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ABSTRACT 

Existing research has defined a new type of simulation 
time called Approximate Time, where the simulation’s 
knowledge about the values that represent time is uncer-
tain.  The approach is based on temporal uncertainty and 
uses time intervals rather than precise time values to repre-
sent time.  Simulation language constructs are necessary to 
provide a convenient means of exploiting the temporal un-
certainty to simulation modelers.  To address this problem, 
a new time advance primitive for process-oriented simula-
tions was developed, termed the Interval Hold construct.  
Interval Hold is an extension of the well-known hold 
primitive used in conventional simulation languages.  This 
paper defines the interval time advance primitive and de-
scribes an algorithm for implementing it. 

1 INTRODUCTION 

The heart of every simulation is a time control program 
that advances simulation time and selects a subprogram to 
be executed (Kiviat 1969).  In the Next Event time advance 
method, the clock is advanced to the time at which the next 
event is due to occur.  Using this approach, each event is 
processed in a sequential manner.  In parallel and distrib-
uted simulation environments this can lead to problems.  If 
conservative execution is used, and the simulation has zero 
lookahead (which is often the case), a synchronization 
computation is required before each time advance to ensure 
no events arrive in an LP’s past. The synchronization over-
head and blocking imposed to ensure time stamp ordered 
event processing may prevent a simulation from achieving 
real-time performance in a distributed simulation environ-
ment.  Exploiting temporal uncertainty provides a means of 
addressing this problem.  

A natural, convenient means must be defined to spec-
ify uncertainty in simulation programs.  To address this 
problem a time advance mechanism for process-oriented 
simulations called Interval Hold is proposed.  Interval Hold 
uses Approximate Time clocks (Loper 2002) to increase 
the concurrency of event processing and improve the effi-

 

ciency of the synchronization mechanism.  The Interval 
Hold algorithm is important because it reduces the number 
of global synchronization computations required to caus-
ally order the events in a distributed simulation.   

This paper starts by giving an overview of process-
oriented simulation and Approximate Time.  Following 
that, the interval time advance primitive is defined and an 
algorithm for implementing the primitive is described.   

2 BACKGROUND 

2.1 Process-Oriented Simulation  

A process-oriented simulation is one of the three widely ac-
cepted modeling perspectives under which a simulation is 
developed (Lackner 1962, Kiviat 1967, Fishman 1973).  A 
process-oriented simulation uses an abstraction called a 
process to model a specific object in the simulation with a 
well-defined behavior.  A process is a time-ordered se-
quence of events, separated by passages of time, that define 
the life cycle of one entity as it moves through a system 
(Banks, Carson, and Nelson 1996; Law and Kelton 1991).   

Process-oriented simulations are typically imple-
mented on top of event-driven simulations, using the same 
event list and time advance mechanisms.  The lifetime of a 
simulation process can be viewed as a miniature event-
driven simulation in that it consists of a sequence of 
events; however, in process-oriented simulations, time only 
advances between these events.  Typically a process-
oriented simulation uses a “work” (CACI 1997), “wait” 
(CACI 1997), or “hold” (Meyer and Bagrodia 1999) primi-
tive to advance time between the events.  These primitives 
are essentially the same - they suspend a process from exe-
cuting by placing an event into the event list with an event 
time that indicates the future time at which execution of the 
process should resume.  When this event has the smallest 
time stamp in the event list, the simulation will advance its 
time and resume its execution.  

The remainder of this paper uses the primitive Hold(T) 
as a general time advance mechanism for process-oriented 
simulations.  The Hold primitive causes simulation time 
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for the process to advance by T time units.  The primitive 
is invoked to signify that the simulation object is busy per-
forming some activity for T units of time.  

