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ABSTRACT 

Simulation composability is a difficult capability to 
achieve due to the challenges of creating components, se-
lecting combinations of components, and integrating the 
selected components.  We address the second of these chal-
lenges through analysis of Component Selection (CS), the 
NP-complete process of selecting a minimal set of compo-
nents to satisfy a set of objectives.  Due to the high order of 
computational complexity of CS, we examine approximat-
ing solutions that make the CS process practicable.  We de-
fine two variations of CS and prove that good approxima-
tions to optimal solutions result from applying a standard 
Greedy selection algorithm to each.  Despite our creation 
of approximable variations of CS, we conjecture that any 
proof of the inapproximability of CS will reveal theoretical 
limitations of its practicality.  We conclude that reasonably 
constrained variations of CS can be solved satisfactorily, 
and efficiently, but more general cases appear to never be 
solvable in a similar manner. 

1 INTRODUCTION 

Composability is the ability to combine reusable simulation 
components to satisfy a set of user objectives.  Composabil-
ity is a highly sought-after goal for model and simulation 
developers because of the benefits afforded by reuse.    
Component Selection (CS) is an NP-complete optimization 
problem formally shown to be embedded within compos-
ability (Petty, Weisel, and Mielke 2003).  It was conjectured 
to be NP-complete in (Page and Opper 1999) and proven to 
be so in (Petty, Weisel, and Mielke 2003).  It is the problem 
of choosing the minimum number of components from a set 
of components such that their composition satisfies a set of 
objectives.  For composability to be achievable in reasonable 
time, the selection of a set of components must be accom-
plishable in polynomial-time.  In this paper we analyze the 
approximability of CS by evaluating the performance of the 
standard Greedy approximation algorithm on it and con-

 

strained variations of it.  We choose to study Greedy on CS 
because Greedy is one of the best polynomial-time algo-
rithms  for approximating Minimum Set Cover (MSC), a 
closely related NP-complete problem shown to be reducible 
to CS (Slavík 1996). 

We constrain CS by limiting emergence.  Informally, 
emergence occurs when the set of objectives satisfied by a 
set of components is greater than the sum of the parts: 
some of the objectives satisfied cannot be satisfied by any 
of the components alone.  In one variation of the problem, 
we assume emergent behavior exists equally and uniformly 
amongst the components, and in the other we assume 
emergent behavior exists only amongst compositions con-
sisting of n or fewer components. 

CS is a relatively new complexity problem and has, in 
the past, only been studied with regard to composability.  
However, we maintain that it is not only embedded within 
composability but also within any other simulation/modeling 
methodology that makes use of simulation/model reposito-
ries, libraries, and the like.  Examples of methodologies en-
forcing the desire to reuse, and to combine for the purpose of 
new functionality, pervade the world of simulation, a few 
being: using HLA (Dahmann, Calvin, and Weatherley 
1999), using modules from the Modeling and Simulation 
Resource Repository (MSRR) of DMSO (Online: 
http://www.msrr.dmso.mil/ 2002), and using CORBA-based 
applications for simulation development (Wang, Schmidt, 
and O’Ryan 2000).  These all have the notion of interopera-
tion and cooperation of simulation/model components that 
were developed and placed in a repository in one form or 
another to be later reused. Such repositories imply choice of 
a combination of components, or pieces of a whole, in order 
to satisfy end-user objectives. CS is the problem that arises 
when a simulationist seeks to select an optimal set of com-
ponents to satisfy a set of requirements. 

In the sections that follow we provide necessary back-
ground knowledge on approximation theory and a sketch 
of the proof of the approximation ratio Greedy exhibits on 
MSC.  We describe CS formally and provide necessary 
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definitions for and formal descriptions of our two newly 
proposed variations of CS.  We then show proofs of 
Greedy’s approximation ratio exhibited on each variation, 
one of which we limit to a special case.  Lastly, we provide 
a concise description of the theory behind the inap-
proximability of hard problems and present a conjecture 
that CS, because of the unpredictability of its nature of 
emergence, is practically inapproximable.    

2 APPROXIMATION THEORY 

When assessing the practical application of NP-hard or NP-
complete problems, it is useful to analyze their approximabil-
ity, or whether their optimal solutions can be approximated 
by polynomial-time algorithms (Hromkovic 2001).  Ap-
proximation theory is concerned with the approximation of 
optimal solutions to hard optimization problems.  Informally, 
an approximation algorithm is a polynomial-time algorithm 
for solving an optimization problem that outputs a solution 
whose size is always within some scaling factor of the opti-
mal solution.  Proving the usefulness of the approximation 
algorithm on a problem means showing that the factor is very 
close to one and, if in the case of it being a function, grows 
very slowly with the size of the problem. 

