
Proceedings of the 2004 Winter Simulation Conference
R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

TOWARDS ADAPTIVE CACHING FOR PARALLEL AND DISCRETE EVENT SIMULATION

Abhishek Chugh
Maria Hybinette

Computer Science Department
The University of Georgia

415 Boyd Graduate Studies Research Center
Athens, GA 30602-7404, U.S.A.
ABSTRACT

We investigate factors affecting the performance of caching
to speed up discrete event simulation. Walsh and Sirer have
shown that a variant of function caching (staged simulation)
can improve the performance of simulation in a networking
application. However, the effectiveness of caching depends
significantly on cache size, the cost of consulting the cache,
the hit rate, and the cost of completing the computation
in case of a cache miss. We hypothesize that adaptive
techniques can be used to optimize caching parameters and
demonstrate an adaptive scheme that decides whether to
utilize caching depending on observed cache performance
and event processing times. We focus on evaluating quanti-
tative relationships, using our own caching implementation
with the P-Hold synthetic workload application running on
the GTW simulation kernel. Experiments show that as the
cache size is increased, performance improves to a point,
then degrades, and also that the adaptive technique can
substantially improve speedup.

1 INTRODUCTION

Redundant computations are a significant source of ineffi-
ciency in discrete event simulations. Redundant computa-
tions have several causes. In a typical simulation, events
are processed in timestamp order regardless of the fact that
similar computations might have been performed earlier.
During a long simulation it is likely that identical events
will recur, especially in repetitive or recursive applications.
Processing the same events again during the course of a
simulation will lead to a substantial number of redundant
computations. Even when identical events do not recur, it
is likely that the computations that make them up will be
redundant. A number of approaches have been devised to
address this problem.

In earlier work, we proposed simulation cloning
as a means of reducing the number of redundant
event computations in repeated sequential simulations
(Hybinette and Fujimoto 2001). Repeated simulation is a
means of evaluating the impact of different conditions or
policies on the outcome of a real system (e.g. air traffic
control systems). Cloning, however, does not address the
problem of repeated computations within a single simulation
run.

Caching is a mechanism for saving the results of ex-
pensive calculations for reuse later. If the cost of checking
the cache is sufficiently low, overhead is negligible, yet
the savings when a cache hit is successful can be great.
Walsh has proposed simulation staging, a form of func-
tion caching, as a way to improve the performance of
discrete event simulation in applications with a substantial
number of redundant calculations (Walsh and Sirer 2003).
His approach provides significant speedup (up to 40x in
a networking application), but requires extensive structural
revision of code at the user application level.

In this work we introduce caching middleware that
resides between the application and kernel. This approach
enables an application to take advantage of caching with
only minor revision. Furthermore, no change is required at
the kernel level. We use GTW, a distributed discrete event
kernel. Applications are implemented as set of Logical
Processes (LPs) that exchange timestamped messages or
events. When an LP processes an event, its state may
change, and it may generate one or more events in response.
Our middleware observes how the state of a Logical Process
(LP) changes and the events it generates in response to a
message. This information is cached for later reuse.

A separate cache is implemented for each LP. Because
LPs may be distributed on different processors (or machines),
separate caches can provide a significant advantage with
respect to the cost of accessing the cache. It is also possible
that individual caches can be smaller because individual LPs
will explore only a subset of the possible space of LP states.
There are advantages and limitations to our approach, which
we explore experimentally.

Chugh and Hybinette
Regardless of how caching is implemented for simu-
lation (e.g. at the LP level, as staged simulation, or as
function caching), there are a number of factors that will
affect its utility. Namely, cache size and hit rate, the cost
of checking the cache, and the cost of completing a com-
putation in the case of a cache miss. We evaluate the
impact of these factors on the performance of our caching
mechanism using the P-Hold application running on GTW
(Das, Fujimoto, Panesar, Allison, and Hybinette 1994).

We also present and evaluate adaptive caching. Observe
that if the cost of checking the cache exceeds the cost of just
doing the computation, caching will degrade performance.
During a warm-up period adaptive caching gathers statistics
on these costs; after the warm-up period the system may
choose to skip caching if it is too expensive. We show that
this approach can provide speedup beyond the performance
of simple caching.

The next section covers related work in this area. Our
caching approach is described in section 3 . The imple-
mentation and the programming interface is described in
section 4. Section 5 discusses performance results. Ad-
vantages and limitations are outlined in section 6 and we
discuss future work in section 7. The paper closes with a
conclusion and discussion.

