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ABSTRACT 

Distributed simulation cloning technology is designed to 
analyze alternative scenarios of a distributed simulation con-
currently within the same execution session. The goal is to 
optimize the execution time for evaluating different scenar-
ios by avoiding repeated computation. In terms of High 
Level Architecture (HLA) based simulations, a federate may 
make clones to explore different scenarios at decision points. 
It is desirable to use an incremental cloning mechanism to 
replicate only those federates whose states will be affected. 
This paper discusses the theory and issues involved in in-
cremental distributed simulation cloning, which employs an 
event checking algorithm to ensure accurate sharing and ini-
tiates cloning only when absolutely necessary. Experiments 
have been performed to compare the performance of entire 
cloning and incremental cloning mechanisms. The experi-
mental results indicate that cloning technologies can effec-
tively reduce the time of executing multiple scenarios, and 
the incremental cloning mechanism significantly surpasses 
entire cloning in execution efficiency.  

1 INTRODUCTION  

Distributed simulation technology facilitates the construc-
tion of a large-scale simulation with simulation models 
(federates) distributed geographically. The High Level Ar-
chitecture (HLA) defines the rules and interface specifica-
tion to support reusability and interoperability amongst the 
simulation federates. The Runtime Infrastructure (RTI) 
software supports and synchronizes the interactions 
amongst different federates conforming to the standard 
HLA specification (Dahmann, Kuhl, and Weatherly 1998).  

Using traditional simulation technology, in order to 
examine alternative decision policies, an analyst has to re-
peat executing a simulation to collect multiple sets of re-
sults for analysis. Basically this task is time-consuming 
and onerous in which a lot of computation is repeated un-
necessarily. Especially for a large-scale distributed simula-

  

tion, it can be costly to reconfigure and execute the overall 
simulation again and again due to the complexity and dis-
tribution of the individual simulation federates. 

When reaching a decision point, a federate has differ-
ent choices to examine. Instead of simulating each choice 
from the start in a conventional manner, distributed simula-
tion cloning technology can be used to replicate the feder-
ate and allow the replicas to examine these choices concur-
rently from the decision point onwards. Thus the execution 
time can be reduced and the analyst may quickly obtain 
multiple sets of results that represent the impacts of alter-
native decisions. One important goal of cloning technology 
is to optimize execution by avoiding repeated computation 
amongst independent scenarios.   

In this project, we have enabled cloning of HLA-based 
distributed simulations using a decoupled federate architec-
ture (Chen et al. 2003a, 2004). When a federate makes 
clones on its own initiative and creates new scenarios, 
other federates in the original scenario have to interact with 
each of these clones properly in the new scenarios. One di-
rect solution is to clone all other federates immediately, 
thus each independent set of clones form a new standalone 
scenario. Therefore a full set of independent federates are 
exploited to examine each scenario after cloning. However, 
when performing distributed simulation cloning, it is desir-
able to replicate only those federates whose states will alter 
at a decision point. The remaining federates may keep in-
tact and become shared between the original scenario and 
the new ones; only when absolutely necessary will those 
shared federates be cloned. Hence such an incremental 
simulation cloning mechanism is expected to further share 
computation amongst scenarios (Chen et al. 2003b). 

Sharing federates in different scenarios needs accurate 
control to achieve correctness and efficiency. Clones de-
veloped from the same federate (sibling clones) may have 
different impacts on those shared federates. An event 
checking algorithm is designed for shared federates to deal 
with events from multiple scenarios, which checks whether 
the events from sibling clones are identical or not. The 
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checking determines whether a shared clone remains 
shared or requires cloning. It guarantees the simulation re-
sults of alternative scenarios obtained using distributed 
simulation cloning technology are the same as those ob-
tained by repeating simulation executions.  

The rest of this paper is organized as follows: Section 
2 addresses related work and introduces some basic con-
cepts as well as the theory and issues involved in incre-
mental cloning. Section 3 gives an overview of the pro-
posed cloning technology. Section 4 details the algorithms 
for managing shared clones. A distributed simulation ex-
ample is presented in section 5, which compares the per-
formance of using entire cloning technology with incre-
mental cloning technology. In section 6, we conclude with 
a summary and proposals on future work. 