2.2 Approximate Time 

Approximate Time is based on temporal uncertainty and 
uses time intervals rather than precise time values to repre-
sent time.  An interval is a closed bounded set of “real” 
numbers (Moore 1979) [ET, LT] = {t: ET ≤ t ≤ LT}, where 
ET denotes the earliest time (or E-time) in the interval and 
LT the latest time (or L-time).  An overview of Approxi-
mate Clocks, the mechanism for time stamping events and 
maintaining the simulation’s notion of approximate time 
and Approximate Time Causal (ATC) order, the temporal 
precedence order used in approximate time can be found in 
(Loper 2002, Fujimoto 1999). 

3 INTERVAL HOLD PRIMITIVE 

This section describes a new time advance primitive that 
provides a way for simulations to specify temporal uncer-
tainty in order to exploit the ATC ordering algorithm de-
scribed in (Loper 2002, Fujimoto 1999).  The approach is 
called Interval Hold (iHold).  It allows the simulation to 
specify an interval instead of a precise time stamp as the 
parameter for time advances.  The interval indicates the 
uncertainty in how far into the future the simulation wishes 
to advance.  The set of concurrent events that overlap the 
time advance interval can safely be delivered, thus increas-
ing the concurrency and improving performance of the 
synchronization algorithm. 

The Interval Hold primitive is an extension of the 
Hold primitive, but uses a time interval rather than precise 
timestamp for its time parameter.  The primitive is speci-
fied as iHold(ET, LT), where [ET, LT] indicates uncer-
tainty in how long the entity will be busy performing its 
activity.  The leading edge of the interval ET is the earliest 
time the LP should resume from the iHold, and the trailing 
edge LT is the latest time it should resume.  In other words, 
the simulation would like to advance at least ET time units 
but not more than LT.  The size of the interval is based on 
the specifics of the simulation; the larger the interval, the 
more uncertainty associated with the amount of time re-
quired to perform the activity.  There are two constraints 
on the time advance interval.  First, the leading edge of the 
interval ET must be less than or equal to the trailing edge 
LT, i.e. ET ≤ LT.  Second, the leading edge of the interval 
ET must be greater than or equal to the simulation’s cur-
rent time plus lookahead, if the process lookahead is not 
zero (the remainder of this paper assumes that the looka-
head is zero).  These constraints ensure that the simulation 
does not send or receive events in the past.  

There are two types of iHold that may be used in a 
simulation: 1) Hold for a certain amount of time or 2) Hold 
for a certain amount of time, unless something else hap-
pens.  These two approaches to iHold can be thought of as 
non-interruptible and interruptible, respectively.  In the 
non-interruptible iHold, the simulation will hold between 
ET and LT time units.  Any new messages received during 
the iHold will be delivered after the iHold completes.  The 
interruptible iHold will hold for the requested amount of 
time (i.e., [ET, LT]) unless a new message is received.  In 
this case, the iHold will be interrupted so that the message 
can be delivered.  

When iHold completes or is interrupted for event 
delivery, the simulation’s time is advanced.  This is 
known as the resume time.  The resume time indicates 
that no events will later be delivered to the process with a 
time stamp less than the time of the resume.  Once the 
process invokes iHold, it guarantees that it won’t generate 
a new event with a time stamp less than or equal to LT 
(or less than or equal to LT plus lookahead if the process 
lookahead is not zero) until it has received a resume time 
(this paper assumes that precise time clocks are used, 
meaning that both events and the resume time are 
assigned precise time values within the interval). 

There are many existing event delivery mechanisms 
that can be used for iHold, e.g. a specific call (Meyer and 
Bagrodia 1999) where the process asks to receive events or 
a call back (IEEE 2001) which notifies the process of 
awaiting events.   

3.1 Non-Interruptible iHold 

In the non-interruptible iHold, the process blocks for the 
requested amount of time (between [ET, LT]).  Any new 
events received by the process will be stored in a message 
buffer.  When the process resumes from the iHold, any 
events in the buffer will be delivered.  The process will ad-
vance its simulation time to a value T, where ET ≤ T ≤ LT.  
When the process receives a resume time, it guarantees that 
it won’t generate a new event with a time stamp less than 
the resume time (or less than the resume time plus looka-
head if the process lookahead is not zero).  