Formally, an algorithm for a problem has an approxi-
mation ratio of f(n), n being the size of the problem, if the 
cost Ca of the solution produced by the approximation al-
gorithm is within a factor of f(n) of the cost Co of an opti-
mal solution (Cormen et al. 2001).  In the case of a maxi-
mization problem, an algorithm is said to be f(n)-
approximate if the ratio Co to Ca is less than or equal to 
f(n), whereas in the case of a minimization problem the 
opposite ratio Ca to Co is considered. 

3 APPROXIMATING MSC WITH GREEDY 

We illustrate approximation theory with an example, which 
we will then use in our proofs concerning the ap-
proximability of variations of CS.  The problem definition 
of MSC is as follows (Hromkovic 2001): 
 

INSTANCE: (X, F) where X is a finite set and F is a 
set containing subsets of X, such that every element of 
X belongs to at least one subset in F. 
QUESTION: Is there a subset C of F of size less than 
or equal to K such that C covers X, or X = ∪S ∈ C  S. 

 
Algorithm 1 illustrates the standard Greedy approxima-

tion algorithm on MSC (Hromkovic 2001). 
 
Algorithm 1 
Input: (X, F); 
Step 1:  C := NULL; 
  U := X; 
Step 2:  while U ≠ NULL 

do begin choose an S ∈ F such that 
 |S ∩ U| is maximal;  
   U := U - S; 
   C := C ∪ {S}; 
  end; 
Output:  C; 
 
The following theorem is from (Cormen et al. 2001) 

and we provide a sketch of its proof.  Refer to (Cormen et 
al. 2001) for the details of the proof, which are unnecessary 
to include for the purposes of this paper. 

Theorem 1    Algorithm 1 is Har(max{|S| | S ∈ F})-
approximate for Minimum Set Cover, where Har(n) is the 
Harmonic Series ∑(1/k) for k =1 to n. 

Sketch of Proof of Theorem 1    Assign a cost of 1 to 
each set selected by Algorithm 1.  Let costx denote the cost 
allocated to element x, for each x ∈ X.  If x is covered for 
the first time by subset Si, then 
  
 costx = 1/|Si – (S1 ∪ S2 ∪…∪ Si-1)| . (1) 
 
Use Equation (1) to derive the desired relationship between 
the cost assigned to the optimal set cover C* and the cost 
assigned to the set cover C returned by Algorithm (Cormen 
et al. 2001).  The derived relationship is such that  
 
| C| ≤ |C*| · Har(max{|S| | S ∈ F}) ,    (2) 

 
thus proving the theorem (Cormen et al. 2001). 
[End of Sketch of Proof of Theorem 1] 

4 APPROXIMATING CS 

CS is the problem of choosing the minimum number of com-
ponents from a set of components such that their composition 
satisfies a set of objectives.  The notation used for formally 
defining CS, as laid out in (Petty, Weisel, and Mielke 2003) 
with a few minor changes to improve appearance is: Let O = 
{o1, o2, … , on} be a set of objectives.

 
 Let C = {c1, c2, …, cm} 

be a set of components.  A simulation system S is a subset of 
C, i.e., S ⊆ C.  If |S| > 1 then S is a composition. Let ° denote 
composition of components, e.g., (cj ° ck) is a composition of 
two components. Let ⇒ denote satisfying an objective, i.e., cj 
⇒ oi means component cj satisfies objective oi, and cj ¬⇒ oi 
means that it does not.

 
 The ⇒ and ¬⇒ operators may also be 

applied to compositions and sets of objectives, e.g., (cj ° ck) 
⇒ oi and S ¬⇒ O have the expected meanings.  A simulation 
system S ⇒ O if and only if S ⇒ oi for every oi ∈ O. 