2 DISTRIBUTED SIMULATION CLONING 

Hybinette and Fujimoto (2001) proposed using simulation 
cloning technology as a concurrent evaluation mechanism in 
the parallel simulation domain. This technique aimed to de-
velop a parallel model that supports an efficient, simple, and 
effective way to evaluate and compare alternative scenarios. 
The method was targeted for parallel discrete event simula-
tors that provide the simulation application developer with a 
logical process (LP) execution model. In Hybinette and Fu-
jimoto (2004), they suggested a just-in-time cloning mecha-
nism to avoid unnecessary cloning of a LP as long as it keeps 
receiving identical messages from other replicated LPs. 

Schulze, Straßburger, and Klein (2000) introduced a 
cloning approach to extend the flexibility of system com-
position to run-time. Their approach included the parallel 
management of different time axes in order to provide 
forecast functionality. Internal cloning and external cloning 
techniques were suggested to clone federates at run-time. 

Our design targets users who may have their own ex-
isting complex simulation models; thereby we have the ad-
ditional aim to provide reusability and transparency while 
enabling simulation cloning. Our research and discussion 
are based on HLA-compliant distributed simulations. We 
also need to support easy utilization and deployment. Our 
approach focuses on optimizing and controlling a large-
scale distributed simulation using the cloning technology. 

2.1 Concepts and Definition 

A federate may make clones on its own initiative to ex-
plore different scenarios when it reaches a decision point, 
and such a federate is said to perform active cloning. An 
active cloning results in the creation of new scenarios. 
Other federates who interact with this federate may have to 
spawn clones to perform proper interaction with each of 
the replicas, and those federates are said to perform pas-
sive cloning.  
We can perform passive cloning on all other federates 
immediately in the scenario created as a result of active 
cloning, this approach is known as entire cloning. Alterna-
tively incremental cloning only requires cloning those 
federates whose states will alter at this decision point. As 
for those federates whose states are not affected, the in-
cremental cloning mechanism allows them to operate in the 
new scenarios in addition to the original one as shared 
federates (clones).  

The clones created from the same root federate are re-
ferred to as sibling clones. Those federates that interact 
within the same scenario are known as partner federates.  
Figure 1 illustrates the different effects of an active cloning 
using entire cloning versus incremental cloning.  
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Figure 1: Entire Cloning vs. Incremental Cloning 
 
In order to manage concurrent scenarios within a sin-

gle federation, we use Data Distribution Management 
(DDM) to partition scenarios (Chen et al. 2003b). Each 
scenario is specified with an exclusive characteristic 
point region which is associated to the clones that operate 
in the respective scenario. To provide reusability to exist-
ing simulation federates, a middleware approach is 
adopted to hide the implementation of any cloning related 
modules. To tackle the problems involved in replicating 
running federates, a decoupled federate architecture is 
used to separate the simulation model from the local RTI 
component (Chen et al. 2003a). A virtual federate is built 
up with the same code as the original federate, while a 
physical federate associates itself with a real local RTI 
component serving the virtual federate with RTI services. 

A clone needs to inherit identical states from the origi-
nal federate, including the RTI entities known to the simu-
lation model, for example the registered object instances 
(Kuhl, Weatherly, and Dahmann 1999). We name the ob-
ject instances registered by the original federate prior to 
cloning as Original Object Instances whereas we use Im-
age Object Instances to denote those object instances re-
registered (representing the original ones) by the clones of 
this federate in the state replicating procedure.  
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2.2 Theory and Issues in Incremental Cloning 

The incremental cloning mechanism enables a shared clone 
to execute in multiple scenarios as long as it keeps receiv-
ing identical events from corresponding federates in all 
scenarios in which it participates. This design aims to 
avoid repeating identical computation amongst scenarios as 
much as possible. The shared clone persists in this mode 
until the condition for triggering passive cloning is met.  