In the example below, the statement iHold(ET, LT, 
msg_type) is used to initiate an interval hold.  The 
msg_type parameter indicates the type of message for 
which iHold can be interrupted.  If the parameter is NULL, 
the iHold is non-interruptible; if the parameter is not 
NULL, then iHold can be interrupted for the type of mes-
sage specified in the parameter.  As described above, the 
receive statement is used for event delivery.   

 
/* non-interruptible iHold */ 
iHold (ET, LT, NULL) 
receive (gateInfo) 

 
In this example, the iHold primitive specified a NULL 

message parameter indicating that it could not be inter-
rupted.  Therefore, the process receives a resume time T, 
where ET ≤ T ≤ LT.  Upon the resume, the receive state-
ment is then used to receive a gateInfo message. 
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3.2 Interruptible iHold 

If the process is interruptible, an event with a timestamp less 
than or equal to LT is eligible for delivery during the iHold.  
The following events will be delivered to the process: 

 
• Any event with a time stamp less than ET will be 

delivered 
• If the event has a time stamp TS such that ET ≤ 

TS ≤ LT, this event may be delivered before 
simulation time is advanced, but it is not guaran-
teed to be delivered on this call to iHold 

• No event with TS > LT will be delivered. 
 
If a process receives an event before the iHold com-

pletes, the process will advance its simulation time to the 
time stamp of the delivered event.  When the process re-
ceives a resume time, it guarantees that it won’t generate a 
new event with a time stamp less than the resume time (or 
less than the resume time plus lookahead if the process 
lookahead is not zero).  

In the example below, the interruptible iHold is 
shown.  The iHold statement specifies a message type, in-
dicating that it should be interrupted if a departure-
Info message arrives.  The receive statement follows the 
iHold so the message can be received by the process. 

 
/* interruptible iHold */ 
iHold(ET, LT, departureInfo) 
receive (departureInfo) 

3.3 Example 

Consider an example to illustrate how Interval Hold works.  
The simulation is of air traffic arriving and departing at an 
airport, as described in (Fujimoto 2000).  The simulation 
models many planes; each one is a separate process.  Upon 
arrival, each aircraft must: (1) wait for the runway and 
land, (2) travel to the gate and unload and load new pas-
sengers, and (3) depart and travel to another airport.  In a 
precise world, the times required for (1), (2) and (3) would 
be fixed.  However, there could be uncertainty associated 
with each event.  For example, the time required to wait for 
the runway and land depends on such factors as weather 
and time of day.  Similarly, the time spent at the gate 
unloading and loading depends on factors such as the 
number of passengers and the duration of the flight.  These 
events will definitely happen, but there is uncertainty as to 
exactly when.  In the case where there is some minimum 
and maximum time associated with each event, but uncer-
tainty as to precise instant, iHold is a useful modeling ap-
proach.  The pseudo code for this simulation example is 
shown in Figure 1.  

The aircraft will first send a message to the controller 
requesting the runway.  The aircraft then waits to receive a 
Runway_Free message from the controller indicating it is 
 

Figure 1: Simulation Program for a Single Airport 
 

safe to land.  This type of hold is based only on message 
type; there is no time parameter.  In other words, the aircraft 
must continue to hold (however long it takes) until it re-
ceives approval to land.  This type of hold is accomplished 
by invoking iHold(0, 0, Runway_Free).  By setting the 
iHold time parameter [ET, LT] to zero, the iHold will be 
based on message type only.  The receive message is then 
used to deliver the Runway_Free message to the process.   

