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ABSTRACT

In time-parallel simulation, the simulation time axis is de-
composed into a number of slices which are assigned to
parallel processes for concurrent simulation. Although a
promising parallelization technique, it is difficult to be ap-
plied. Recently, using approximation with time-parallel
simulation has been proposed to extend the class of suit-
able models and to improve the performance of existing
models. In trace-driven cache simulation, sequences of
memory requests are processed to determine the perfor-
mance of variously sized caches. Time-parallel simulation
has been applied to trace-driven cache simulation, but only
with limited scalability of the parallel algorithm. In order
to solve the scaling problem, this work uses approximation
with time-parallel cache simulation. Although introducing
an uncertainty in the results, the approximate algorithms
work in a way that result accuracy increases monotonically
with time, allowing a direct control of the quality of results.
Experiments with a prototypical implementation indicate
the viability of this approach.

1 INTRODUCTION

In classical parallel discrete-event simulation (Fujimoto
1990), the set of state variables of a model is divided
into subsets and the corresponding simulations are executed
concurrently. Time-parallel simulation takes a different ap-
proach by dividing the simulation time into intervals and ex-
ecuting the simulations of these intervals in parallel (Chandy
and Sherman 1989). This is a straightforward method of
parallelization that is not restricted by the decomposability
of the state space in the model. Unfortunately, the state-
match problem is inherent to time-parallel simulation: the
simulation of every time interval has to start execution with
an unknown initial state, which will only be known after
the simulation execution of the preceding time interval, per-
formed concurrently. Several solutions to the state match
problem have been proposed, which are correct in the sense
that they guarantee consistent state changes at time interval
boundaries: regeneration points (Lin and Lazowska 1991),
fix-up computations (Heidelberger and Stone 1990), and
recurrence relations (Greenberg, Lubachevsky, and Mitrani
1991).

Alternatively, the concept of approximate state matching
(Kiesling and Pohl 2004) is a solution of the state match
problem that does not preserve correct state changes. This
can lead to a significant increase of simulation efficiency,
but also introduces an error or uncertainty in the simulation
results. For many simulation applications, a small error that
does not cross a predefined threshold might be tolerable.
Therefore, a mechanism for error control is proposed in
(Kiesling and Pohl 2004) and tested successfully for the
simple model of an M/M/1 queue.

Simulation of computer caches, with the most impor-
tant replacement policy of least recently used (LRU), has
been topic of research for several decades, leading to the
development of efficient LRU simulation algorithms, where
hit or miss rates are determined for given memory address
traces. Different schemes for the parallelization of these
algorithms exist for single instruction multiple data (SIMD)
(Nicol, Greenberg, and Lubachevsky 1994) and multiple
instruction multiple data (MIMD) machines (Heidelberger
and Stone 1990). On MIMD machines, the method of
temporal parallelization is applied, by splitting a memory
address trace into several subtraces that are used as input
for parallel cache simulations. Empirical studies (Nicol and
Carr 1995) show, that the SIMD algorithms exhibit the best
results for small cache sizes, but that the MIMD algorithms
are better in the overall case.

In the time-parallel approach, the cache contents at the
subtrace boundaries are not known a priori, wherefore they
have to be guessed initially and corrected by the use of fix-
up computations after a first simulation phase. Depending
on the specificities of the input trace and the size of the
cache, these fix-up computations can lead to an increase of
the parallel simulation runtime to that of the corresponding
sequential simulation, or even worse. Experiments with this
approach (Nicol and Carr 1995) indicate that the speedup for
a small number of processors is excellent, but degenerates
with a higher number. Approximation can be applied here
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to decrease the cost of the fix-up-computation phase or to
avoid it altogether.

The next section discusses several aspects of cache sim-
ulation and presents the basic time-parallel MIMD cache
simulation algorithms. Section 3 shows how to apply
approximate state matching to parallel cache simulation.
Results of experiments with the introduced approach are
presented in Section 4. Finally, Section 5 concludes the
work.