A typical shared clone is shown in Figure 2. The 
shared clone (SC) executes in n concurrent scenarios, and 
those scenarios are said to be SC’s related scenarios (writ-
ten as  RELASCEN = {relaScen[i]| i = 1,2, …, n}). Let X = 
{x[i]| i = 1,2, …, n} denote the set of sibling clones that are 
created from the same simulation federate x , with x[i] op-
erating in relaScen[i]. SC may receive events from x[i] and 
generate events for each related scenario.  It is unnecessary 
to perform extra processing on the events generated by SC, 
as those events must be identical in any scenario. However, 
the events received by SC have to be checked. 
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Figure 2: A Typical Shared Clone 

 
Definition 1 (Sensitive Update)    If an object instance 

ObjX registered by federate x has been discovered by SC, 
then SC treats ObjX and its image objects (see section 3.2) 
as a set of sensitive object instances. Obviously, the object 
class to which ObjX belongs must be published by x and 
subscribed by SC. Let inEv[i] represent an update of ObjX 
(or its image objects) issued by any x[i]∈X, then inEv[i] is 
defined as a sensitive update for the shared clone SC. 

Definition 2 (Sensitive Interaction)    Any interaction 
class published by x and subscribed by the shared clone SC 
is regarded as a sensitive interaction class. Let inEv[i] 
represent an interaction of any sensitive interaction class 
sent by any x[i]∈X, then inEv[i] is defined as a sensitive 
interaction for the shared clone SC. 

A sensitive event is defined as a sensitive update or 
interaction. A shared clone may present non-sensitive 
events straightforwardly to its simulation model without 
extra checking, whereas it has to check each sensitive 
event before conveying it to the simulation model. A non-
sensitive event can be an event sent by another shared 
clone executing in all related scenarios of the receiver. A 
sensitive event needs to be compared with corresponding 
counterpart events. In each round of event comparison, the 
first received sensitive event is referred to as the target 
event by subsequent counterpart events.  

Definition 3 (Comparable Updates)    Any two sensi-
tive updates for a shared clone are comparable to each 
other only when following conditions are satisfied: 

 
• They carry equivalent timestamps. 
• They are updates of two individual image objects 

(or an original object and one of its image ob-
jects) representing the same original object. 

 
Definition 4 (Comparable Interactions)    Any two 

sensitive interactions are comparable only when following 
conditions are satisfied: 

 
• They carry equivalent timestamps.  
• They belong to the same sensitive interaction class. 
• They originate from two individual sibling clones.  
 
A shared clone should not compare received interactions 

that are not sent by sibling clones even if they belong to the 
same interaction class. According to definition 3 and the 
definition of original and image object instance, it is obvious 
that comparable events must originate from sibling clones.  

Definition 5 (Identical Events)    Comparable events 
are called identical if they have the same associated at-
tributes/parameters and the values of all attrib-
utes/parameters are identical. 

Comparable events need to be checked to verify 
whether they are identical. If a shared clone detects any 
two comparable events are not identical, the shared clone 
has to perform passive cloning to handle this situation. On 
the other hand, the shared clone may remain intact if: 

 
• All received comparable events are identical.  
• The shared clone receives comparable events 

from all the sibling clones in the related scenarios 
before it is granted a simulation time greater than 
(or equal to) the target event’s timestamp. 

 
If the second condition is not met, it means that the 

shared clone has obtained different behaviors from related 
scenarios and requires passive cloning. As a consequence, 
the federate previously shared and each of its clones cre-
ated in this passive cloning, operate as a normal clone in 
only one individual scenario (at least until the next deci-
sion point). Normal clones are those clones that operate in 
a single scenario (e.g. x[i] in Figure 2); this term is used in 
this paper to distinguish them from shared clones.  
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2.3 Example of Incremental Cloning 

Figure 3 illustrates a simple supply chain simulation com-
prising three federates, namely simAgent (SA), simFac-
tory(SF) and simTransportation(ST). Two object classes 
“Order”, “Products” and one interaction class “deliveryRe-
port” are defined to represent the types of events exchanged 
amongst the federates. A cloning trigger is predefined for 
federate simFactory, which contains a cloning condition 
“ ?MAXOrderSize> ” and several candidate policies. The 
simulation emulates the supply chain operation of one-year 
duration. The simFactory reports the cost incurred in each 
order and in the whole year at the end of simulation.  