2 RELATED WORK

Different techniques for reusing computations have
been proposed and implemented earlier. In cloning
(Hybinette and Fujimoto 2001) simulations cloned at de-
cision points share the same execution path before the
decision point and thus only perform those computations
once, after the decision point simulations can further share
computations as long as the corresponding computations
across the different simulations are not yet influenced by
the decision point. Updateable simulation proposed by
(Ferenci, Fujimoto, Ammar, and Perumalla 2002) updates
the results of a prior simulation run, called the base-line sim-
ulation, rather than re-executing a simulation from scratch.
A drawback of this latter approach is that one must man-
age the entire state-space of the baseline simulation. Both
of these mechanism are appropriate for multiple similar
simulation runs.

Memoization or function caching is a technique where
inputs and the functions corresponding results are cached
for later re-use. This technique has been around for over 40
years (Bellman 1957, Michie 1968). Functional caching is
widely used for incremental computations, dynamic pro-
gramming, and many others. In particular, incremental
computation is a technique that takes advantage of repeated
computations on inputs that differ slightly. It makes use
of previously computed results in computing a new out-
put. Using functional caching to obtain efficient incremen-
tal evaluation is discussed in (Pugh and Teitelbaum 1989).
Figure 1: Caching Implementation

Deriving incremental programs and caching intermedi-
ate results provides framework for program improvement
(Liu and Teitelbaum 1995).

In discrete event simulation, staged simulation
(Walsh and Sirer 2003) extends function caching to increase
the efficiency of sequential simulations. It splits a large
computation into smaller sub-computations. These sub-
computations are then cached. Using caching at functional
or sub functional level however, makes the approach heavily
application dependent as prior knowledge of computation is
required to break it into sub-computations. Another related
approach, lazy re-evaluation a technique to reduce cost of
rollback for optimistic simulation, caches the original event
in anticipation that it will be re-used after the rollback and
consequently avoid re-computation (West 1988).

Our approach is applicable both to optimistic and con-
servative protocols and is an adaptive approach that considers
cache size and hit rate, the cost of checking the cache, and
the cost of completing a computation in the case of a cache
miss, however, it may complement the approaches above
such as staging or cloning. This is different than the studies
reported above.

3 APPROACH

In order to evaluate the affect of various caching parameters
on performance, we implement our own caching scheme and
evaluate it experimentally. Our technique uses a distributed
cache to store the results of event computations at each
LP, where each LP maintains its own cache independently.
The cache is indexed by the current state of the LP and the
incoming event. The resultant state and output message are
stored as results in the cache. The cache is implemented as
a hash table that uses separate chaining to resolve collisions,
e.g. the table is implemented as an array of linked lists (See
Figure 1). The index or keys of the hash is computed from
the contents of the current state of the LP and the arrival
message. Resultant state and output message(s) are stored

Chugh and Hybinette
as results. The memory required for nodes of the link lists is
allocated from a pre-allocated memory pool. Once the size
of cache on a LP grows beyond the maximum allowed size
(an adjustable and tunable parameter), previously cached
results are replaced. The current cache replacement strategy
simply replaces the entries that were stored the earliest in
the cache for that particular index.

3.1 Caching Middleware

In our implementation the caching software is middleware
independent of the simulation engine and the application.
The approach can be used with both conservative and op-
timistic simulation engines. No changes to the underlying
kernel are required, but a few calls must be added in the ap-
plication code. However, we emphasize that no significant
structural changes at the application level are necessary.

We provide an API for the user application to the
middleware. Figure 2 shows how communication takes
place between application and the kernel through the
middleware. When the kernel attempts to deliver an event
to the application code, the caching software intercepts it.

The cache of the LP for which the message is intended
is consulted. In case of a hit, the retrieved resultant state
and message is passed back to the kernel (without the need
to consult the application code). The LP’s state is updated
and the resultant event is scheduled by the kernel. In case
of a miss the message is passed on to the application and
event computation is performed. The resultant message
and state information is captured by the middleware, where
an entry is made into the cache for future reference. The
message is then sent to the required LP through the kernel.
If the cost of consulting the cache is small we can save
significant computation in the case of a cache hit. In case of
a miss the normal procedure of computation is performed
and the results are cached. (Performance is evaluated in
a later section). If the size of cache grows beyond the
maximum allocated size per LP, results are overwritten on
the previous cached entry. The cache overwrites the least
recently used entries first. The middleware is not part of
the kernel, so rollbacks do not have to be addressed at that
level. Thus the approach can work with conservative and
optimistic simulation engines.

3.2 Adaptive Caching

An advantage of a middleware implementation is that the
middleware can evaluate the time required for an LP to
perform an event computation. The middleware can also
evaluate the overhead of caching, and make a determination
as to whether it is better to just allow the LP to perform the
computation or to use caching. The caching middleware
does not reference the cache for very small event compu-
tations, but as the granularity of a computation becomes
large the cache is referenced to improve performance, note
however that maintaining the cache is more expensive in the
beginning of the simulation since the cache is not warm. In
our current implementation we switch to to caching when
processing time become more than some multiple of the
caching overhead time. This is a tunable parameter, and
may be set as a factor of the size of the event computation
and size of the state. We cover details of the implementation
next.