2 CACHE SIMULATION

Simulation of computer caches is an important technique
that is widely used by hardware designers to decide on ap-
propriate cache implementations. The behavior of a cache
is largely influenced by its replacement policy, which de-
termines the page to be removed if the cache is full and a
new page has to be loaded. The most important policy for
computer caches is least-recently-used replacement (LRU),
due to its simplicity and yet good results. Therefore, this
paper focuses on the simulation of LRU caching.

2.1 Least-Recently-Used Caching

Basic simulation of caching with the LRU policy is straight-
forward. A data structure for the cache is initialized for a
given cache size and an input trace is processed, updating
the LRU cache appropriately and recording the number of
hits.

This has the disadvantage, that for every cache size
a new simulation execution is necessary. Therefore, an
approach was introduced to calculate the hit rates for any
number of cache sizes in a single pass over the input trace
(Mattson, Gecsei, Slutz, and Traiger 1970): simulation is
performed as usual, with the exception that the cache size is
supposed to be unbounded (i.e. no replacement occurs). For
every request, the position of the corresponding page in the
LRU stack is recorded as the stack distance of the request,
which is the minimal size of a cache, such that the request
can be served from it. A distance table is used to record
stack distances. After processing the input trace, the entries
of the table can be cumulated to give the success function
of the simulation, which is defined as S(c) = ∑c

i=1 Di ,
where c is the cache capacity for which to calculate <the
number of hits and Di is the number of occurrences of stack
distance i in the simulation of the input trace.

Example 2.1 The determination of stack distances
for a simple input trace is illustrated in Figure 1. It shows
the processing of the trace of page requests where in every
time step the stack distance of a request is determined from
the current stack and the stack is changed afterwards (either
by moving the requested page to the top or by pushing it, if
it did not yet appear). Note that in Figure 1, the LRU stack
is shown as it appears after processing the corresponding
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Figure 1: LRU Stack Processing

request. The stack distance is either the position of the
requested page in the LRU stack, or ∞ if the page is
not yet present. Table 1 shows the distance table for the
example input trace at the end of processing, which is used
to determine numbers of hits for specific cache sizes. E.g.,
four hits are scored for a cache size of three, which is the
sum of the entries of distance three and lower.

Example 2.1 leads to two important observations: (i)
the determination of stack distances is a generalization of
simple LRU cache simulation, as the number of hits for a
given input trace is directly related to the stack distances
of requests in the trace, and (ii) the stack distance of a
request to a specific page is the number of unique requests
between the current request and the previous occurrence of
a request to the same page plus one. In Example 2.1, the
stack distance of the request to page b at time 6 is 3, which
is the number of unique requests (c and d) between time
6 and time 2 (the last occurrence of a request to page b)
plus one.

Various ways of implementing the LRU stack have
been proposed: linked lists (Mattson, Gecsei, Slutz, and
Traiger 1970), hash tables (Bennett and Kruskal 1975), and
search trees (Olken 1981). An overview of the implemen-
tations together with discussions about their strengths and
weaknesses can be found in (Thompson 1987).

Table 1: Stack Distances after Processing
Dist 1 2 3 4 5 ∞
Count 2 1 1 2 1 5



Kiesling
2.2 Simple Parallel Cache Simulation

Let T = (t1, . . . , tn) be the input trace which is a sequence
of n requests. For parallel simulation, T is divided into
m non-overlapping subtraces T1, . . . , Tm. The subtraces do
not necessarily have the same length, although this might be
preferable for a balanced load distribution among processors.

In the basic time-parallel simulation approach, every
subtrace is assigned to a separate processor for simulation,
which is performed in several phases: in the initial simu-
lation phase, the input subtraces are processed once with
an empty initial cache, yielding an incorrect value of the
overall number of hits; in the fix-up computation phases,
resimulation of parts of the subtraces is performed until
the correct value for the number of hits is determined. For
every pass over a subtrace, the cache contents that have
been determined by the simulation of the directly preceding
subtrace in the previous pass are used as initial cache. The
length of this phase can range from a partial pass over the
subtrace to m − 1 passes in the worst case.

