce difficulties in translating from conceptual models to 
implementation models. In this study we propose modeling 
concepts that are classified in the following categories.  

Objects: those that flow through or “fixed” within the 
system being modeled, such as parts, assemblies, orders, 
machine tools, etc. It can be divided into two types: 
 

• Entities: those objects that flow through the sys-
tem to receive services provided by a sequence of 
activities, e.g. parts and assemblies. Some soft-
ware has used “external entity and internal entity” 
for implementation, we prefer not to make this 
differentiation. Functionally speaking, given an 
appropriate definition of entity and control logic, 
the needs for “internal entity” can be eliminated.  

• Resources: those objects that are placed at fixed 
locations of a system according to certain configu-
ration to provide means of service, e.g. operators, 
machine tools, inspection equipment, queues; and 
also mobile resources such as transporters. 
 

Logical or functional activities: an “activity” is a 
logical process that performs a defined function required 
by simulation. These activities process entities, control or 
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manipulate the flow of entities, or collect the data gener-
ated through the flow. Collectively this set of activities de-
compose the overall (functional) behavior of a simulation 
model, i.e. they partition the set of functions performed by 
the model. System states often change when entities flow 
through these activities. The activities are usually defined 
at abstract levels, and each is composed of several sub-
activities, e.g. a processing activity may contain sub-
activities such as seizing a resource, delaying for a time in-
terval, and releasing the resource. The composite nature 
allows us to define simulation activities at an abstract level 
to encapsulate sub-activities to simplify modeling and rep-
resent the activities in a compact and organized hierarchy. 
Following is a classification of “top-level” activities based 
on their functions: 
 

• Create entities; 
• Change/assign entity properties/attributes; 
• Process/service entities (processing activities, in-

cluding inspection); 
• Store/hold entities; 
• Aggregate/disaggregate entities (e.g. assemble, 

disassemble or simply batch parts); 
• Transport entities (move from one location to an-

other); 
• Branch the flow of entities (condition-based ver-

sus probability-based) 
• Control the movement (temporal) of entities; 
• Dispose entities; 
• Collect data/statistics (counts, tallies) 

 
A process flow (or control) logic: it defines the order 

of activities (from an entity-flow perspective) and the inter-
actions between the entities and activities, and between the 
activities, for instance, order of processing activities as 
specified in a process plan; waiting for a control signal be-
tween processing activities. This  logic specifies the flow 
and control of simulated objects in the model completely, 
but implicitly defines the events and state transitions that 
impact the behavior of the model. The logic serves as a basis 
for configuring the logical components to form a model. In 
general there are three types of the control of entity flow: 

 
• Control the direction of the movement, i.e. routing 

entities. It does not stop the entity flow in simu-
lated time. Three main approaches are: 

• Sequential: specified by a predetermined 
sequence defined in a process plan 

• Condition: determined by testing a pre-
determined condition 

• Random sampling: determined by the 
result from a random sampling (probabil-
istic routing). 
• Control the timing of the movement, e.g. holding 
entities until a certain event occurs. It may stop 
entity flow in simulated time. Two main ap-
proaches are: 

• Control by condition: hold entities until 
a prescribed condition becomes true; 

• Control by stimulus (or control signal): 
hold entities until a predetermined type 
of signal is received. 

• Control the quantity of entity flow, e.g. allowing a 
limited number of entities per release (of move-
ment). 

 
A process flow logic can be captured and represented in 

various forms, e.g. a “process narrative” in a textual form or 
a flow-chart diagram in graphical form. For instance, 
Kienbaum (1994) proposed to use a hierarchical activity cy-
cle diagram (H-ACD) to represent the logic of discrete event 
simulation for object oriented design and development. 

Data/input requirements: there are two types: (a) 
Numerical attributes or properties associated with objects 
and activities e.g. input distributions of entity arrival, proc-
essing time and transportation distance or time. (b) Global 
variables and expressions used to define and implement the 
process flow logic; including those called “control ele-
ments” by other researchers (Banks, 1998). 