The set of objectives satisfied by a composition of com-
ponents is not necessarily the union of the objectives satisfied 
by the components individually.  Table 1 illustrates the rules 
of the forms of composition: emergence, non-emergence, and 
anti-emergence.  We assume the non-existence of anti-
emergence in CS in our approximability analysis because we 
believe it can be excluded as an attribute by controlling the 
way in which components are composed, or connected. 
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Table 1: Forms of Composition (Petty, Weisel, and Mielke 2003) 
cj ⇒ oi  ck ⇒ oi  (cj ° ck) ⇒ oi  Non-emergent  

cj ¬⇒ oi  ck ⇒ oi  (cj ° ck) ⇒ oi  Non-emergent 

cj ⇒ oi  ck ¬⇒ oi  (cj ° ck) ⇒ oi  Non-emergent  

cj ¬⇒ oi  ck ¬⇒ oi  (cj ° ck) ⇒ oi  Emergent 

cj ⇒ oi  ck ⇒ oi  (cj ° ck) ¬⇒ oi  Anti-emergent  

cj ¬⇒ oi  ck ⇒ oi  (cj ° ck) ¬⇒ oi  Anti-emergent  

cj ⇒ oi  ck ¬⇒ oi  (cj ° ck) ¬⇒ oi  Anti-emergent  

cj ¬⇒ oi  ck ¬⇒ oi  (cj ° ck) ¬⇒ oi  Non-emergent  
 

 

The problem definition of CS follows (Petty, Weisel, 

and Mielke 2003): 
 
INSTANCE: Set C = {c1, c2, …, cm} of components, 
set O = {o1, o2, …, on} of objectives, oracle function 
σ: power(C) → power(O), positive integer K ≤ |C|.  
QUESTION: Does C contain a composition S that sat-
isfies O of size K or less, i.e., a subset S ⊆ C with |S| ≤ 
K such that O ⊆ σ(S)? 

 
Petty, Weisel, and Mielke include the oracle function σ 

in CS (2003).  The theoretical oracle function accepts a set of 
components as input and, in one step, computes the set of ob-
jectives that are satisfied by the composition of the input 
components.  The oracle function subsumes the difficult 
problem of computing an objective’s decidability into one 
step within the problem of component selection and it allows 
the examination of component selection to be separated from 
that of computing an objective’s decidability.  Petty, Weisel, 
and Mielke prove CS to be NP-complete by first showing 
that an optimal solution to it can be verified in polynomial-
time and then showing that MSC can be reduced to it in 
polynomial-time (2003).  Since CS is a computational com-
plexity problem associated with composability, CS or varia-
tions of CS must be shown to be practically approximable to 
show or maintain the notion of composability as a practical 
ability.  We examine approximating CS and variations of CS.   

4.1 Greedy on CS 

In attempting to find or create approximation algorithms for 
CS, it is intuitive to research approximation algorithms for 
MSC, because MSC can be reduced to CS in polynomial-
time. The Greedy algorithm is the most widely studied ap-
proximation algorithm used for MSC.  Refer to (Slavík 1996) 
for a comprehensive study on approximating MSC with 
Greedy.  Our analysis indicates that the Greedy algorithm 
fails to exhibit a good approximation ratio when applied to 
the CS problem.  We demonstrate this poor performance with 
an implementation of the Greedy algorithm (Algorithm 2) 
and an instance of CS to which it is applied (Instance 1). 
 Algorithm 2 
Input: (C, O); 
Step 1:  S := NULL; 
  Z := O; 
Step 2:  while Z ≠ NULL 

do begin choose c in C such that   
 |σ(S ∪ {c}) ∩ Z| is maximal; 

S := S ∪ {c}; 
   Z := Z - σ(S); 
  end; 
Output:  S; 
 
Instance 1: Let O = {a, b, c, d, e, f, g, h, i} be the set 

of objectives.
 
 Let C = {c1, c2, … , c10} be the set of com-

ponents.  c1 ⇒ {a, b}, c2 ⇒ {b, c} c3 ⇒ {c, d}… , c8⇒ 
{h,i}, c9⇒ {a}, c10⇒ {a}, (c9 ° c10) ⇒ O. 

In Instance 1, the optimal solution is obviously the set 
containing c9 and c10.  Algorithm 2 would select c1 through 
c8.  It selects |C| components instead of the optimal solu-
tion containing 2 components, obviously an infeasible so-
lution for similar instances where |C| is large. 

4.2 Constraining CS with Emergence Assumptions 

As we have shown earlier, Greedy does not perform as 
well on CS as it does on MSC because of the existence of 
emergence in CS.  The next step is to constrain the emer-
gence within CS to the extent that Greedy solves the con-
strained version reasonably well.  We create two variations 
of CS, each constrained by assumptions regarding emer-
gence, and analyze the performance of the Greedy algo-
rithm on each variation separately. 