4 CACHE IMPLEMENTATION

4.1 Middleware

The caching middleware is independent of the simulation
engine, and therefore does not require any changes to the
underlying kernel. A few calls must be added at the appli-
cation level, however. The user application and simulation
kernel interact through function calls that are implemented
in the middleware. The middleware thus intercepts calls
between the two levels. A separate cache is maintained for
each LP. In distributed or parallel simulations, the cache is
correspondingly distributed or parallel.

As previously mentioned, the cache is implemented
using a hash table. A hash index is computed using the
contents of the present state of the LP and the current
message to process. In the case of collisions (two different
state/message pairs map to the same index), records are
appended to a linked list at the corresponding index location.
When items are added to the cache, additional memory is
allocated as needed. Then the size of the cache reaches a
predetermined limit, a earliest-stored-first policy is used to
free memory for reuse.

Unless noted otherwise, in the experiments described
below the size of the hash table is set to 600 and the allocated
memory will accommodate 1

4 all possible state/event pairs.
Memory operations such as allocate() and

free() are expensive, especially if they are implemented
as system calls. For efficiency we would like to avoid these
calls if possible during simulation run. Accordingly, a cus-
tom memory management system is implemented whereby
all memory allocation for caching is completed at the start
of a run. A memory pool is created at initialization. The
cache for each LP is also initialized at this time, but no
memory is allocated to it.

4.2 Time-Sensitive Adaptive Caching

The overhead associated with caching includes hashing,
retrieving results and adding new event computation results.
Our system tracks the time spent on caching and the time
spent on actual computation. If caching becomes more
expensive than the actual computation we stop using the

Chugh and Hybinette
Check cache
state/message

Simulation Kernel

Simulation Application

Cache Middleware

Cache Miss
Check cache
state/message

Simulation Kernel

Simulation Application

Cache Middleware

Cache Hit

2 3

1 4
1

Miss or

2

Cache lookup
Expensive

Miss: Cache
new state &
message

Figure 2: Caching Middleware
cache. In this case the simulation application runs as if
there is no caching middleware involved.

Our adaptive caching mechanism is implemented, by
monitoring the cache overhead and the time to execute the
event. Currently we store as execution time the last time the
event was processed, and the overhead of the last time we
accessed the cache (without processing the event). Before
accessing the cache we compare the difference between the
computation time and cache overhead. If it take longer to
process the event than to reference the cache (times some
multiple) we reference the cache.

4.3 Application Programmer’s Interface

Three functions are available to the simulation application.
We list the functions’ names below and describe them in
detail later. The API functions are:

int cacheInitialize(int argc, char **

argv)

cacheStruct* cacheCheckStart()

cacheStruct* cacheCheckEnd()

void cacheCleanup()

These API functions are used during different phases of
simulation run. We view state of the simulation as moving
through three phases: initialization, execution, and wrap-up.
These phases are described in more detail below.

4.4 Initialization Phase

To initialize caching, void cacheInitialize()() is
called during the the initialization phase of the simulation.
The function has two arguments: argc and argv that
specify command line parameters for caching. This sets
up data structures that provide a memory pool for hashing
states and inputs and initializes the caching hash tables.
The command line arguments set limits on memory to be
allocated and the initial size of the cache. No system
memory allocation is performed after initialization phase;
our middleware administers its own memory pool. An
example initialization is shown below:

void InitilizationPhase(int argc, char ** argv)
{

/* other application initilization code
* is defined here */

cacheInitialize(argc, argv);
}

4.5 Execution Phase

During the execution phase, cacheCheckStart() and
cacheCheckEnd() are used to “wrap” the code used by
the LP to respond to an event. These calls enable the
middleware to measure the time required to execute the
computation, or to return a cached result if appropriate.
cacheCheckStart() returns NULL if the LP should exe-
cute its own computation, otherwise it returns new state
information and the LP can skip its computation. In the
adaptive approach, the middleware may return NULL even
if the result is available in the cache, because it may have
concluded that the computation is so inexpensive that it is
cheaper than consulting the cache.