 
Figure 3: A Distributed Simulation Example  

 
Figure 4 depicts the simulation execution using incre-

mental simulation cloning to examine three candidate poli-
cies. Each scenario is marked as Scen[i] (i = 0, 1, 2), in 
which Scen[0] denotes the initial scenario. The incremental 
simulation cloning occurs along the time axis as follows: 

At time 0, the simulation initializes with a single sce-
nario Scen[0]. When simulation progresses to time T1, 
SF[0] performs active cloning due to an order with extra 
large volume, which results in the creation of clones SF[1] 
& SF[2], and new scenarios Scen[1] & Scen[2]. The re-
maining federates do not need to be cloned immediately, 
and they only need to expand their associated region to en-
able them to continue interacting with SF[1] & SF[2]. 
Thus SA[0] and ST[0] become shared clones in both sce-
narios. The event flow from SF[i] (i = 0,1,2) to C[0] is 
named as ev_F[i] (i = 0,1,2). ST[0] keeps intact as long as 
ev_F[i]( i = 0,1,2) remain identical.  

At simulation time T2, ev_F[0] deviates from ev_F[1] 
and ev_F[2], this triggers a passive cloning of ST[0] and 
results in the creation of clones ST[1] & ST[2]. This pas-
sive cloning does not trigger any change of existing scenar-
ios. SA[0] persists as a shared clone after that.  

Clones are created incrementally according to the 
changing external conditions. We always have: Total no. of 
federates ≤∑No. of federates executing in each scenario. 
For example, from simulation time T0 to T1 there exists 
only 5 federates simulating 3 scenarios whereas there has 
to be 9 federates examining the same scenarios in the con-
text of traditional distributed simulations or using the entire 
cloning approach. Both cloning approaches avoid repeating 
the computation of the original scenario before cloning in 
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the new scenarios. Moreover, the incremental cloning ap-
proach enables sharing computation amongst independent 
co-existing scenarios after cloning. 
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Figure 4: Execution with Incremental Cloning 

3 OVERVIEW OF THE DISTRIBUTED 
SIMULATION CLONING ARCHITECTURE  

Cloning of HLA-based distributed simulations has been 
enabled using a decoupled federate architecture. This sec-
tion gives an overview of the design of the modules sup-
porting cloning and introduces the cloning algorithm in-
cluding the entity mapping approach. 

3.1 Modules  

A RTI++ library to enable simulation cloning is built as the 
middleware between the simulation model and the real 
RTI, and performs the necessary functionalities related to 
simulation cloning. The user can specify the conditions ac-
cording to which the cloning should be triggered and the 
different actions to be taken. Figure 5 gives an overview of 
the RTI++’s structure and internal modules. The Control 
Module monitors the states in which the user is interested 
and evaluates the conditions for cloning the federate at a 
decision point. The Cloning Manager module (CMM) 
creates new clones for the request issued by the Control 
Module, and it initiates the creation and update of the sce-
narios (Chen et al. 2004). The Scenario Manager module 
creates and stores the scenario tree. The Region Manager 
module creates DDM regions and manages the regions. 
The RTI++ services invoked by a federate are eventually 
executed by the physical federate that calls the real RTI 
services and conveys callbacks to the RTI++ middleware. 
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Figure 5: RTI++ and Internal Modules 

 
The internal components inside the CMM are high-

lighted in Figure 6. The Cloning Executor answers the 
cloning request issued by the Control Module, and makes 
replicas of the simulation model and initiates new physical 
federate instances. The RTI States Manipulator saves 
RTI states and replicates them on simulation cloning. The 
Cloning Executor directly replicates static states for new 
clones, while the Buffer Manager takes charge in copying 
dynamic states such as managing the replicated RTI enti-
ties. During cloning of a federate, the Federation Coordi-
nator should synchronize other federates within the whole 
simulation run including the sibling clones.  
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Figure 6: Cloning Manager Module 

3.2 Mapping Entities 

A federate simulation model obtains the information in the 
HLA object model via RTI services using handles assigned 
by the RTI. For example, when an object instance is regis-
tered, a federation unique handle is returned to identify that 
object instance. This handle is used to represent an entity 
known to the model as well as other federates who have 
discovered this object instance. 

A clone inherits identical states from the original fed-
erate, including the RTI entities known to the simulation 
model. In order to keep the state consistent and federate 
code transparent, our cloning approach needs to ensure that 
the clones of a federate use the same reference to the origi-
nal entities at the RTI level as before cloning. The ap-
proach should correctly manage the interactions related to 
these entities within the overall federation, for example a 
shared clone may receive updates of different object in-
stances even though they refer to the same object in the 
simulation model.  