Output requirements: including the goals and objec-
tives of simulation analysis, and the definitions on the ex-
pected results from simulation output analysis: 

 
• Goals and objectives (e.g. comparing alternatives; 

estimating/predicting performance measures; ana-
lyzing sensitivity of input variables; optimizing 
system performance)  

• Performance measures 
• Confidence levels 
 
Design of experiments: strategies and procedures to 

achieve what has been specified by “Output requirements”, 
i.e. how to collect and analyze the data through simulation 
experiments? For instance: 

 
• Type of analysis 
• Plan or procedure of the analysis 

 
These concepts provide knowledge needed for build-

ing conceptual simulation models and should be appropri-
ately represented and formatted in a knowledge base (KB). 
Ideally they should be represented through a standard vo-
cabulary and taxonomic structure. In addition to being a 
basis for requirement specification, these concepts also de-
fine the correspondence for mapping the knowledge from 
the application domain to the simulation domain.    
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4 SPECIFICATIONS OF CONCEPTUAL 

SIMULATION MODEL 

In general the requirement specification of a conceptual 
model includes the basic concepts identified earlier and 
special concepts related to the application. These specifi-
cations should be formalized to support model develop-
ment and validation, and facilitate the analysis of knowl-
edge representations and inference procedures. In this 
study we propose the following sets of notation to formal-
ize a CSM specification: 

CSM = 〈S1, … …, Sm〉, i.e. CSM is a partition of sets 
S1, … …, Sm, where each Si, 1 ≤ i ≤ m, is a set of partial 
specification of CSM. The definitions are given as follows: 

 
• S1 = Set of simulation objects; ∃ A1 ↔ S1, A1 = A 

set of attributes associated with S1. Symbol “↔” is 
used as an “association” operator here. S1 = 〈E, R〉, 
where E = Set of entities and R = Set of resources; 
and ∃ AE ↔ E, and ∃ AR ↔ R, where AE and AR 
are sets of attributes. For instance, AE = {AE1, …, 
AEn}; where AE1 = Entity Name; AE2 = Entity Type; 
AE3 = Arrival Pattern = Inter-arrival time distribu-
tion; AE4 = Process Plan (Routing) = An entity-
dependent sequence of processing or inspection 
operations (O1, …, Ok); Set E or R can be further 
decomposed into subsets, e.g. R = 〈RL, RE, RT, RQ〉; 
where: RL = Set of labor requirements; RE = Set of 
equipment requirements (including machines, 
tools, etc.); RT = Set of transportation resources; RQ 
= Set of waiting/staging spaces (queues). 

• S2 = Set of logical activities = 〈P1, …, Pn〉 and ∃ A2 
↔ S2. These activities are identified and defined 
based on a process-oriented view: what entities see 
while they flow through the system from their 
“birth” to their “death” during the simulation. Note 
that this is the set of activities used by ALL types 
of entity, i.e. a specific entity type may not use all 
of them. A2 = {A21, A22, …, A2k}, where the set of 
common attributes are defined as: A21 = Activ-
ity.Name; A22 = Activity.ID, i.e. a code used by 
model to identify the type of the activity; A23 = Ac-
tivity.Resource; A24 = Activity.Delay; A25 = Activ-
ity.Control, i.e. a code that identify the type of con-
trol associated with this activity (e.g. sequential, 
assigning, branching, holding, combining, splitting, 
assembling, etc.)∀j, 1 ≤ j ≤ n, Pj is decomposable: 
Pj = 〈Pj1, …, Pjk〉, and ∃ Apj ↔ Pj, e.g. Apj includes 
activity-dependent properties for sub-activities. 

• S3 = Set of logic flow and controls = {LG, C}, 
where LG = logic graph = {N, A}, and N = Set of 
activity nodes and A = Set of directed arcs connect-
ing the nodes. LG defines a logical layout of the 
simulation model that embeds the physical layout 
of a system, in other words, LG shows all activities 
required by a simulation model, including those 
having physical correspondence in real world, and 
their logical relations. We use a set C to explicitly 
represent the set of controls required by the appli-
cation; C = {C1, …, Ck}, and ∃ Ac ↔ C. ∀j, 1 ≤ j ≤ 
k, Cj = {Cjl, Cjt, Cjr}, where Cjl = Control location: 
An integer represents the sequence number of the 
last activity node before the control; Cjt = Control 
type: A code represents the type of control, e.g. Cjt 
= {SE = Sequential, RS = Random sampling, SC = 
Special condition}; and Cjr = Control rules: specify 
the conditions and actions.  