Once the aircraft has approval to land, it will invoke 
iHold (ETR, LTR, NULL) to indicate it is busy landing.  In 
other words, the plane will use the runway for at least ETR 
and not more than LTR time units.  This is a non-
interruptible iHold.  When the iHold resumes, the process 
advances its simulation time and invokes a receive primi-
tive to deliver any Gate_Info messages that arrived 
while it was landing.  The aircraft completes the landing 
process by sending the controller a Runway_Free mes-
sage indicating it has cleared the runway.   

The next step is to simulate the aircraft on the ground.  
This is accomplished with an interruptible iHold, by invok-
ing iHold (ETG, LTG, Depart_Info).  The time speci-
fied (ETG, LTG) indicates the time required at the gate to 
unload and load passengers.  The Depart_Info message 
contains any last minute information for the aircraft before 
it departs the airport.  If a Depart_Info message arrives 
while the aircraft is at the gate, then the message will be 
delivered to the aircraft.  If no Depart_Info message is 

/* Message Types */ 
message Request_Runway { int id; }  
message Runway_Free { int id; }  
message Gate_Info { int number; } 
message Depart_Info { real delay; }  
message Departure { int id; } 
 
/* Process Aircraft */ 
entity Aircraft ()  
{ 

/* aircraft arrival, circling, and landing */ 
id = my_plane_id; 
send Request_Runway{id} to controller /*arrival*/
 
iHold (0, 0, Runway_Free)       /* circle */ 
receive (Runway_Free runwayfree) 
iHold(ETR, LTR, NULL);         /* land */ 
receive(Gate_Info gatenumber); 
send runwayfree to controller; 
 
/* simulate aircraft on the ground */ 
iHold (ETG, LTG, Depart_Info) 
receive (Depart_Info delaytime)  
send Departure {id} to controller;  /* departure */ 

}
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received, the iHold will complete, and the plane sends a 
Departure message to the controller indicating it is depart-
ing the airport.  

4 THE INTERVAL HOLD ALGORITHM 

In the previous section the iHold primitive was described 
and the issues associated with using an interval as the 
time parameter discussed.  In this section an algorithm for 
implementing iHold and selecting the resume time will be 
presented. 

4.1 Sequential iHold 

The iHold primitive is implemented using a local event a 
simulation schedules for itself containing an interval time 
stamp.  This event is placed in the simulations local event 
list and ordered according to the LT of the events.  When 
the simulation starts its main loop, it must find the smallest 
time stamped event among those scheduled in its local 
event list.  An algorithm for implementing Interval Hold is 
shown in Figure 2.  

 

Figure 2: Interval Hold Algorithm 
 
There are two possible combinations of scheduled 

events: events with interval time stamps and events with 
both precise and interval time stamps.  When only events 
with interval time stamps are scheduled, the minimum time 
interval among the scheduled events must be computed 
which determines the time to advance the logical clock.  
The other possibility is that there is a mixture of precise 
and interval time stamps in the local events list.  In this 
case, the precise timestamps are converted to intervals 
(Kaufmann and Gupta 1991) and the minimum time inter-
val is computed among the scheduled events.   

By successively comparing the event intervals, the ear-
liest ET (EET) and earliest LT (ELT) can be computed as 
the minimum time interval, as shown in Figure 3.  The 
ELT value defines the latest time to which the simulation 
can advance its logical clock.  If the simulation sets its 
clock to a value greater than ELT, it may violate ordering 
constraints.  The EET value defines the earliest time the 
simulation should set its local clock.  If the simulation sets 

Pi = set of scheduled events in Process i 
 
for (each X ∈ Pi with a precise timestamp) 
   E(X) = T(X) 
   L(X) = T(X) 
ELT = min (L(X)) for all X ∈ Pi 
Si = {all events Y: E(Y) ≤ ELT ≤ L(Y)} 
EET = min (E(X)) for all X ∈ Si 
LET = max (E(X)) for all X ∈ Si 
resume time = T, where EET ≤ T ≤ ELT 
its clock to a time less than EET, no progress can be made 
since there are no events to process.   