Note, that it is sufficient to include those requests in
the resimulation subtrace that could not be served from the
cache and only up to the time where the cache is filled for
the first time. Although this leads to an incorrect order of
pages in the LRU stack during resimulation, the number of
hits are calculated correctly.

Example 2.2 Let T = (a, b, c, c, d, b, b, a, b, e, c,

a) be a sequence of page requests, which is used as input of
a cache simulation for a cache size of 3. T is split into two
subtraces T1 = (a, b, c, c, d, b) and T2 = (b, a, b, e, c, a)

for parallel simulation on two processors. As T1 is the
first subtrace, resimulation is not necessary. Two hits are
recorded and the cache contents after processing are b, d, c

in order of most recently to least recently used. At the same
time, simulation of T2 is performed with an (incorrect)
empty initial cache. Therefore, all misses occurring before
the cache has been filled for the first time have to be
reconsidered for correct simulation results. As the cache of
size 3 is filled after the fourth request in T2, the subtrace
b, a, e has to be resimulated with cache contents b, d, c.

In the original simulation approach, resimulation is per-
formed by the same processor that created the resimulation
subtrace with the final cache resulting from the simulation
of the previous subtrace. Therefore, resimulation can occur
only after a simulation phase has been completed for both
subtraces. This is implemented by performing simulation in
strict phases, using barrier synchronization of all processes
between phases. However, synchronization among proces-
sors can be relaxed when processing is changed slightly.

Consider Example 2.2, where the responsibility for
processing the resimulation subtrace of T2 can be pushed
to the processor that is responsible for the simulation of
T1. No transfer of cache contents is necessary here. The
processor just continues simulation as if the resimulation
subtrace is part of its initial subtrace T1.

If subtraces are fed to processors through input queues,
the fact that resimulation is performed is transparent to the
processors and synchronization can be minimized: every
processor processes page requests from its input queue until
the special symbol ⊥, signifying end of the input trace, is
read. Instead of recording page requests to be resimulated
in a separate data structure, they are put directly into the
input queue of the preceding processor. Synchronization is
performed implicitly by the blocking of processors on an
empty input queue. A processor knows that it has finished
simulation if it encounters the ⊥ symbol, passing it on to
the previous processor’s input queue. In this case, the last
processor never performs any resimulation steps, stopping
execution as soon as its initial subtrace has been completely
processed. This can easily be achieved by putting ⊥ at the
end of the input queue of the last processor.

This approach is summarized in Algorithm 1. Paral-
lelism is introduced by use of the construct

for l ≤ i ≤ u pardo statement

adopted from (JáJá 1992), which indicates concurrent execu-
tion of statement for every i ∈ {l, . . . , u}. Several functions
are used for convenience in the algorithm. ENQUEUE and
DEQUEUE execute the corresponding operations on a pro-
cessor’s input queue, PUSH places a request at the top of an
LRU stack, REPOSITION moves a request from anywhere
in a given stack to the top, and REPLACE removes the
bottom request in a stack and puts a new request on top.

Input: Subtraces T1, . . . , Tm and cache size smax . The
stack Si for every subtrace Ti is initially empty. The input
queue Qi for every processor is initialized with the input
subtrace Ti . Additionally, ⊥ is put at the end of Qm.
The hit counters hi are initialized to 0.
Output: The sum of the number of hits hi of every
processor.

begin
for 1 ≤ i ≤ m pardo

req = DEQUEUE(Qi)

while req �= ⊥ do
if req ∈ Si then

REPOSITION(Si, req)

hi = hi + 1
elsif |Si | < smax then

PUSH(Si, req)

if i > 1 then ENQUEUE(Qi−1, req)

else
REPLACE(Si, req)

req = DEQUEUE(Qi)

if i > 1 then ENQUEUE(Qi−1, ⊥)

end
Algorithm 1: Simple Time-Parallel Cache Simulation
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2.3 Parallel Full LRU Stack Simulation

Although mentioned in (Heidelberger and Stone 1990) that
it is possible to calculate stack distances with the basic time-
parallel simulation approach, details were only provided at
a later time (Nicol and Carr 1995).