4.2.1 Greedy on u-UCS 

For the following theorems and proofs we use the term de-
gree of emergence, and we define it as the number of ob-
jectives satisfied by a composition via emergence. 

Definition 1    A composition S of individual compo-
nents has a degree of emergence d if and only if |σ(S)| – 
|{∪c ∈ S σ(c)}| = d. 
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Definition 2    The set of objectives E =  
{ {σ(S) – {∪c ∈ S σ(c)} } is the set containing the emerging 
objectives of the composition S.  If E is not empty, the com-
position is said to exhibit emergent behavior.  

Definition 3    An instance of CS exhibits uniform 
emergence of degree u if and only if the degree of emer-
gence for any pair-wise composition PS of components in 
the instance is exactly equal to u and the degree of emer-
gence for any composition with cardinality greater  than 
two is equal to zero. 

Definition 4    An instance of u-Uniform Component 
Selection (u-UCS) is an instance of CS that exhibits uni-
form emergence of degree u.  Due to the uniform emer-
gence of degree u exhibited by all pairs of a composition S, 
and the possibility of redundant emergence, the total num-
ber of emergent objectives is less than or equal to ((|S| 
choose 2) · u). 

Theorem 2    Algorithm 2 is Har(max{|σ(c)| | c ∈ C})-
approximate for 0-UCS. 

Proof of Theorem 2    Instances of 0-UCS exhibit no 
emergence in any possible composition of components.  
Therefore, the objectives satisfied by any composition is 
simply the union of the objectives satisfied by each com-
ponent in the composition individually.  As shown earlier, 
Greedy is Har(max{|S| | S ∈ F}-approximate by the de-
rived Equation (2) for MSC.  Petty, Weisel, and Mielke 
showed how MSC can be reduced to CS (2003).  In terms 
of how Greedy applies to each, MSC and 0-UCS are ex-
actly the same.  A subset S of F in MSC is a subset σ(c) of 
O in 0-UCS, and therefore Algorithm 2 is Har(max{|σ(c)| | 
c ∈ C})-approximate for 0-UCS. 
[End of Proof of Theorem 2] 

Theorem 3    Algorithm 2 is  Har(max{|σ(c)| | c ∈ 
C})-approximate for u-UCS, u > 0.  

Proof of Theorem 3   In the worst case, for every 
component c added to S in Algorithm 2, the inevitable 
emergent behavior (defined by u) will not cause S to satisfy 
any new objectives (i.e. the emergent objectives had al-
ready been satisfied or they were in O).  This complete 
overlapping effect of the worst case causes u-UCS, u > 0, 
to be 0-UCS insofar as the approximation ratio Greedy ex-
hibits on it.  The Proof of Theorem 2 now applies and 
completes the proof of Theorem 3. 
[End of Proof of Theorem 3] 

Though the theorems for 0-UCS and u-UCS, u > 0, are 
the same, we separate them with the purpose of indicating 
the potential for u-UCS, u > 0, to be more quickly solved 
than 0-UCS.  If we relax the worst-case condition that 
emergent properties of each added component in Algo-
rithm 2 provide no benefit in satisfying the problem’s ob-
jectives, (a more typical scenario), the algorithm will more 
quickly satisfy all the objectives due to emergent behavior 
 

at every step.  This causes Algorithm 2 to finish more 
quickly and to potentially output a smaller solution than 
the 0-UCS instance. 

4.2.2 Greedy on n-CS 

In this section we analyze a useful variation of CS we call 
n-CS. 

Definition 5    Instances of n-CS are those instances of 
CS such that for any composition S of cardinality greater 
than n, S exhibits a degree of emergence 0.  Each composi-
tion of cardinality less than or equal to n may exhibit some 
varied degree of emergence d, d > 0. 

We will show that the standard Greedy approach to 
solving n-CS is only desirable when n = 2, and that for n > 
2, the Greedy approach is futile.  We choose not to portray 
n-CS as a broadly tractable variation of CS, but to expose 
our line of thinking about variations of CS that do or do not 
lend themselves to the standard Greedy approach. 

For n-CS we prepend the Greedy algorithm with the 
construction of an assistive data structure we refer to as a 
composition table.     
Definition 6    A composition table for an instance of n-CS is 
a list of pairs, one pair for each composition S of cardinality 
less than or equal to n.  A pair’s members are S and σ(S).  