 

Simulation TimeELT

(1)

(2)

(3)

(4)

LETEET

(5)

Simulation TimeELT
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(3)

(4)

LETEET
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Figure 3: Computing the Minimum Time Interval 
 
It is important to note that if more than one event is 

processed concurrently, they must both receive the same 
time stamp.  Otherwise the earliest event processed could 
generate a new event with a timestamp less than the later 
event.  This would clearly violate the ordering constraint.  
Also, the precise time stamp assigned to the event when it 
is processed can be any value greater than the leading edge 
of the event.  For example, the value LET could be as-
signed to events (1), (3) and (4) or a value > LET.  The im-
portant thing is that all the events processed receive the 
same time stamp. 

4.2 Distributed iHold 

Synchronization assures the temporal ordering of events.  
In a parallel or distributed simulation, the key to synchro-
nization is a quantity called the lower bound on time stamp 
(LBTS) for each process.  LBTS is the smallest timestamp 
of any event a process will receive in the future; if simula-
tions have zero lookahead, it is equivalent to the minimum 
time stamp of any unprocessed or partially processed event 
in the system.  The time stamp of any unprocessed event is 
a lower bound on future events that may be produced after 
processing that event.  In other words, the event with the 
smallest time stamp (T = TS) could affect every simulation 
at time T.  To compute LBTS, a snapshot of the computa-
tion (including messages in transit) is required so that the 
global minimum time can be computed.  Once LBTS has 
been computed, all TSO messages containing a time stamp 
less than LBTS can be delivered.  

If simulations in a distributed computation use the 
iHold primitive to advance time, their contribution to the 
LBTS computation will be a minimum time interval [EET-
local, ELTlocal].  Therefore, the key to using iHold in a dis-
tributed simulation is the ability to compute an interval 
LBTS value.  Interval LBTS is the minimum time interval 
[LETglobal, ELTglobal] from the set of pending local mini-
mum time values computed by each simulation.  The 
LBTS interval identifies the set of processes that are safe to 
advance their clocks concurrently, and the range of time 
values those processes can be granted to without causing 
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messages to be delivered in the past.  The interval LBTS 
algorithm is described in (Loper 2002 and Fujimoto 1999). 

There are several existing delivery mechanisms that 
can be used with the iHold algorithm.  To illustrate how 
events could be delivered in a simulation using distributed 
iHold, consider the algorithm shown in Figure 4. 

 

Figure 4: Delivering Events and Resume Times 
 
There are three evaluations that take place in this algo-

rithm.  First, in order to release a message to the process, 
the time stamp of the message (Tmsg) must be safe to exe-
cute and the process must be ready to receive messages for 
this time.  This means that Tmsg must be less than the LBTS 
value and less than the minimum time interval [EETlocal, 
ELTlocal] provided by the simulation.  From the definition 
of the LBTS interval [LETglobal, ELTglobal], LETglobal is the 
minimum LBTS time value.  And according to the iHold 
definition, a message with a timestamp less than the speci-
fied ET is guaranteed delivery.  Therefore, since LETglobal 
is the largest of all ET values, a message with a timestamp 
less than or equal to LETglobal will be delivered to a simula-

Tmsg = event in the simulations TSO queue with the mini-
mum time stamp 
 
if ((Tmsg = LETglobal) && (Tmsg ≤ ELTlocal)) 

deliver message 
resume time = Tmsg 

else if ((EETlocal ≤ ELTglobal) && (ELTlocal ≥ ELTglobal))  
resume time = T, where LETglobal ≤ T ≤ ELTlocal 

else 
EETlocal= min ET in local event list 
ELTlocal= min LT in local event list 
Start iLBTS with minimum time =(EETlocal, ELTlocal) 
tion.  The simulation will then advance its time to the time 
stamp of the message delivered.  

