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ABSTRACT 

A cellular engineer typically estimates system performance 
via simulation. An important input to this simulation is the 
average busy hour subscriber location distribution. The 
performance of some system features, such as admission 
control or carrier, antenna, or beam assignment, requires a 
dynamic mobility model which matches and maintains that 
distribution. The author discusses the requirements of such 
a model and presents easily implementable models satisfy-
ing those requirements. 

1 INTRODUCTION 

A dynamic simulation of a cellular system requires a model 
of mobility. Simplistic mobility models choose a random ve-
locity vector for a particle (mobile subscriber, automobile, 
etc.) and compute its destination based on physical laws of 
motion and the time period, or epoch between simulation 
steps. This approach does not stabilize the distribution of 
particle location. More sophisticated approaches model par-
ticle motion stochastically, such as (Rose and Yates 1997), 
(Liu, Bahl, and Chlamtac 1998), (Massey and Whitt 1993), 
and (Jabbari, Zhou, and Hillier 1998). 

In most of these approaches, the object is to assign a 
priori behavior to the particles in motion, derive the 
resulting location distribution, and estimate its effects on 
the systems under study. Our objective is somewhat the 
opposite. Cellular operators typically have little quantita-
tive information about the behavior of their subscribers, 
but may have information about their location distribu-
tion. A cellular planning tool which incorporates dynamic 
simulation of subscriber mobility must be able to incor-
porate this information.  

The challenge in this effort is to find a stochastic proc-
ess that achieves this distribution and satisfies other re-
quirements, which may include 

 
1. Isotropism: Assuming the location distribution 

information doesn’t include directional biases 
(such as street data), the mobility model should 

 

not preferentially choose one direction over an-
other. In other words, in an area of uniform den-
sity, the model should be as likely to any one di-
rection as another. 

2. Variable velocity: The model must be able to rep-
resent a realistic range of different velocities. 

3. Variable direction: particles must have access to a 
realistic range of directions and dynamically 
change them. 

4. Exclusion zones: handsets must be able to avoid 
exclusion zones and the exterior of the modeled 
system. 

5. Sustained direction: handsets must be able to sus-
tain a direction long enough to produce events, 
such as handoffs, in a realistic fashion. 

 
In many respects, this is the reversal of the classic sto-

chastic process problem: instead of beginning with the 
state transition probabilities and solving for the steady-
state distribution, one begins with the steady-state distribu-
tion and solves for the state transition probabilities subject 
to the above requirements.  The requirements are insuffi-
cient to select a single solution, so there is an element of 
design left in arriving at a solution. This paper addresses 
one class of solutions. 

This problem was previously addressed in (Dean 
2000), which presents a mobility model satisfying all re-
quirements except 2 and 3. The current approach addresses 
all requirements in a general way. It assumes that motion 
will be modeled in a plane by a discrete Markov chain. The 
state space consists of pairs, each corresponding to the cur-
rent location and orientation of a particle (e.g., a handset). 
Locations are confined to a rectilinear grid, and motion is 
affected by movement from one grid location to another. 
The model approximates motion in directions other than 
rectilinear by randomly selecting, at each epoch of the 
chain, from transitions along one of two lateral and vertical 
directions. The orientation of the particle determines which 
of the two directions and the probabilities of choice of 
each. The probabilities are chosen in such a way that the 
mean angle made with the positive x-axis by the vector 
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drawn between a starting position of the particle and the 
following position matches the orientation of the particle 

2 FOUNDATIONS 

2.1 The State Space 

It is convenient to represent locations on a rectilinear grid 
as complex numbers. We assume the grid has uniform 
spacing, so that the complex numbers may be supplied by 
the set G of Gaussian integers, i.e. those complex numbers 
with real and imaginary parts in the set Z of integers.  