• S4 = Set of transfer requirements = {TR, DS}. Set 
TR defines a set of entity transfers between activi-
ties: TR = {Tij, ∀ ij ∈ ATR = a set of arcs that re-
quires entity transfer} and DS = A two-dimensional 
array (i.e. a n×n matrix, where n = |TR|) that cap-
tures the physical distances or segments between 
the points of entity transfers (i.e. processing or ser-
vicing activity nodes). 

• S5 = Set of system states and control variables, and 
other parameters used to implement control logic 
and other system level execution; V = {V1, …, Vp}, 
∃ AV ↔ V, and AV Includes: (variable) name, (data) 
type, usage (code), etc.   

• S6 = Set of goals/objectives or performance meas-
ures specifications; S6 = {G, M}, where G = Set 
of codes for goals/objectives = {G1, …, Gk} and 
M = Set of codes for performance measures = 
{M1, …, Mh}. 

• S7 = Experimental design specifications = {ES1, …, 
ESm}, where the elements can be set as ES1 = Type 
of the experiment; ES2 = Replication design pa-
rameters = {Length, Number of replications}; ES3 
= Factorial design parameters = {Factors, Treat-
ment combinations}; ES4 = Statistics under study 
or response variables; ES5 = Confidence level 
specification, and so on. 

• Other special specifications (e.g. application do-
main specific requirements) 

5 RULES AND ALGORITHMS TO  
SPECIFY LOGICAL ACTIVITIES 

To determine the logical activities required by a simulation 
model, we need modeling knowledge to transform con-
cepts from application to simulation domain. This type of 
knowledge is represented in the form of logic rules, i.e. a 
set of rules Rs to determine the type and the number of in-
stances of the activities required by a conceptual model. 
These rules have a generic form: 

 
 s = {∀j, If Xj Then Yj Else …; or Xj ⇒ Yj}  
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Where X is a conjunction of antecedents (premises or 
conditions) and Y is a conjunction or disjunction of conse-
quents (decisions about the activities). Some of the rules 
are listed below as examples: 

 
• If (More than one entity type share the same arri-

val pattern)Then (Recommend a single CreateAc-
tivity for this group of entity types) Else (Add one 
CreateActivity for each entity type); 

• If (Function(Activity) == “Process”) Then (Add a 
ProcessActivity); 

• If (Function(Activity) == “Hold entity temporar-
ily”) Then (Add a HoldActivity); 

• If (TransferType(After an activity i) ≠ “Instant 
connect”) Then (Add a TransportActivity(i)); 

• If (Entities need to be batched before an activity i) 
•  Then (Add an AggregateActivity(i)); 
• If (A batched entity needs to be split after an ac-

tiveity i) Then (Add a DisaggregateActivity(i)); 
• If (PossibleRoutesAfter(j) > 1) ∧ (RoutingType = 

= k) Then (Add a BranchActivity of type k after 
activity j); 

• If (An activity i is the last activity in a process 
plan) Then (Add a DisposeActivity after i); 

• If (A ProcessActivity P is shared by more than one 
entity type) Then (Recommend P.ProcessTime = 
Variable) ∧ (NeedAssignment = True); //Assign 
each entity type an attribute for “Processing time” 

• If (Goal(j) = “Estimate flow time” for entity type 
k) then (NeedAssignment = True) ∧ (AssignType 
= “Arrival time”) ∧ (Entity type = k) ∧ (NeedCol-
lectData = True) ∧ (CollectType = Time-interval); 

• If (NeedAssignment == True) ∧ (AssignType = 
“j”) ∧ (Entity type == k) Then (Add an AssignAc-
tivity (j) after the creation of entity k); 

• If (NeedCollectData ∧ CollectType == “j”) Then 
(Add a CollectActivity(j)); 

• If (NeedTransfer(After j) == True)∧(Destination 
== k) then (Mark the Arc(jk));   