If there are no messages in the process’s queue that are 
safe to execute, the second evaluation determines if a proc-
ess’s simulation time can be advanced to a time specified 
in the iHold interval.  In order to advance the simulation’s 
logical clock, the minimum time interval provided by the 
simulation must be less than LBTS.  To make this evalua-
tion, we compare two intervals: iHold and LBTS.  Accord-
ing to (Allen 1983) there are seven possible relationships 
between two intervals, thirteen counting the inverses of the 
relations, as shown in Figure 5.  

Of the thirteen possible relations, the cases where [EET-
local, ELTlocal] ≤ LBTS must be identifed.  If EETlocal > ELT-
global then there is no part of [EETlocal, ELTlocal] that precedes 
the LBTS interval.  Therefore, these cases can be eliminated.  
This includes relation 2 from Figure 5.  Also the ELTlocal 
cannot be less than ELTglobal as proven in (Loper 2002).  
This includes cases 1, 4, 6, 8 and 11.  Further 7, the EETlocal 
cannot be greater than LETglobal, which includes cases 7 and 
13.  The remaining five relations for [EETlocal, ELTlocal] and 
[LETglobal, ELTglobal] are shown in Figure 6.  
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Figure 6: Interval Relationship Where ET Precedes ELT 
 

Simulation TimeLBTS (LET, E LT)

(1) iHold “Before” LBTS

(4) iHold “Meets” LBTS

(12) LBTS “Finishes” iHold

(8) iHold “During” LBTS

(10) LBTS “Starts” iHold

(3) iHold “Equals” LBTS

(6) iHold “Overlaps” LBTS

Possible iHold
Intervals

(2) iHold “After” LBTS

(5) LBTS “Meets” iHold

(7) LBTS “Overlaps” iHold

(9) LBTS “During” iHold

(11) iHold “Starts” LBTS

(13) iHold “Finishes” LBTS

Simulation TimeLBTS (LET, E LT)

(1) iHold “Before” LBTS

(4) iHold “Meets” LBTS

(12) LBTS “Finishes” iHold

(8) iHold “During” LBTS

(10) LBTS “Starts” iHold

(3) iHold “Equals” LBTS

(6) iHold “Overlaps” LBTS

Possible iHold
Intervals

(2) iHold “After” LBTS

(5) LBTS “Meets” iHold

(7) LBTS “Overlaps” iHold

(9) LBTS “During” iHold

(11) iHold “Starts” LBTS

(13) iHold “Finishes” LBTS

 
Figure 5: Relationship of LBTS Interval and iHold Interval 
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As proven in (Loper 2002), a simulation that has an in-
terval [EETlocal, ELTlocal] that intersects ELTlocal is consid-
ered a concurrent simulation and can be returned a resume 
time in the LBTS interval, i.e. LETglobal ≤ T ≤ ELTglobal.  

Finally, if no messages can be delivered and the proc-
ess’s simulation time cannot be advanced a new LBTS 
computation must be started.  In order to start or respond to 
an LBTS computation, each process must compute its local 
minimum time interval [EETlocal, ELTlocal].   

5 CONCLUSIONS 

The heart of every simulation is a time control program 
(Kiviat 1969).  In this paper, a new time advance primitive 
for process-oriented simulations was developed, termed the 
Interval Hold construct.  Interval Hold uses Approximate 
Time clocks to increase the concurrency of event process-
ing.  In (Nance 1971) a continuum of algorithms for repre-
senting the passage of time was presented.  It proposed that 
fixed time increment defines one end of a continuum and 
next event increment the other.  Between the two extremes 
are algorithms that possess characteristics of both which 
may be better suited for specific discrete system simula-
tions.  Nance went on to say that, in many cases, the effi-
ciency of a simulation program’s execution rests primarily 
with the procedure for incrementing time.  By varying the 
size of the iHold interval, the interval time advance be-
comes a mechanism that spans the continuum of time ad-
vance algorithms discussed in (Nance 1971).   
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