Definition 1 A location space is a rectangle 
{ },L m n m I n J= + ∈ ∈i  in G, where 1= −i  and I and 

J are finite intervals in Z. An orientation space is a finite 
subgroup Ω of the additive group R Z/2π of angles in ra-
dian measure. The set S=L×Ω is the state space on which 
we define Markov chains. Elements of L are called cells 
and elements of Ω are called orientations. Given a state s 
in S, the first component is called its cell and the second 
component is called its orientation. Transitions between 
states with the same orientation (thus, only the locations 
are distinct) are translations. Transitions between two 
states at the same location are rotations. 

2.2 Translations and Rotations 

Our fundamental concept in modeling motion is a planar 
motion on S in which transitions occur between states r and 
s only if they have the same orientation and neighboring 
cells (connected by a unit lateral or vertical line segment) 
or they share (are in) the same cell. (We formalize this 
concept in section 2.3.) I.e., the chain moves one step at a 
time, either one unit vertically or laterally, or makes a 
change in orientation. Moreover, the orientation of a state 
limits the cells to which it can make a translation in a spe-
cial way: If X is such a chain, let Z denote the derived 
chain of cells of X and let un=Zn+1-Zn, for natural numbers 
n∈N. We require that  the conditional mean of un, given 
that Zn=〈z,θ〉 and the transition Zn→Zn+1 is a translation, 
makes an angle θ with the positive real axis. (We will actu-
ally be more restrictive than this requirement.) Given these 
goals, we adopt several conventions: 

Definition 2 Let p denote the state transition 
probability matrix of X. We write the transition probability 
between orientations θ and ϕ  in the same cell z as ρz,θ,ϕ = 
p〈z,θ〉,〈z,ϕ〉 and the transition probability between neighboring 
cells (with identical orientation θ) as τz,w,θ = p〈z,θ〉,〈w,θ〉. 

Definition 3 If X has a stationary density f, then its 
location space density  is ,z zf θ

θ
π

∈Ω
= ∑ . (We use the bold-

face, plain symbol “π” to denote the number, pi, in order to 
distinguish it from the probability mass function π).  

In any location space, π may have cells of zero den-
sity, representing exclusion zones where particles cannot 
reside. Any Markov chain with such a density cannot be 
irreducible, because there cannot be transitions to or from 
such cells (i.e., to or from any of the states whose locations 
are such cells). Moreover, since the Markov chains we will 
be considering allow only neighbor to neighbor transitions 
(its “incremental” nature), the support L of π must be 
“connected” in the sense that it is the smallest subset 
closed under the neighbor relation. If π has a non-
connected support, we realize π as the sum of a finite num-
ber of functions each with connected support and apply the 
techniques herein on normalized versions of each. Since 
there will be no transitions between the components, the 
individual solutions will be independent. So, in the sequel, 
we assume L is connected. As a consequence, S = L×Ω is 
irreducible and, since S is finite, f|S is unique. 

So, to simplify expressions of relationships for states 
on the “edges” or in exclusion zones of the location space, 
we assume that  πz, p〈z,θ〉,〈z,ϕ〉, τz,w,θ and τz,θ (see below) are 
zero whenever z or w are outside the location space support 
(including outside L altogether). Furthermore:  

Definition 4 We write the probability of a trans-
lation out of cell z in state s=〈z,θ〉 as  
 
 

4
, , ,

1
z z z u

u
θ θτ τ +

=

=∑  (1) 

 
where the notation “u4=1” indicates that u ranges over 
{±1,±i}, thus capturing the probability of translations to 
any of the neighbors of cell z. 