With the simple time-parallel cache simulation struc-
tured as in Algorithm 1, it can easily be extended to calculate
the success function instead of the number of page hits with
three basic changes: every page that has been requested at
least once is present in the LRU stack used to determine
stack distances (pages are never removed); instead of the
absolute number of page hits, stack distances have to be
recorded; and for all subtraces, except of the first, stack dis-
tances cannot be correctly determined if the corresponding
request is not in the local LRU stack, wherefore the pro-
cessing of these requests has to be delegated to the directly
preceding processor.

To see why this is correct, observation (ii) from Sec-
tion 2.1, relating the stack distance to the number of different
occurrences of requests between the current request and its
previous occurrence, must be considered. First, the obser-
vation implies that in the parallel processing approach, all
stack distances whose corresponding requests are found in
the LRU stack can be determined correctly. This is due to
the fact that the previous occurrence of the current request,
as well as all of the different requests in between, have been
processed. Second, all of the first occurrences of requests
to the same page cannot be determined by the current pro-
cessor (except of the first), wherefore they are sent to the
preceding processor in correct order. Intermediate requests
with already determined distances can be skipped, as for
the calculation of stack distances only the first occurrence
of a request is relevant.

Example 2.3 Consider the sequence of page re-
quests of Example 2.1, which is split into two subsequences
T1 = (a, b, c, c, d, b) and T2 = (b, a, b, e, c, a) to be fed to
two processors, P1 and P2, for the determination of stack
distances. Recall the correct sequence of stack distances
for T , which is (∞, ∞, ∞, 1, ∞, 3, 1, 4, 2, ∞, 5, 4). The
distances for T1 are correctly calculated by P1. In the
simulation of T2, the distances for requests 3 and 6 are
determined to 2 and 4. The rest of the requests is sent to
P1 for resimulation, as P2 cannot determine the correct
distances.

Algorithm 2 shows the parallel processing to determine
the stack distances of an input trace. In addition to the
functions introduced with Algorithm 1, here the function
POSITION is used, which returns the position of a request
in the given LRU stack.
Input: Subtraces T1, . . . , Tm. The stack Si for every
subtrace Ti is initially empty. The input queue Qi of
every processor is initialized with the input subtrace Ti .
Additionally, ⊥ is put at the end of Qm. The distance
tables Di are initialized with 0 for every possible stack
distance.
Output: The overall distance table Doverall , which is
the sum of the distance tables Di for all processors i.

begin
for 1 ≤ i ≤ m pardo

req = DEQUEUE(Qi)

while req �= ⊥ do
if req ∈ Si then

dist = POSITION(Si, req)

Di[dist] = Di[dist] + 1
REPOSITION(Si, req)

else
PUSH(Si, req)

if i > 1 then ENQUEUE(Qi−1, req)

req = DEQUEUE(Qi)

if i > 1 then ENQUEUE(Qi−1, ⊥)

end
Algorithm 2: Full LRU Stack Simulation

3 APPROXIMATION

As introduced in the previous section, there are two ap-
proaches for the simulation of LRU caches. The simple
approach determines the hit rate for a given trace and cache
size. The more general full-stack approach calculates the
stack distances of the requests in the input trace, which can
be used to implement a success function that returns the
number of hits for a given cache size. Here, the algorithms
presented in Section 2 are changed to calculate intervals
for the number of hits rather than exact values. Depend-
ing on simulation needs, these intervals can be used to get
approximate results in a much shorter execution time. The
following two sections focus on two different aspects of ap-
proximate calculation: how approximate simulation results
can be determined, and which criteria can be used to decide
on the appropriate time to finish simulation execution.

3.1 Determining Result Bounds

Few effort is required to change Algorithms 1 and 2 to
give approximate simulation results during any time of
resimulation. However, the calculations presented here only
work correctly when execution has been stopped, either
permanently (i.e. the simulation is finished), or temporarily
for the calculation of the current simulation accuracy.
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3.1.1 Simple Cache Simulation

It was already mentioned in (Heidelberger and Stone 1990),
that upper and lower bounds on the number of hits are
calculated easily at the end of a simulation iteration, where
simulation can be stopped if bounds are tight enough. With
the parallel simulation algorithm of the previous section,
approximate results can be calculated at any time, leading to a
higher flexibility for the decision on simulation termination.