The consistency can be achieved using a mapping ap-
proach in the middleware. The middleware maps the origi-
nal handles with the image object handles to ensure user 
transparency and consistency. For one original object in-
stance referred to by the simulation models of all clones, 
there can be different image object instances accessed by 
the physical federates. The middleware keeps transparency 
of image objects in the simulation model. The same princi-
ple is applied in processing other entities at the RTI level.   

4 MANAGING SHARED CLONES 

A shared clone is capable of operating in multiple scenar-
ios as long as it keeps receiving identical events from all 
scenarios in which it participates. The shared clone persists 
in this mode until the condition of triggering passive clon-
ing is met. Thus during this time, the computation of this 
clone can be shared by different scenarios. The incremental 
cloning mechanism aims to make full use of the interde-
pendencies amongst related scenarios, which is supported 
by a sensitive event checking algorithm. 

Sensitive events are checked by the Callback Proces-
sor which is one part of the RTI++ middleware built upon 
the decoupled federate architecture (Chen et al. 2003a). 
Figure 7 illustrates the primary elements inside the Call-
back Processor designed for checking events. The Sensi-
tive Event Checker checks events and invokes the external 
control module to trigger passive cloning when necessary. 
Mapping Tables maintain the relationships amongst sce-
narios and federates and object instances (original/image) 
registered by related sibling clones. These tables are estab-
lished and updated during the state replicating procedure 
on cloning. The checker can identify the source clone and 
scenario of each event via the tables, thus it can verify 
which events are comparable.  

A queue Pending_Sensitive_Events_Queue (PSEQ) 
stores the target sensitive events with which other incom-
ing sensitive events must be compared. The queue can be 
either empty or contain events with the same timestamp at 
any point in the simulation, this timestamp is referred to as 
the characteristic timestamp of PSEQ. A set of TSO event 
queues, TSO_Queue_Scen[i] or TQS[i] (i = 1, 2, …, n), are 
established to buffer the events from each scenario in the 
corresponding queue. Events in those queues can be pre-
sented to the simulation model if and when necessary. 

The event checking algorithm determines which 
events and how these events should be conveyed to the 
simulation model. The event checking decides whether or 
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not a passive cloning is required and at which point the 
cloning should be triggered. A shared clone is said in to be 
in pending-passive-cloning mode during the interval from 
deciding that a passive cloning is required to carrying out 
the cloning. Event checking is performed when control of a 
federate process is still with the RTI. Thus cloning will 
only be carried out when the RTI returns control to avoid 
potential problems incurred by replicating a federate while 
the RTI invokes callbacks.  
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Figure 7: Internal Design of the Callback Processor 
 
Figure 8 illustrates the algorithm of checking sensitive 

events by the Callback Processor which are as follows: 
 
• Testing sensitive event. A received up-

date/interaction is tested according to definition 1 
and 2. In case the event is a sensitive one, the 
checking continues. The processing of non-
sensitive events will be covered later. 

• Identifying event source. Mapping Tables are 
referenced to locate the source of this event. 
Hence the event checker can enqueue this event 
into the corresponding TQS queue. 

• Checking pending sensitive event queue. If 
PSEQ is empty, the event checker pushes this 
event into PSEQ and sets its timestamp equal to 
the event’s, after which current processing ends. 
When PSEQ is not empty, the event checker 
compares its characteristic timestamp with the 
event’s. In case they are not equal (event’s > 
PSEQ’s), the shared clone will enter pending-
passive-cloning mode, otherwise the processing 
continues. 

• Locating target comparable event. The event 
processor searches PSEQ to locate the comparable 
event to the event in processing. If PSEQ does not 
contain any comparable event, the event will be 
pushed into PSEQ and the processing ends. Oth-
erwise, the event processor checks if the received 
event and the target event in PSEQ are identical. 
If they are not identical, the shared clone will also 
enter pending-passive-cloning mode, otherwise 
the processing continues. 