2.3 Incremental Planar Motion 

We formalize the concept of modeling planar motion. As 
mentioned earlier, we approximate motion in non-
rectilinear directions by randomly selecting from between 
two orthogonal, rectilinear directions. We may represent 
any two such directions by u and iu, where u is a 4th root 
of unity (i.e., ±1 and ±i). Suppose X is a random variable 
in {u, iu} such that E(X) = x+yi. By definition, E(X) = 
P[X=u]u + P[X=iu]iu. Since one of {u, iu} is real and the 
other imaginary, |x| = P[X = ±1] and |y| = P[X = ±i] and |x| 
+ |y| = 1. If θ is the angle E(X) makes with unity,  
 

 
2 2

cos , sinx y
r r

r x y

θ θ= =

= +
 

 
Adding absolute values of the equations for cos and sin to-
gether and given that |x| + |y| = 1, we conclude 

( )1 cos sinr θ θ= + . It is a simple matter to conclude 
from this that 
 

 
[ ]
[ ]

Pr 1 cos

Pr sin

r

r
θ

θ

α θ

β θ

≡ = ± =

≡ = ± =

X

X i
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which we take as definitions (the subscripts of α and β 
emphasize their dependency on θ). Note that  
 

 ( )2 2 2 2x yθ θα β+ = + = XE . 
 

With these definitions in hand, we may define the ba-
sic component of modeling planar motion. 

Definition 5 A planar motion is a Markov chain 
X=〈Z,Θ〉 on S such that  
 

1. If π is the stationary density of X, it is uniform on 
the orientations states in any cell; i.e., for each z ∈ 
L and θ,ϕ ∈ Ω , we have π〈z,θ〉 = π〈z,ϕ〉. 

2. Transitions consist only of translations and rota-
tions. 

 
We call X an incremental planar motion if it exhibits the 
additional properties: 
 

3. Translations occur only between neighboring 
cells; i.e., the transition probabilities  
〈ps,t  : s,t∈S〉 are such that if s=〈z,θ〉 and s=〈w,θ〉, 
then  ps,t>0 implies |z-w|≤1. 

4. If τz,θ is as defined in equation (1), then for each 
4-th root u of unity, 

 

 
( )
( )

,

,

Re cos 0
, Im sin 0

0, otherwise
z z u

u
u

θ

θ θ

α θ
τ β θ+

 >
 = > 
 
 

. 

 

For each z∈L, we write ,z z θθ
π π

∈Ω
=∑ . Because of 

Property 1, πz,θ = πz/|Ω| for each θ in Ω. In the sequel, ref-
erences to the stationary probability density of a planar 
motion refer actually to the density of the location space. 
For convenience, we say that the matrix p with such prop-
erties is planar incremental. Property 4 requires that in ori-
entation θ, translations occur only in the directions of the 
real or imaginary components of eiθ, and with probabilities 
αθ and βθ. The earlier discussion shows that the mean 
translation, given orientation θ, is x+yi.  

Because an incremental planar motion may move only 
one unit at a time along the real or imaginary axes, it is use-
ful to define symbols which represent those units for any 
orientation state θ. We define uθ and vθ, in parallel with αθ 
and βθ, as the real and imaginary 4th roots of unity which lie 
along the real and imaginary parts (if non-zero) of eiθ : 

( ) ( )sgn cos , sgn sinu vθ θθ θ= = i , where sign(t) is +1, -1, 
or 0 depending on whether t is positive, negative, or zero. 

2.4 A Classification Scheme for Probability Flows 

The key to understanding incremental planar motions lies 
in classifying their transition probabilities. For Markov 
chains, the Chapman-Kolmogorov equations express the 
idea that the probability of a given state is equal to the flow 
of probability from all other states into the given state. The 
flow of probability from a state r to a state s is πrpr,s. Be-
cause of the nature of an incremental planar motion, its 
flows are either from one cell to an adjacent cell with iden-
tical orientation or from one orientation to another within a 
cell. The following definitions classify these flows. 

Let π denote the stationary density of the incremental 
planar motion Z on state space S. We define the transla-
tional flows egres and ingress as follows. 

Definition 6 Given s=〈z,θ〉 ∈ S, the egress from s 
is the sum TE(s) of all flows from s to states with 
neighboring cells and identical orientation. Similarly, the 
ingress towards s is the sum TI(s) of all flows from states 
with neighboring cells and identical orientation. For-
mally, they are  

 

 

( )

( )
4

4

, , ; , ,

1

, , ;

1

,

,

E z z z u z z

u

I z u z u z

u

T z p

T z p

θ θ θ θ

θ θ

θ π π τ

θ π

+

=

− −

=

= =

=

∑

∑
. 