In Algorithm 1, upper and lower bounds for the number
of hits can be calculated without further mechanisms, if all
processors stop execution at least until the calculation of
bounds is complete. The minimal number of hits at that time
hmin = ∑m

i=1 hi (where m is the number of processors) is
just the sum of the hits recorded by all processors so far.
Additionally, every request still in a processor’s input queue
might be a hit, although this is not known yet. Therefore,
the maximal number of hits hmax = hmin + ∑m

i=1 |Qi | is
derived from the number of all requests for which the status
(hit or miss) could not yet be determined.

Example 3.1 In Example 2.2, the two subtraces
T1 = (a, b, c, c, d, b) and T2 = (b, a, b, e, c, a) are sim-
ulated by two processors P1 and P2. After the requests
of both traces have been processed exactly once, a lower
bound on the number of cache hits of 4 can be calculated,
which are two hits recorded by P1 for requests 4 and 6 of
T1 and two hits recorded by P2 for requests 3 and 6 of T2.
As the status of requests 1,2,4, and 5 of T2 could not be
determined yet, they are put into the input queue of P1 for
resimulation, which now has a length of 4, leading to an
upper bound on the number of hits of 8.

3.1.2 Full LRU Stack Simulation

To devise a parallel algorithm for the full stack LRU sim-
ulation providing approximate results at any time during
simulation execution, the success function is modified to
return an interval of the number of hits for a given cache
size at any time, instead of the exact value, available only
at the end of simulation. Result intervals are specified by
their lower and upper bounds which have to be derived from
the simulation state. For the identification of lower bounds,
no additional mechanism is needed, as they can be directly
calculated from the finite stack distances determined dur-
ing the simulation execution (called final stack distances
hereafter).

For the determination of upper bounds, all requests
which might be hits for a given cache size must be considered,
or equivalently, all requests not determined to be sure misses.
As a first approximation, in addition to the sure hits, all
requests with infinite stack distances (i.e. requests where
the correct distances are yet unknown) might be hits for any
cache size (except for the first processor, where all stack
distances are correctly determined, including infinite ones).
However, a more precise determination of upper bounds
of result intervals is possible using additional knowledge
gained during simulation execution. Let r be a request to
a page whose stack distance cannot be determined by a
processor p. Then, the correct stack distance d of r must
be at least the preliminary stack distance d̃, which is the
current length of p’s LRU stack after pushing r . Recall that
a request r with a stack distance of d is a miss for a given
cache size s if d > s. As just noted, for any preliminary
stack distance d̃ of r , d ≥ d̃ holds. Thus, if d̃ > s, also
d > s and r must be a miss for cache size s. If preliminary
distances are collected in a distance table in the same way
as final distances, the same lookup in the cumulated table
can be used to determine the number of possible (but not
surely determined) hits for a given cache size, and hence the
upper bound on the number of hits. This is due to the fact
that only requests with preliminary distances lesser than or
equal to the cache size might be hits, all others are known
to be misses.

Stack distances are recorded in two different tables, final
distances in a lower-bound distance table and preliminary
distances in an upper-bound distance table. The enhanced
algorithm processes requests similar to Algorithm 2. If the
stack distance of a request can be calculated exactly by the
processor, it is recorded in the lower-bound distance table.
Otherwise, the preliminary stack distance is determined as
the number of elements in the LRU stack after pushing the
current request, this distance is recorded in the upper-bound
distance table, and the request is sent to the input queue of
the preceding processor for resimulation.