 
As we mentioned earlier, conceptually a simulation 

model can be defined through a graphical specification, i.e. 
a graphical representation that shows the logic flow of 
simulated entities. Several researchers have proposed vari-
ants of activity cycle diagram (ACD) based representation 
(Kienbaum 1994). Like a textual specification, a graphical 
specification has been used primarily to facilitate user level 
communication. We enhance this representation through a 
knowledge-based approach to construct and validate the 
logic graphs utilizing the knowledge that has been or can 
be captured and represented. We define a logic graph LG = 
{N, A}. Every node j ∈ N is a logical activity required by 
the model, and it is an instance of some activity type de-
fined in S2. Every arc l ∈ A connects two nodes and repre-
sents a precedence relationship between the two nodes. A 
logic graph LG looks like an inverted tree starting with a 
dummy root node S, the “children” of S are a set of “Cre-
ate” activity nodes. A “leaf” node (a node that has no 
child) corresponds to a “Dispose” activity. Unlike a pure 
hierarchical tree, loops are allowed in the LG to accommo-
date the situation such as sharing of resource and assem-
bling activities. Figure 3 shows part of a logic graph. In the 
figure, S is a dummy starting node (with dashed arcs ema-
nating from it), nodes 1 and 2 are the nodes of Create type, 
while nodes 8 and 9 are Dispose type. All other intermedi-
ate nodes are of certain activity type. 
 

S

1

3

2 

7

54 

6 

98
 

Figure 3: A Logic Graph (LG) for Conceptual Model 
 

In the following we propose two algorithms: Gener-
ate_CSMLG and Validae_CSMLG. Generate_CSMLG 
interacts with a user to construct a logic graph based on the 
partial information captured and structured by the notation 
presented earlier. The execution of this procedure is inter-
active and iterative. It first tries to establish a logic flow 
with the activities having physical correspondence (e.g. 
processing activities); then modify it by inserting addi-
tional activities required by simulation (e.g. assigning at-
tributes or collecting statistics). Procedure Vali-
dae_CSMLG automatically validatea the generated graph, 
e.g. check the consistency and completeness between the 
graphical entities (nodes and arcs) and their definitions or 
implications established in a knowledge base (KB). These 
algorithms have been essentially modified from a depth-
first enumeration procedure (Ginsberg, 1993) by address-
ing the unique requirements of logic configuration for 
simulation models. The pseudo-codes are shown below: 
 
 Algorithm Generate_CSMLG: 
 

Initialize Σ;  // Σ = a list of initial activities, e.g. Cre-
ate activities; 
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If (Σ = Φ) then return failure; 
Set k = Front (Σ);  //Set k = 1st activity in the list Σ; 
While (Σ ≠ Φ) 
{ 
 Current_Node = k; 
 Add_Node (k); //Add a node for activity k; 
 If (Function (k) == “Dispose”) 
  Then Backtrack (k); 
 Else { 
  Update_List (Σ); //Σ = Σ \ k; 
  Insert_Children (k); 
  } 
} //end of while loop; 
Add_Missing_Arcs( ); 

 Agorithm Validate_CSMLG (Given a constructed 
CSM configuration graph): 

Initialize Ω,  //Set Ω = list of initial nodes (i.e. set of  
                       //CreateActivitiy nodes); 
If ( Ω = = Φ) then return failure 
Set j = Front (Ω);      //Set node j = first node in the 
                                  //list Ω; 
While (Ω ≠ Φ)      //while set Ω is not empty; 
{ 
 Remove_Front(Ω); //Set current node to be j; 

  CheckNode (j);  //Call a procedure to  
       //validate node j; 

If ((Function(j) == “Dispose”) ∨ (Checked(j) == 
True)) 

   Then BackTrack (j) ;  //Backtrack 
   // from node j; 

  Else 
 { 
  Update_List(j); //Remove node j from Ω:  
      //Ω = Ω \ j; 
  Insert_Children(j); //Add to the front of Ω 
       //all of j’s children; 
 } 
}   //End of the while loop. 