 
In a like manner, we define the rotational flows diver-

gence and convergence:  
Definition 7 The divergence from s is the sum 

RE(s) of all flows from s to states with identical cells (but 
with the same or different orientations). The convergence 
with s is the sum RI(s) of all flows into s from states with 
identical cells. Formally, 

 

 

( )

( )

, , , , , ,

, , ,

,

,

E z z z z

I z z

R z

R z

θ θ ϕ θ θ ϕ

ϕ ϕ

ϕ ϕ θ

ϕ

θ π ρ π ρ

θ π ρ

∈Ω ∈Ω

∈Ω

= =

=

∑ ∑

∑
. 

3 EXPLICIT MODELS OF INCREMENTAL 
PLANAR MOTION 

We construct an explicit class of incremental planar mo-
tions. Later, we incorporate motions in this class into use-
ful models of planar motion. Suppose that the functions 
τ:L×Ω →[0,1] and ρ:L×Ω×Ω →[0,1] are defined such that 
for each z∈L and θ∈Ω, , , , 1z zθ θ ϕ

ϕ
τ ρ

∈Ω

+ =∑ . Then, we say 

that τ and ρ describe an incremental planar motion. We 
extend these functions to a matrix p of transition probabili-
ties on the state space S=L×Ω by defining 

 

 

, , , ,

, , , ,

, , , , ,

for 0

for 0

  

  
z z u z

z z v z

z z z

p u

p v

p

θ

θ

θ θ θ θ θ

θ θ θ θ θ

θ φ θ φ

α τ

β τ

ρ

+

+

= ≠

= ≠

=
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and p〈z,θ〉,〈w,φ〉 = 0, otherwise. We refer to p as the incre-
mental planar matrix characterized by τ and ρ. By defini-
tion, p is the transition probability matrix for an incre-
mental planar motion. 

The following result shows, given π and a definition for 
τ, how to construct a definition for ρ that characterizes a 
transition probability matrix p with stationary distribution π. 

Theorem 1. Suppose π is a probability mass 
function on the location space L in the state space 
S=L×Ω. Then (there are two parts):  

 
1. Suppose τ and ρ describe an incremental planar 

motion on  S=L×Ω and p is the incremental pla-
nar matrix characterized by them. If π is a sta-
tionary distribution for p then for each cell z∈L, 
the total egress is equal to the total ingress. I.e., 

 
 ( ) ( ), ,E IT z T z

θ θ

θ θ
∈Ω ∈Ω

=∑ ∑ . 

 
2. Suppose only τ (but not ρ) is given, but we know 

that the total egress equals the total ingress (i.e., τ 
and π satisfy the conclusion of Part 1). Then for 
each z, θ and ϕ , we may define 

 

 ( )( ) ( )( )
( )( )

, ,

, ,

,

z

z E z I

z z E

T z T z

T z

θ ϕ

ψ

ρ

π θ π ϕ

π π ψ
∈Ω

=

− −

−∑
 

 
if ( )( ), 0z ET z

ψ
π ψ

∈Ω
− >∑ and pz,θ,φ = 0 other-

wise. Then τ and ρ describe an incremental pla-
nar motion and π is the stationary distribution for 
the incremental planar matrix p characterized by 
τ and ρ. 

 
proof: Part 1. We appeal to the principle that the flow of 
probability out of a state is equal to the flow into the state. 
Given our previous definitions, this amounts to 

( ) ( ) ( ) ( ), , , ,E E I IT z R z T z R zθ θ θ θ+ = + . If we sum these equa-
tions over all θ in Ω, the contributions from RE and RI are 

 

 

( )

( )

, ,

, ,

,

,

E z z

I z z

R z

R z

θ ϕ

θ θ ϕ

ϕ θ

θ θ ϕ

θ π ρ

θ π ρ

∈Ω ∈Ω ∈Ω

∈Ω ∈Ω ∈Ω

=

=

∑ ∑∑

∑ ∑∑
. 