Example 3.2 Consider the subtraces T1 =
(a, b, c), T2 = (c, d, b), T3 = (b, a, b), and T4 = (e, c, a)

which were created by dividing the input trace of Exam-
ple 2.1 into four subtraces for parallel simulation. After all
requests have been processed once, only the stack distance
for the second b in T3 could be determined exactly to 2,
as well as the distances of ∞ for all requests in T1. For
the rest of the requests, preliminary stack distances can be
calculated as explained above. Table 2 shows the final and
preliminary distances after this first iteration. The distances
in these tables can be cumulated to give the upper and lower
bounds of the number of hits that are returned by a call to
the approximate success function. E.g., for a cache size of
2, the exact number of hits must be contained in the interval
[1, 6], for a cache size of 4 in the interval [1, 8].

Further processing decreases the size of the returned
intervals (increasing the accuracy of results). Table 3 shows
final and preliminary distances after all requests to resim-
ulate have been processed twice. Here, for a cache size of

Table 2: Distances in Example 3.2 after First Iteration

Final distances
Dist 1 2 3 4
Count 0 1 0 0

Prelim. distances
Dist 1 2 3 4
Count 3 3 2 0
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Table 3: Distances in Example 3.2 after Second Iteration

Final distances
Dist 1 2 3 4
Count 2 1 1 1

Prelim. distances
Dist 1 2 3 4
Count 0 0 1 2

2, the number of hits is known to be exactly 3, whereas for
a cache size of 4, the number of hits must be contained in
the interval [5, 8].

Without further provisions, the preliminary stack dis-
tances for a request might be recorded multiple times by
different processors. Therefore, before updating its upper-
bound distance table, a processor must make sure that the
record of the corresponding previously determined prelimi-
nary distance is removed. As the determined stack distances
are reflected by the values of simple counters, this can be
achieved by decrementing the value for the old prelimi-
nary distance in the table, ensuring consistent global values
for the preliminary distances. For requests not processed
before, no change of the upper-bound distance table is re-
quired. To implement this approach, requests that are kept
in an input queue for processing must be annotated with
their preliminary stack distance. Yet unprocessed requests
are not annotated (or annotated with 0).

The overall approximate full LRU stack simulation
approach is shown in Algorithm 3. The annotation of
requests is realized here by using request/distance pairs as
queue entries. Therefore, the ENQUEUE function takes
a pair as second argument and the DEQUEUE function
returns a pair. As termination of the algorithm is discussed
in the next section, the termination of the while loop is not
explicitly specified here. It depends on the return value of
the opaque TERMINATE_ALGORITHM function, which
might also need some parameters not shown for reasons of
conciseness.

3.2 Termination Conditions

The global calculations of result intervals presented in Sec-
tion 3.1 are correct if processors do not continue simulation
during the time of calculation. Otherwise, hits might be
lost or recorded multiple times. In cases where a global
execution strategy independent of the current accuracy of
result intervals is chosen, this does not pose any problems.
E.g., if runtime requirements exist, the simulation can be
executed for a fixed amount of time and the accuracy of
results can be determined afterwards.

However, if termination of the simulation algorithm has
to depend on the current result accuracy, or if termination
control should be implemented locally in the processors,
further mechanisms are needed. A straightforward approach
to determine simulation runtime by result accuracy is to halt
execution of the processors periodically in order to check
Input: Subtraces T1, . . . , Tm. The stack Si for every
subtrace Ti is initially empty. The input queue Qi of
every processor is initialized with the input subtrace
Ti , where every request is annotated with 0. The
upper-bound distance tables Ui and the lower-bound
distance tables Li are initialized with 0 for every possible
stack distance.
Output: The overall upper-bound distance table
Uoverall and lower-bound distance table Loverall , which
are the sum of the tables Ui and Li , resp., for all
processors i.

begin
for 1 ≤ i ≤ m pardo

(req, odist) = DEQUEUE(Qi)

while ¬ TERMINATE_ALGORITHM() do
if odist > 0 then

Ui[odist] = Ui[odist] − 1
if req ∈ Si then

dist = POSITION(Si, req)

Li[dist] = Li[dist] + 1
REPOSITION(Si, req)

else
PUSH(Si, req)

if i > 1 do
pdist = |Si |
Ui[pdist] = Ui[pdist] + 1
ENQUEUE(Qi−1, (req, pdist))

(req, odist) = DEQUEUE(Qi)

end
Algorithm 3: Approximate Full LRU Stack Simulation

the current accuracy. The whole simulation process can be
finished if accuracy is satisfying, or resumed otherwise.