• Checking the progress status of processing. The 
event checker examines whether the shared clone 
has received identical comparable events from all 
other scenarios. If so, the event processor removes 
the targets event from PSEQ and flushes the com-
parable events inside the TQS queue set. If not, 
then the event checker waits for the next event. 
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Figure 8: Processing Sensitive Events 

 
The last step ensures the Federate Ambassador reflects 

only one single event for one full set of identical events ob-
tained from all related scenarios. This design hides the com-
plexity of checking events from multiple scenarios. As a re-
sult, shared clones operate in multiple scenarios as if they 
only interact with one single scenario independently.  

In case a non-sensitive event is received, the PSEQ’s 
characteristic timestamp also needs to be compared when 
PSEQ is not empty. If the event’s timestamp is greater than 
the characteristic timestamp, the shared clone requires pas-
sive cloning. This is because the shared clone will no longer 
receive identical events from any of the related scenarios to 
the target events in PSEQ. In the case that their timestamps 
are identical or PSEQ is empty, the event processor delivers 
this event to the Federate Ambassador directly. 

If PSEQ contains target sensitive events, the decision 
of triggering a passive cloning depends on both the incom-
ing events and the next granted time. Once the Callback 
Processor gets a granted time greater than PSEQ’s time-
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stamp, the shared clone enters pending-passive-cloning 
mode. If the granted time is equal to PSEQ’s timestamp, 
setting pending-passive-cloning or not depends on whether 
the shared clone requests the last time advance by calling 
timeAdvanceRequest (TAR) / nextEventRequest (NER) or 
timeAdvanceRequestAvailable (TARA) / nextEventRe-
questAvailable (NERA). 

When a shared clone is in pending-passive-cloning 
mode, the Callback Processor buffers the incoming events 
as illustrated in Figure 9. Sensitive events should be en-
queued to the corresponding TQS queue, whereas non-
sensitive events should be inserted into all TQS queues 
unselectively. The Callback Processor logs the timeAd-
vanceGranted callback and the granted time. Preparations 
for the coming passive cloning are made in this procedure; 
for example, the received events are sorted according to 
their source scenarios. All callbacks are retained and not 
delivered to the simulation model until the pending cloning 
has been completed. Such a design aims to keep the se-
mantics of the HLA specification and minimize the com-
plexity of dealing with potential callbacks during pending-
passive-cloning. 
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Figure 9: Processing Events in Pending-Passive-
Cloning 

5 EXPERIMENTS AND RESULTS 

In order to investigate the performance of the proposed in-
cremental cloning mechanism, a series of experiments have 
been carried out to compare the execution time of running 
different scenarios of a simple distributed simulation example 
using conventional federates and cloning-enabled federates.    

The experiments adopt the simulation example shown 
in Figure 3, which starts at simulation time 0 and ends at 
361 with one time unit representing one real day. The ex-
periments use four computers in total (three workstations 
and one server), which are interlinked via a 100Mbps-
based backbone. Each federate (together with its clones if 
any) occupies one individual computer, with the RTIEXEC 
and FEDEX processes running on another computer. We 
have adopted DMSO RTI NG 1.3 V6 in building the feder-
ates and executing experiments. 

The experiment architecture and platform specification 
are listed in Table 1. Using the same codes, the federates 
are built into three different versions by linking to: (1) the 
DMSO RTI library directly (Traditional), (2) an RTI++ 
middleware library supporting entire cloning (Clon-
ing_Entire) and (3) an RTI++ library supporting incre-
mental cloning (Cloing_Incremental). Experiments are car-
ried out to collect the overall execution time using different 
types of federates to analyze different policies (listed in 
Table 2).  

 
Table 1: Configuration of Experiment Test Bed 

Specification Computers 
 Work-

station1~2 
Server1 Work-

station3 
Operating 
System 

Sun Solaris 
OS 5.8 

Sun Solaris 
OS 5.8 

Win2000 
Pro 

CPU Sparcv9 
CPU, at 
900 MHz 

Sparcv9 
CPU * 6, at 
248 MHz 

Intel 1700 
MHz Pen-
tium IV 

RAM 1024M 2048M 256M 
Compiler GCC 

2.95.3 
GCC 
2.95.3 

MS VC++ 
6.0 

Processes 
Running On 

SimAgent, 
simTrans-
portation 

simFactory RTIEXEC 
& FEDEX 

 
Table 2: Experiments for Studying the Efficiency of Clon-
ing Technology 

Type of 
Federates 

Experiments 

Cloning 
Stage 

Start (Middle, End) 