 
These sums are equal, since the roles of θ and φ can be in-
terchanged. Thus, these terms cancel out, leaving 

( ) ( ), ,E Iz zT T
θ θ

θ θ
∈Ω ∈Ω

=∑ ∑ , which is the conclusion. 
Part 2. First, we must show that for each z and θ, the 
conditional probabilities conditioned on 〈z,θ〉 sum to 1. If 
the denominator in the expression for ρz,θ,ϕ is zero, it is be-
cause τz,θ = 1 for every orientation state θ at location z, so 
this is trivial. Otherwise, 

 

 

( )( )
( )( )

( )( )

( )
( )

( )

, ,

,
,

,

,
,

,

z E
z z I

z z E

z I

z E

z z E

T z
T z

T z

N T z
T z

N T z

θ ϕ

ϕ ϕ
ψ

ϕ

ψ

π θ
ρ π ϕ

π π ψ

π ϕ
π θ

π π ψ

∈Ω ∈Ω
∈Ω

Ω

∈Ω

Ω

∈Ω

−
= −

−

−
−

=
−

∑ ∑∑

∑
∑

 

 
By hypothesis, the numerator and denominator of the sec-
ond fraction are equal. Thus, 

 

 ( )( ), , ,z z E zzTθ ϕ
ϕ

ρ θπ π
∈Ω

= −∑ . 

 
Since TE(z,θ) = πzτz,θ, rearranging terms and dividing by πz 
shows that , , , 1z zθ θ ϕϕ

τ ρ
∈Ω

+ =∑ . This is equivalent to the 

statement that the sum of all conditional probabilities is 1, 
since , , , , ,z z z u z z vθ θ θτ τ τ+ += + , where u = uθ and v = vθ. 

Finally, we must show that the Chapman-Kolmogorov 
equations are satisfied. This is similar to the previous ar-
gument, but we sum over θ instead of ϕ: 

 

 

( )( )
( )( )

( )( )

( )

, ,

,
,

,

,

z I
z z E

z z E

z I

z

T z
T z

T z

T z

θ ϕ

θ θ
ψ

π ϕ
ρ π θ

π π ψ

π ϕ

π

∈Ω ∈Ω
∈Ω

−
= −

−

−
=

∑ ∑∑
 

 
Since TI(z,ϕ) = πz-uτz-u,θ + πz-uτz-v,θ , where u = uθ and v = vθ, 
we may rearrange the above equation into the form of the 
Chapman-Kolmogorov equations. If the denominator is 
zero, so that ρz,θ,ϕ = 0 instead, the hypothesis implies that 

( )( ), 0z IT z
ϕ

π ϕ
∈Ω

− =∑ as well. Since these are non-negative 

terms, we conclude that πz-TI(z,θ) = 0. Since ρz,θ,ϕ = 0 for 
all ϕ, we arrive at the Chapman-Kolmogorov equations 
anyway. (QED) 

3.1 Canonical Incremental Planar Motion 

By means of Theorem 1, we define an explicit class of 
models of incremental planar motion. Let λθ∈(0,1) for 
each θ ∈ Ω and for each z∈L, let 

 ( ) ( )[ ]( )
,

min , 0
0, 0

z
z

z

z Q zθ
θ

θ π
τ

λ π π
π

=
 >
 =

 (2) 
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where [ ] { }aA a Aπ π= ∈ and  

{ }, , ,Q z z u z v z u vθ θ θ θ θ= + + + + , the directional quadrant of 
z. (Note that our convention that πw = 0 for w not in L im-
plies that this formula works even for edge cells.) So, for 
πz>0, τz,θ is λ/πz times the smallest density in the quadrant 
containing z, z+uθ, and z+vθ. Under suitable conditions de-
scribed in the next theorem, τ and ρ (as defined in 
Theorem 1, Part 2) lead to what we call a canonical model 
of incremental planar motion. 