Although the implementation of termination control
locally in the processors is preferable, it is much harder
to achieve. This is due to the implicit synchronization of
processors, which only have limited knowledge about the
status of the simulation in adjacent processors. Therefore,
for a local termination control, additional messages have to
be passed between processors. These might range from flags
that give the status of the preceding processor (e.g. running or
finished) to informations about its local result accuracy. For a
very detailed termination control, sophisticated mechanisms
are needed, which might incorporate a high overhead that
is not justified by the finer granularity of the termination
control.

4 EXPERIMENTS

To test the viability of approximate cache simulation, Algo-
rithms 2 and 3 were implemented in C using the message
passing interface MPI (Message-Passing Interface Forum
1997) to communicate between processes. For the determi-
nation of speedups, a sequential simulator was implemented.
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Only the more interesting full stack simulation approaches
were considered, using the search-tree based implementation
of the LRU stack described in (Olken 1981).

Extended experiments with the prototypes were con-
ducted on an SGI Origin 3000 with 64 500 MHz MIPS
R14000 processors, a total of 32 GB of main memory, and
the IRIX 6.5 operating system. The sources were com-
piled with the MIPSpro 7.2 Compiler with switches -O3
-n32 enabled, using the MPI 1.2 implementation in the
SGI Message Passing Toolkit (MPT).

The experiments consisted of the determination of
the success functions of various input traces which
had been obtained from the NMSU TraceBase facil-
ity (<http://tracebase.nmsu.edu/tracebase.
html>). Table 4 summarizes the properties of the traces,
which are collections of memory references from programs
in the SPEC92 benchmark suite (Gee, Hill, Pnevmatikatos,
and Smith 1993). A smaller trace (001) with a moderate
number of unique references is included. The remaining
traces are of about the same length, but differ significantly
in the number of unique references. From those, the 085
trace is most complex with the highest number of unique
references, leading to interesting results discussed later.
Figure 2 shows a comparison of the success functions of
all traces, where the hit rate in the interval [0.85, 1.0] is
plotted against an increasing cache size. Traces 001 and
085 exhibit a moderate locality, with a significant number
of misses occuring even for cache sizes larger than 2000
entries. Trace 023 has a much higher overall locality in-
dicated by the success function increasing faster than the
functions of the other traces. Trace 097 shows a special
behavior, where only a limited number of different hit rates
exist.

When processing the traces, no distinction was made
between data and instruction references. A 16 byte cache
line was supposed, masking off the last four bits of ev-
ery reference. Execution times of the calculations of stack
distances were recorded during experiments of both the se-
quential and parallel cache simulators. The results presented
here are averages of ten repetitions of every experiment.

Speedups for the various traces are shown in Figures 3
to 6. For all of the traces, speedup of the basic cache sim-
ulation (mcs) is excellent for small numbers of processors
(≤ 16). However, with the number of processors increas-
ing to 32, a degradation of performance is notable with
the smaller 001 trace. With 64 processors, the degradation

Table 4: Properties of Input Traces
Trace No. of refs. No. of unique refs.

001 cexp 18,782,144 26,198
023 eqntott 100,000,000 89,857
085 gcc 100,000,000 162,997
097 nasa 7 99,731,776 30,109
 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000

H
it 

R
at

e

Cache Size

Traces
001
023
085
097

Figure 2: Success Functions of Traces

 1
 4
 8

 16

 32

 64

 1  4  8  16  32  64

S
pe

ed
up

Number of Processors

perfect
mcs

acs0
acsMAX
acsMIN

Figure 3: Speedups for Trace 001

reaches a significant level for all of the traces. In Figure 3
of the 001 trace, the speedup for 64 processors even stays on
about the same level as that for 32. The speedups of the 085
trace shown in Figure 5 exhibit a more interesting pattern.
Most notably, a better-than-perfect speedup is achieved for
16 and 32 processors. This is due to the smaller size of
the local LRU stacks in the parallel simulation, resulting in
a better cache performance and hence a faster execution.
Another observation is the bad performance of mcs for the
085 trace with 4 processors. This results from the size of
the resimulation subtraces of a single process exceeding the
limit of the MPI message buffer, which leads to a much
higher synchronization overhead, as the processes have to
wait until the resimulation subtraces have been fetched by
the peer before being able to continue simulation.