 
Where procedure CheckNode(j) is given as follows: 
 

Procedure CheckNode (NodeID) 
{ 
 For each attribute A2j ∈ A2  

 { 
  Initialize_Attributes (NodeID); 
  Check_Attribute (NodeID, A2j); 
  If Valid(NodeID ) == False 
   Then present an error message; 
  Else Checked (This node) = True; 
 } 

} 
For Procedure Generate_CSMLG, Insert_Children (k) 
has several functions: it must identify and insert the set of 
activities that are needed and qualify to be the “Children” 
of k and establish the links between k and its children (de-
termining entity transfers); it must exclude those that have 
been added, and if a potential child is an added Dispose ac-
tivity, it will return 0 and backtrack from the current node. 
In Validate_CSMLG, Insert_Children(j) has two main 
functions: identify the set of nodes that qualify to be the 
“Children” of node j; and add the children nodes to the 
“front” of existing list Ω. Similarly it will exclude those 
that have been checked and return 0 for backtrack.  

For this we need to define the concept of “child” and 
the condition under which a node can be identified as a 
child. Let n be a parent node (a node that is the root of a 
sub-tree T(n)), and L(n) = a list of nodes ∈ T(n) that are di-
rectly linked to n by the arcs emanating from n. Further let 
a node k ∈ L(n), and C(n) = the list of children of n = set of 
nodes that are uniquely linked (only one path) to n by the 
arcs emanating from n. Apparently, C(n) ⊆ L(n), i.e. C(n) 
is a subset of L(n). We make the following proposition: 
 

Proposition: ∀ k∈ L(n), k ∈ C(n) if and only if Par-
ent(k) ∩ L(n) = Φ, i.e. none of the parents of k is in 
L(n), or there is only one path from n to k: (n → k). 
(Note that in CSM logic graph, it is possible for a node 
k to have more than one parent nodes) 

 
Proof: Assume k ∈ C(n), this ⇒ n ∈ Parent(k), also n ∩ 
L(n) = Φ; let x ∈ Parent(k) ⇒ exist a path (x → k); If x ∩ 
L(n) ≠ Φ ⇒ x ∈ L(n) and exist another path (n → x → k); 
this contradicts to the assumption  k ∈ C(n). Now assume n 
∈ Parent(k) and Parent(k) ∩ L(n) = Φ; this ⇒ no x ∈ L(n) 
can directly connect k, and the only possible path from n to 
k is (n → k), therefore k ∈ C(n) ■ 

To further illustrate this proposition, we give some ex-
amples from Figure 3. First we look at node 2, L(2) = {3, 
4, 5, 6} and C(2) = {3, 4, 5}. Since Parent(6) = {2, 5}, i.e. 
Parent(6) ∩ L(2) ={5} ≠ Φ, therefore node 6 ∉ C(2). For 
node 5, L(5) = C(5) = {6, 7}. Since Parent(6) = {2, 5}, and 
Parent(6) ∩ L(5) =Φ, so 6 ∈ C(5). 

The goal of knowledge representation (KR) is to rep-
resent the knowledge in the most appropriate ways for ef-
fective and efficient reasoning/inference. KR also depends 
on the characteristics of the knowledge. Generally there are 
following types of KR schemes: (1) Semantic networks 
and frames (Ginsberg 1993): they are easy for understand-
ing; possess good properties such as inheritance, encapsu-
lation and taxonomic structure, and are appropriate for rep-
resentation of declarative or factual knowledge. (2) Rules 
(Durkin 1994): infer new knowledge from known informa-
tion; has a unique role in building cognitive architectures 
for human reasoning, therefore made it popular in develop-
ing practical problem-solver/advisors. (3) Logic (predicate 
logic) (Ginsberg 1993): more expressive or more flexible. 
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In addition to be valid, “good” knowledge representations 
are (1) efficient: facilitate efficient reasoning with the 
knowledge, e.g. easy to map concepts from the application 
domain to simulation domain. Classification, generaliza-
tion, and structured search/inquiry are techniques that can 
help given appropriate KR scheme; (2) robust: should not 
be sensitive to the changes of knowledge, or the 
change/update of the knowledge should be “local”. This is 
good for incremental development and maintenance of a 
knowledge base; and implementation free, i.e. independent 
of specific tool selected by user for implementation; and 
(3) consistent: allow co-existence of different views and 
multiple levels of abstraction in the same modeling concept 
or simulation model. This is also called “issue of semantic 
compatibility” (Zulch 1998). 