Number of 
Policies  

2 3 4 

Cloning_ 
Entire 

Ec_s(m, e)_2 Ec_s(m, e)_3 Ec_s(m, e)_4 

Cloning_ 
Incremental 

Ic_s(m ,e)_2 Ic_s(m, e)_3 Ic_s(m, e)_4 

 
For traditional federates, we execute the policies one by 

one, after which the sum of the execution times of the runs 
are calculated. As for experiments with cloning-enabled 
federates, we let federate simAgent generate different or-
ders. We select three runs in which cloning of simFactory 
occurs at time 80, 203 and 320, thus federate simFactory 
may trigger active cloning at different stages in each run. 
These points represent cloning at the start, middle and end 
stages respectively. Furthermore we also specify simFac-
tory to make different numbers of clones to examine alter-
native policies in different experiments (2, 3 or 4 policies 
in each run). For example (see Figure 2 and 4), in experi-
ment Ec_m_3 federate simFactory creates 2 clones at time 
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203 and simAgent together with simTransportation also cre-
ate 2 clones immediately to explore 3 scenarios with 9 feder-
ates in total (entire cloning); whereas in experiment Ic_m_3 
federate simAgent keeps intact all the time and simTranspor-
tation remains shared until simulation time 224 and performs 
passive cloning to create 2 clones (incremental cloning). 

The CPU utilization of a single federate (in workstation 
1 and 2) is reported as ~80%. In the case of enabling simula-
tion cloning, the CPU utilization of each clone is reported as 
~44%, ~30% or ~21% respectively when there are 2, 3 or 4 
clones running on a single workstation. Physical federates 
have a CPU utilization as low as ~1%. Experimental results 
are recorded in seconds in Figure 10. The average time of 
executing one single scenario per run is 561 seconds using 
traditional federates. The percentage of saved execution time 
using cloning technology is shown in Figure 11 which use 
the execution times reported by traditional federates running 
scenarios sequentially as a reference. 
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Figure 10: Execution Time for Examining Multi-
ple Scenarios  
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Figure 11: Percentage of Saved Execution Time us-
ing Entire and Incremental Cloning 
 
Figure 10 shows that the cloning enabled federates can 

significantly reduce execution time compared with conven-
tional federates. The experimental results indicate that the 
more computation there is in common amongst different sce-
narios the more execution time can be reduced using simula-
tion cloning. It also shows that the larger the number of sce-
narios to be examined using cloning the more execution time 
can be reduced. The results in Figures 10 and 11 indicate that 
the incremental cloning approach has an obvious advantage 
over the entire cloning approach in terms of execution effi-
ciency under all given configurations. This is because the in-
cremental cloning approach can further save computation by 
supporting federate sharing amongst scenarios. 

6 CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented an in-depth study on the 
incremental cloning mechanism for HLA-based distributed 
simulations. The theory of incremental simulation cloning 
is detailed, and the design is also introduced. Our design 
enables distributed simulation cloning using a decoupled 
federate architecture. The cloning management module is 
developed to ensure correct distributed simulation cloning 
when preset conditions are met at decision points. The in-
cremental cloning mechanism initiates cloning only when 
strictly necessary. Federate sharing amongst multiple sce-
narios is supported by a sensitive event checking algo-
rithm. The algorithm facilitates accurate sharing of feder-
ates and delays the passive cloning as long as possible. The 
proposed mechanism supports correct HLA semantics and 
user transparency, and it optimizes the simulation execu-
tion for analyzing different scenarios.  

A series of experiments has been performed to inves-
tigate the performance of two alternative cloning ap-
proaches. The experimental results are compared for entire 
cloning and incremental cloning in terms of execution effi-
ciency. The experimental results show that the cloning 
technology can reduce the time of executing multiple sce-
narios of existing distributed simulations. Furthermore, the 
incremental cloning technology can further save computa-
tion of distributed simulations compared with an approach 
using entire cloning.  

For our future work, we need to further minimize the 
overhead incurred in the cloning procedure, which includes 
investigating an efficient approach to dealing with in-
transit events on cloning. Another issue is to facilitate fault 
tolerance using cloning technology. 
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