Additionally, Figures 3 to 6 show the speedups of
three different types of experiments with the approximate
parallel cache simulator (acs): acs0 does not perform any
resimulation, i.e. it stops execution if every request from
the input trace has been processed exactly once, acsINF
performs resimulations until exact results are known, and
acsMIN limits the amount of resimulation in every process
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Figure 5: Speedups for Trace 085

to the minimal number of resimulation steps necessary in
any one of the parallel processes without approximation.
Both of acs0 and acsMIN notably increase scalability, as
the speedups drop only marginally for 64 processors (except
for the 097 trace, where in comparison to mcs, the speedup
is not increased significantly by the approximate simulators).
As can be noticed, the speedups of acsINF only slightly
drop below that of mcs, which indicates a low overhead
for approximate processing (with the exception of the 085
trace, where the increased size of resimulation messages
leads to an even worse depletion of message buffers with
consequences described above).

The amount of uncertainty in the results can be measured
by the size of result intervals for the different cache sizes,
giving the maximum range of different possible results. This
can be divided by the number of request in the input trace to
get the maximum possible deviation of the approximate hit
rate for a given cache size from the correct hit rate. Figures 7
and 8 present these relative uncertainties in ‰ of the hit
rate for the 001 and 085 traces. Uncertainties are shown for
three different cache sizes for the acs0 experiments and one
cache size for the acsMIN experiments. For the smallest
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Figure 6: Speedups for Trace 097
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Figure 7: Relative Uncertainty for Trace 001 (in ‰)

cache size of 1024, uncertainties seem to grow linearly with
the number of processors, whereas for larger caches, the
growth is clearly sub linear. Note also that uncertainties are
generally low, lying in the range of a few per thousand of
the hit rate. The acsMIN experiments, which did perform
almost as well as acs0, exhibit very small uncertainties,
even for higher cache sizes.

5 CONCLUSIONS

Temporal parallelization of simulation models is a promising
alternative to the more traditional parallelization approaches.
The difficulty in applying temporal parallelization to dif-
ferent application domains lies in an efficient solution of
the state-match problem. The usage of approximation with
time-parallel simulation has been proposed earlier in or-
der to extend its applicability to new classes of models,
as well as a means to improve the efficiency of existing
time-parallel simulation models. The focus of this work is
the application of approximation for the parallel simulation
of LRU caching.
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First, existing time-parallel simulation algorithms, both
for simple LRU cache simulation and full LRU stack simula-
tion, have been presented. These algorithms have then been
used as the basis for approximate simulation algorithms,
where at any time during the simulation, approximate results
can be calculated in the form of intervals giving the range
of possible values of results. Strategies for termination of
the simulation at an appropriate time have been discussed.

The algorithms presented in this work (the basic as
well as the approximate ones) have been prototypically im-
plemented and experiments have been conducted. These
indicate a significant increase in the speedup of the simu-
lation with a reasonable accuracy of simulation results.

Previous work on the parallel simulation of LRU caching
has either restricted itself to the simple cache simulation
approach, or exhibited a serious decrease of the speedup
achieved for higher numbers of processors. This work uses
approximation to increase the overall speedup, allowing
the parallel simulation to scale to very high numbers of
processors. Two properties of the approximation algorithms
allow a direct control of the introduced uncertainty: accuracy
of simulation results increases monotonically with time and
it can be calculated without much overhead at any time of the
simulation execution. In theory, linear speedup can always
be achieved by allowing an arbitrary uncertainty. In practice,
this is hard to achieve, due to the synchronization required
for input and collection of results. However, experiments
indicate, that even with a very small uncertainty, significant
increases in speedup are possible.
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