Theorem 2.  Assume that π∈Ω, so that the orien-
tation group is “symmetric” about both lateral and verti-
cal axes. Suppose π is a probability mass function on L, τ 
is defined as in equation (2), ρ is defined as in Theorem 1, 
Part 2, and for each θ in Ω, λθ = λπ−θ = λ-θ (i.e., λ is the 
same regardless of reflection through either axis). Then τ 
and ρ describe an incremental planar motion and π is the 
stationary distribution for the incremental planar matrix p 
characterized by τ and ρ . 

proof: We show that the hypotheses of Theorem 1, 
Part 2 are satisfied. The ingress at cell z is 

 
 , ,z u z u z v z vθ θ θ θθ θ θ θ

θ

α τ π β τ π− − − −

∈Ω

+∑ . 

 
Note that τz,θπz  = λθ min{πz+u | u=0, uθ, vθ, uθ+vθ }. The 
mappings θ → π−θ and θ → −θ  amount to reflection 
through the y- and x-axes respectively (angular arithmetic 
is modulo 2π). Thus,  , ,z u z u z zθ π θπ τ π τ− − −=  and 

, ,z v z v z zθ θπ τ π τ− − −= , where u = uθ and v = vθ . Substituting 
these relationships into the expression for ingress yields 

 
 , ,z z z zθ π θ θ θ

θ

α τ π β τ π− −

∈Ω

+∑ . 

 
Since αθ and βθ are unchanged by reflection through either 
x- or y-axis, the above simplifies to 

 
 , ,z z z zπ θ π θ θ θ

θ

α τ π β τ π− − − −

∈Ω

+∑ . 

 
By distributing the sum over both terms and individually 
re-indexing the resulting sums, we arrive at the expression 
for egress. (QED) 

4 MOTION SCHEMAS 

The model described in the previous section may be gener-
alized beyond the location space distribution, since there 
are specific formulas specifying how the model should be 
constructed for any location space distribution.  
 

Definition 8 For a fixed Ω, we define an incre-
mental planar motion schema as a mapping from pairs 
〈S,π〉 of state spaces and probability mass functions to 
pairs of functions 〈τ(S),ρ(S)〉 such that 
 

1. ( ) [ ] ( ) [ ]: 0,1  and : 0,1L Lτ π ρ π× Ω → × Ω × Ω → de-
scribe an incremental planar motion on L×Ω with 
mass density π.  

2. Given 〈S′,π’〉 such that S=L′×Ω, L⊆L′ and π is the 
conditional density of π′ given L, then τ(π′) and 
ρ(π′) are extensions of τ(π) and ρ(π). 

 
A planar motion X on the state space S with stationary 
density π whose state transition matrix is characterized by 
τ(π) and ρ(π) is an instance of the schema. 
 

The exact nature of the formalism is important only to 
the extent that it captures the nature of an incremental pla-
nar motion independently of the distribution π. In a typical 
simulation, there is a single state space with a fixed distri-
bution, yet distinct particles will be assigned different in-
cremental motion schemas. The behavior of the particle is 
then a function of its schema and the distribution of the lo-
cation space in which it resides. Innate properties of the 
schema will express themselves differently in different lo-
cation spaces. One important such property is the mean 
speed of the schema, as we describe in the next section. 

The typical location space mass density function con-
sists of a few broad regions of uniform density. For that 
reason, it is convenient to describe properties of motion 
schemas in terms of their behavior in a location space of 
uniform density. By convention, if a behavior of a planar 
motion is measurable in some sense, we assign to a motion 
schema the limiting value of that measure in all instances 
of the schema on uniformly distributed location spaces as 
the location space increases without limit. 