The time required to create a composition table is on the 
order O(m choose n) where m is the total number of com-
ponents; therefore, this time is of exponential order. When 
n = 2 the time is on the order O(m choose 2), or O(m2), a 
polynomial-time complexity class.  Therefore, 2-CS is 
tractable for creating and using a composition table for ap-
proximating its solution. 

For an instance of n-CS, let T = {t1, t2, … , tz} be the 
set of elements in the composition table and let O = {o1, o2, 
…, on} be the set of objectives associated with the in-
stance.  Algorithm 3 illustrates Greedy on a generic com-
position table, Table 2, of an instance of n-CS. 

 
Algorithm 3 
Input: (T, O) 
Step 1:  X := NULL; 
  Z := O; 
  i := 1; 
Step 2:  while Z ≠ NULL  
   do begin choose t in T such that   
      |{σ(X ∪ t.S)} ∩ Z| is    
     maximal; 
   X := X ∪ {t.S}; 
   Z := Z – t.σ(S);    

 end; 
Output: X;
Table 2: Generic Composition Table p
t1 = { S1, σ(S1) } t2 = { S2, σ(S2) } … tz = { Sz, σ(Sz) }  
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Theorem 4    Algorithm 3 is Har(max{|t.σ(S)|  
| t ∈ T})-approximate for n-CS. 

Proof of Theorem 4    By definition, emergent behav-
ior only occurs amongst compositions of size n or less.  
Additional emergence for compositions greater than size n 
is not possible.  All emergence for compositions of size n 
or smaller are stored in the table.  Combining elements of 
the table will produce compositions of size larger than n 
and therefore no additional emergent behavior could possi-
bly take place.  The table is an instance of MSC with σ(S) 
of each member of the table being an S in MSC.  Thus, the 
approximation ratio for Greedy on MSC applies exactly to 
Algorithm 3 on n-CS, and therefore Algorithm 3 is 
Har(max{|t.σ(S)| | t ∈ T})-approximate for n-CS. 
[End of Proof of Theorem 4] 

Note that 2-CS is the same as a variation of u-UCS, 
where u varies for every PS in an instance over the range 
[0, |O|] and so we have shown how to approximate such 
a variation. 

5 ON THE INAPPROXIMABILITY OF CS 

Proving the inapproximability of an NP-complete problem 
means proving a lower bound on how well the problem can 
be approximated.  We present here a conjecture that CS, as 
defined in (Petty, Weisel, and Mielke 2003) is inapproxi-
mable to a practical factor because the nature of emergence 
in the problem is unpredictable.  We remind the reader that 
the CS defined in (Petty, Weisel, and Mielke 2003) in-
cludes anti-emergence and makes no assumptions about 
the nature of emergence. 

Three methods of proving the inapproximability of an 
NP-complete problem U are (Hromkovic 2001): 
 

1. Reduce a known NP-hard decision problem to the 
approximation problem – the problem of finding a 
feasible solution within a fixed approximation ra-
tio r  – associated with U. 

2. Reduce a problem known to be inapproximable to 
U such that the reduction preserves the approxi-
mation ratio. 

3. Apply the PCP-(Probability Checkable Proofs) 
Theorem to show that some decision problem in 
NP is reducible to the approximation problem as-
sociated with U.  

 
We believe that CS is practically inapproximable because 
it seems that for an approximation algorithm to be useful 
on an instance of CS it must have prior knowledge of the 
nature of emergence in the instance (i.e. it must know the 
degree of emergence and anti-emergence for all the possi-
ble compositions in the problem).  Obtaining this prior 
knowledge induces too much cost in running the algorithm, 
forcing it into a higher complexity class than that of any 
polynomial-time complexity class.  We believe that there 
exists an NP-hard decision problem that is reducible to the 
approximation problem associated with CS, thus imple-
menting method 1 in showing CS is inapproximable.  Fur-
thermore, the result of that proof will reveal an impractical 
lower bound on any approximation ratio.  We leave the es-
tablishment of this belief to future work. 