As described earlier, the knowledge and information 
contained in a CSM and those used for building a CSM are 
of two types: declarative or factual knowledge; and proce-
dural or inferential knowledge. For instance, declarative 
knowledge includes entities, resources, queues, and statis-
tics; while procedural knowledge includes control and 
routing rules, as well as rules for concept transformation or 
model construction. We propose the following general 
strategy for knowledge representation: (1) Use an object-
oriented (OO) approach, or a collection of taxonomic 
structures to model the concepts that are the type of de-
clarative or factual knowledge. These structures possess 
good properties such as knowledge encapsulation and in-
heritance, and (2) Use a collection of logic rules to model 
the concepts that are the type of procedural or inferential 
knowledge, such as control rules and concept mapping 
rules. Therefore our knowledge base will generally contain 
a set of “objects” (a taxonomic structure) and a set of rules 
that interact with these objects.  

6 AN EXAMPLE 

In this section, we illustrate the notation and algorithms 
proposed earlier to construct a logic graph for a simple ex-
ample. The system manufactures two types of products A 
and B, where each has a different arrival pattern. A requires 
a process P1, then an inspection process (P3). B requires a 
process P2, then the same inspection process P3. If the part 
(A or B) passes the inspection (90% chance), it goes to a 
ship-out exit; otherwise to a rework process (P4). After re-
work, with 80% chance the part becomes useful and is sent 
to a salvaged-part-exit; otherwise sent to a scrapped-part-
exit. Two transporters are used to transfer parts between 
P1-P3, P2-P3, P3-P4, and from P3 (P4) to corresponding 
exits. The goals of simulation are to estimate the average 
flow time and the number of each type of “outputs” (i.e. 
good parts, salvaged parts and scrapped parts). 

For this example, S1 = {e1, e2, r1, r2, r3, r4}, where e1 
= A, e2 = B, r1, r2, r3 and r4 are the resources used at 
processing activity P1, P2, P3 and P4 respectively. Process 
plans associated with two entities are Ae(e1) = (P1, P3, 
P4|P3) and Ae(e2) = (P2, P3, P4|P3), where Pj|Pi means 
that routing to Pj depends on the result of Pi. S5 = {g1, g2}, 
where g1 = estimated flow time and g2 = number of each 
type; Control C = {c1, c2}, where c1 = {P3, RS(1, 90%; 2, 
10%), c1r} and c2 = {P3, RS(1, 80%; 2, 20%), c2r}. Ap-
plying the rules in Rs we obtained S2 = {Cr1, Cr2, As1, 
As2, P1, P2, P3, P4, Br1, Br2, R1, R2, R3, D1, D2, D3). 
Note that S2 includes 2 instances of Create activity (Cr1, 
Cr2); four instances of Process activity (P1, P2, P3, P4) 
and so forth. Set TR = {T1, …, T6}, where T1 = entity trans-
fer between P1 and P2, and so forth. The graphical model 
constructed and validated is shown in Figure 4. This logic 
model communicates clearly about the logic and structure 
of a conceptual simulation model, and its database repre-
sentations can then be interfaced with selected imple-
mentation tools to create an executable model. 
 

Figure 4: An Example LG Generated by Pro-
posed Rules and Algorithms 

7 CONCLUSION 

We discussed knowledge-based simulation modeling in 
this paper, especially the knowledge and its representations 
for conceptualization modeling. We also presented a nota-
tion to formalize the representations to support model de-
velopment and validation and facilitate the analysis and 
translation of the representations. We have demonstrated 
that simulation modeling, especially conceptualization, can 
be facilitated by identifying and separating knowledge 
from different domains, and representing them in proper 
forms, and developing algorithms for structured and auto-
mated reasoning. This work fits into a larger project that 
tries to conduct in-depth study on the knowledge represen-
tation and construction of knowledge base for conceptual 
modeling and facilitate the interface between model con-
ceptualization and implementation. 
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