5 PARTICLE VELOCITY 

Let X be an incremental planar motion, and let Z and Θ be 
the chains which represent the locations and orientations at 
each step of X; i.e., for each n, Xn = 〈Zn,Θn〉. Given a state 
s =  〈zn,θn〉, the instantaneous velocity of X at s is 

( ), 1 0 0 ,zV zθ θ= − =Z Z XE  and its mean instantaneous 
speed in state s is |Vz,θ|, where we take the width and height 
of a cell as unit distance and one epoch as unit time. Note 
that , , ,z z zV u vθ θ θ θ θ θ θα τ β τ= + and the instantaneous speed 

is 2 2
, ,z zV θ θ θ θτ α β= + . 
In general, the instantaneous speed is dependent on the 

distribution π. For a canonical incremental planar motion, 
the instantaneous speed is 

 

 ( )[ ]
,

2 2 min
z

z

V Q z
θ

θ
θ θ θ

λ
α β π

π
= +  
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when πz > 0, and zero otherwise. 

For a fixed θ, the mean speed is higher where 
neighboring cells in the direction of θ  have higher densi-
ties relative to z, while the mean speed is lower where 
these densities are lower relative to z. Thus, a particle 
moves more rapidly towards areas of increasing density 
than towards those of decreasing density. In this way, the 
distribution π impedes or enhances the mean instantaneous 
speed of the particle. However, if the particle is in a region 
R of uniform density and Qθ(z)⊆R, the instantaneous speed 

is given by 2 2
,zV θ θ θ θλ α β= + . This expression is inde-

pendent of π and independent of z away from any edge. So, 
following the convention set forth in Section 4, we refer to 
it as the speed of the schema in orientation θ. 

6 MEAN RUN LENGTH 

In simulations of wireless mobility, it is important to be 
able to maintain the orientation of motion of a handset, so 
that it produces handoff events in a realistic fashion. Let Θ 
denote the chain of orientations of an incremental planar 
motion. If ( )1 0min 0 mm += ≥ ≠M Θ Θ , then the mean run 
length lR(z,θ) from z in orientation θ is 

( ) ( )0 0 0, ,R z z zl θ θ= − = =MZ Z ΘE . For motion schemas, 
we define lR(z,θ) as the maximum of this value over all 
state spaces with uniform location space densities. The 
quantity lR(z,θ) is then a measure of the mean run length of 
a particle if it were unimpeded by density or location space 
boundaries. 

The quantity lR(z,θ) is difficult to compute in the gen-
eral case. However, the following (stated without proof) is 
true for incremental planar motion schemas: 

Theorem 3. If  〈τ,ρ〉 is a canonical incremental 
planar motion schema, then 

 

 ( ) 2 2

,

,
1

R zl θ
θ θ

θ θ θ

λ
θ α β

λ ρ
= +

− −
. 

7 ISOTROPY 

If the motion we wish to model has no a priori bias in di-
rection at a particular location, any motion schema which 
models such motion should be “isotropic”; i.e., the instan-
taneous speed in any direction at that location should be 
independent of direction. A reasonable interpretation of 
“no bias” is that all the cells in the neighborhood 
N(z)={z+a+bi :  a,b = 0,±1} of a given cell z have the same 
probability. To be precise, an incremental planar motion 
schema 〈τ,ρ〉 is isotropic if for each state space S=L×Ω, if 
z∈Ω and N(z) is unbiased, then |Vz,θ| is identical for all θ. 