6 CONCLUSION 

Even though many researchers have proposed constructions 
for composability, our research elucidates the inherent com-
putational complexity in all of the proposed constructions.  If 
our conjecture on inapproximability is correct, the inherent 
complexity of composability will prohibit the future realiza-
tion of systems of composability as typically envisioned.  It is 
necessary to understand from whence the complexity derives 
and how it can be constrained.  Our results provide a first step 
towards demonstrating a formal process for forcing CS into 
approximable variations.  This paper has shown two such 
variations: one in which components exhibit equal and uni-
form emergence (u-UCS) and the other in which only pair-
wise compositions exhibit emergence (2-CS).  These varia-
tions provide the first framework for a reduction of complex-
ity to which engineers of a sound and computationally practi-
cal system of composability would adhere. 

7 FUTURE WORK 

We envision two paths to take regarding future work on the 
complexity problem CS: 

 
1. Design, implement, and test heuristic algorithms 

for solving CS. 
2. Prove the conjecture of the inapproximability of 

CS. 
3. Design, implement, and test heuristic algorithms 

 for solving CS. 
4. Prove the conjecture of the inapproximability of 

CS. 
 

Taking path 1 would lead to extended methods for approxi-
mating CS.  However, designing good heuristic algorithms 
requires a robust testbed of CS instances, which does not yet 
exist.   Taking path 2 would lead to important theoretical re-
sults concerning the impossibility of composability as it is 
commonly envisioned.  Proving the conjecture would force 
composability experts to rethink CS and realize that without 
serious restrictions on the rules of component engineering, 
such as forcing a set of components to exhibit uniform 
emergence, composability is unachievable. 

 REFERENCES 

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and S. Clif-
ford. 2001. Introduction to Algorithms (2nd ed.). Mas-
sachusetts: MIT Press. 



Fox, Brogan, and Reynolds 
 

Dahmann, J. S., J. O. Calvin, and R. M. Weatherley. 1999. 

A reusable architecture for simulations. Communica-
tions of the ACM 42:79-84.  

Hromkovic, J. 2001. Algorithmics for Hard Problems:  In-
troduction to Combinatorial Optimization, Randomiza-
tion, Approximation, and Heuristics. Berlin: Springer. 

No author given. 2002. DMSO MSRR Homepage. [online] 
Available online via: <http://www.msrr. 
dmso. mil> [accessed July 12, 2004]. 

Page, E. H. and J. M. Opper. 1999. Observations on the com-
plexity of composable simulation. In Proceedings of the 
1999 Winter Simulation Conference, ed. P. A. Farring-
ton, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, 
553 – 560. New York: ACM Press. Pheonix, Arizona. 

Petty, M. D., E. W. Weisel, and R. R. Mielke. 2003. Compu-
tational complexity of selecting components for compo-
sition. Proceedings of the Fall 2003 Simulation Interop-
erability Workshop, Orlando FL, September 14-19. 

Slavík, P. 1996. A tight analysis of the greedy algorithm set 
cover. Proceedings of the Twenty-eighth Annual ACM 
Symposium on Theory of Computing, Philadelphia, PA. 

Wang, N., D. C. Schmidt, and C. O'Ryan. 2000. “An 
Overview of the CORBA Component Model.” Com-
ponent-Based Software Engineering, Addison-Wesley. 

AUTHOR BIOGRAPHIES 

MICHAEL ROY FOX is an Undergraduate Student at the 
Computer Science Department at the University of Vir-
ginia.  His research interests include composability, simu-
lation coercion, and multi-resolution modeling.  His email 
address is <mrf4u@cs.virginia.edu>.   

DAVID C. BROGAN earned his Ph.D. from Georgia 
Tech and is currently an Assistant Professor of Computer 
Science at the University of Virginia. For more than a dec-
ade he has studied simulation, control, and computer 
graphics for the purpose of creating immersive environ-
ments, training simulators, and engineering tools. His re-
search interests extend to artificial intelligence, optimiza-
tion, and physical simulation.  His email address is 
<dbrogan@cs.virginia.edu>. 

PAUL F. REYNOLDS, JR. is a Professor of Computer 
Science at the University of Virginia. He has conducted re-
search in Modeling and Simulation for over 25 years, and 
has published on a variety of M&S topics, including paral-
lel and distributed simulation, multi-resolution modeling 
and coercible simulations. He has advised industrial and 
government agencies on matters relating to modeling and 
simulation. He is a plank holder in the DoD High Level 
Architecture.  His email address is <reynolds@ 
cs.virginia.edu>. 
 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 429
	02: 430
	03: 431
	04: 432
	05: 433
	06: 434