For a canonical incremental planar motion schema if 
z∈L and N(z) is unbiased, then τz,θ = λθ for all θ. If velocity 
is to be independent of orientation, 2 2
,zV θ θ θ θλ α β= +  must 

be a constant C, so 2 2Cθ θ θλ α β= + . Since λθ ≤1, 

{ }2 21 2 minC θ θα β θ≤ = + ∈ Ω . Thus, we conclude that 
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where µ is a constant ≤1, which we call the motility. We 
call a canonical incremental planar motion so equipped an 
isotropic canonical incremental planar motion.  Substitut-
ing λθ for τz,θ in the expressions for TE and TI yields 

( ),E zT z θθ π λ=  and ( ),I zT z θθ π λ= , so by the definition in 
Theorem 1, Part 2,  
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8 PRACTICAL MODELS OF PLANAR MOTION 

In a discrete event simulation, we may choose the epoch of 
a canonical incremental planar motion schema to whatever 
value is needed to model any target particle velocity. How-
ever, if the simulation has a common fixed epoch size, we 
must be more inventive. 

In such cases, one can speed up a particle’s motion by 
an integral factor of n by scaling its “epoch” to a fraction 
1/n of the main epoch. It is not difficult to see that the re-
sulting motion at each “main” epoch is still Markov with 
the same distribution. But suppose we have a canonical in-
cremental planar motion X with motility µ and we wish to 
simulate a particle with instantaneous speed of v units per 
epoch, where v is a possibly non-integral positive real 
number. If v>µ, we can get close with this technique by 
taking n=v/µ . However, a more accurate approach is to 
construct an incremental planar motion X′ from X whose 
mean speed is v/n<µ, then achieve the incremental planar 
motion Y with mean speed v by “speeding up” X′ by a fac-
tor of  n. The next theorem, stated without proof, shows 
how X′ is derived from X. 

Theorem 4. Let X be an isotropic incremental 
planar motion and let B be a chain of independent, identi-
cally distributed Bernoulli variables independent of X. De-
fine ( ) ii k

k
<

=∑N B for k∈N and let Y = XN. Then 

 
1. Y is an isotropic incremental planar motion with 

the same stationary distribution π as X. 
2. If the translations and rotations of X are 〈τz,θ | 

z∈L, θ∈Ω〉 and 〈ρθ,ϕ | θ,ϕ∈Ω〉, then the transla-
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tions and rotations of  Y are 〈τ′z,θ | z∈L, θ∈Ω〉 
and 〈ρ′θ,ϕ | θ,ϕ∈Ω〉, where 
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3. If λ = Pr[B0=1] and ν is the instantaneous speed 

of X, then the mean instantaneous speed of Y is 
λν. 

9 CONCLUSIONS 

In the Introduction, we present a set of requirements for 
simulating particle motion particularly suited to wireless 
mobile applications. In particular these requirements in-
clude that the model match an a priori particle location 
mass density function and that the mean duration of parti-
cle orientation is controllable. We satisfy these require-
ments with a class of particle motion models called ca-
nonical incremental planar motions. We then show that by 
judicious choice of the epoch between movements, these 
models may be extended to model motion at whatever 
speeds are required for simulation.   

A requirement that remains to be addressed is location 
dependent speed. In many applications mean particle speed  
has a location dependent aspect, and a model of mobility 
should include it. (E.g., in wireles cellular applications, 
subscriber speed may be lower in high density areas and 
higher in low density areas.) One way that planar incre-
mental motion might be expanded to model location de-
pendent speed is to add another dimension V to the state 
space: S=L×Ω×V, where V is a finite set of speeds. If the 
mass density π is extended to this space and 〈z,θ〉 is a fixed 
point in L×Ω, then πz,θ(v) = π(z,θ,v) is a distribution of 
speeds in that state. There are some choices that must be 
made in this approach. If the incremental nature of the mo-
tion is worth keeping, then as a particle passes from one 
region to another, it could only transition to a new speed 
that is a “neighbor” of the one it already has. Thus, the par-
ticle speed would evolve toward the mean speed of the re-
gion rather than make a sharp transition to it. Although 
such behavior models a kind of acceleration, which is at 
least superficially realistic, it remains to be seen if it could 
be controlled in a more essentially realistic manner or if it 
is useful at all. The other option would be to abandon the 
incremental nature of speed transition, but this would sig-
nificantly expand challenges to finding simple models. 
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