In case of a miss the event computation is performed.
cacheCheckEnd() passes the new state, and any messages
that were sent to the middleware to be saved in the cache.
An example use of these calls is below:

void Event_Handler(event)
/* LP event processing */
{
retval = cacheCheckStart(currentstate, event);

/* cache miss, or caching expensive */
if(retval == NULL)

{

Chugh and Hybinette
/* original LP code */

/* compute new state and events to be
scheduled */

/* allow cache to save results */
cacheCheckEnd(newstate, newevents);
}

else
{
newstate = retval.state;
newevents = retval.events;
}

schedule(newevents);
}

These calls enable the cache middleware to monitor time
spent on actual event computation and caching overhead.
The monitoring is transparent to the user application. The
timer starts at the entry of cacheCheckStart() and
ends with the call to cacheCheckEnd()

4.6 Wrapup Phase

When the simulation is complete cacheCleanup() is
called to free the data structures and memory pool. It
is called after simulation code is completed and before
terminating the program. It returns 1 on success and 0
otherwise. It does not take any input argument.

5 PERFORMANCE

Caching efficiency depends on at least three features of the
application being simulated: cost of event computations,
running time of the simulation, and size of the state. Other
factors include parameters of the caching scheme, which,
in turn, affect how quickly the cache can be consulted. In
general we expect better performance from caching as the
cost of event computation increases, and worse performance
as caching becomes more expensive.

There are a few other issues to consider as well. At
initialization time, the cache is empty – and therefore not at
all effective. However, as the cache “warms” up performance
improves. Accordingly, longer simulations are more likely
to benefit from caching. The size of the state is also
important because for a given cache size, the number of
event result computations stored is inversely proportional
to the size of the state.

Quantitative results were obtained using
the P-Hold application on GTW, an optimistic
time warp simulation kernel (Fujimoto 1990,
Das, Fujimoto, Panesar, Allison, and Hybinette 1994).
P-Hold provides a synthetic workload using a fixed
message population. Each LP is instantiated by an event.
Upon instantiation, the LP schedules a new event. The
destination LP is chosen randomly. Note that while
caching the resultant state, we remove the time stamp and
store rest of the information. Similarly while comparing
the state information during cache look up, we do not
take timestamp into consideration. Evaluation of caching
performance was conducted on an SGI origin 2000 with
sixteen 195 MHz MIPS R10,000 processors. The unified
secondary cache is 4 MB. The main memory size is 4 GB.

Three types of experiments were performed: 1) Exper-
iments as proof of concept of the basic caching technique
(no adaptive caching), 2) Experiments to evaluate the impact
of cache size and simulation running time on speedup for
basic caching, and 3) Experiments to study the benefit of
adaptive caching with regard to the cost of event compu-
tation. As proof of concept we calculated the increase in
hit percentage versus the size of the cache, and simulation
running time.

5.1 Basic Caching Experiments: Hit Rates

As a proof of concept, we evaluated cache hit ratio versus
the running time of the simulation and cache size. The plots
in Figure 3 show that hit ratio generally increases as we
increase the length (number of events) of the simulation.
Three experiments were run, using different cache sizes: a)
cache size same as the size required to store all results, b)
cache size one-fourth the size required to cache all results,
and c) cache size one-tenth of the size required to cache
all results. As one would expect hit ratio also increases
as the cache size increases. Note that for case b) and c),
hit rate performance levels off after 50,000 time units, then
begins to improve after about 125,000 time units. We are
not certain why this happens, but we speculate that this is
a reflection of the “warm up” time for smaller caches.

Note that the hit rate sets an upper bound for speedup
using caching. For instance, a hit rate of 50% would force
us to complete 1

2 of the event calculations, limiting speedup
to no more than 2.0 (assuming that the cost of checking the
cache is negligible in comparison with the cost of completing
the actual event computation). For the P-Hold application
our hit ratio approaches 70%, thus forcing 30% of the
computations, leading to a speedup limit of about 3.3.

5.2 Basic Caching Experiments: Speedup

We evaluated speedup in comparison to traditional simula-
tion (without caching) with respect to: the size of the cache
and the running time of the simulation (proportional to the
number of events processed).

Figure 4 shows speedup versus the size of the cache for
different simulation running times. Speedup improves as
the size of the cache is increased. We see the best speedup
in the case of the longest running time. This is because
we are allowed to run for a longer time after the warm up

Chugh and Hybinette
 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

H
it

R
at

e
(P

er
ce

nt
ag

e)

Progress (Simulated Time)

10000 KB
25000 KB
 1000 KB

Figure 3: Hit Rate
 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

Sp
ee

du
p

(N
o

C
ac

hi
ng

/C
ac

hi
ng

)

Size of Cache (KB)

Speedup versus Size of Cache

400,000 Simulated Time Units

Figure 4: Speedup Versus the Size of the Cache

Chugh and Hybinette
phase. However, beyond a certain point as cache size is
increased, speedup declines, then levels off.

We suspect that the drop in speedup corresponds to
the cache size at which the memory requirements for the
simulation exceed the physical size of memory alloted to the
process. At this point, the underlying OS relies on virtual
memory techniques to provide the resources. Performance
does not continue to degrade because the caching software
is allowed to maintain a useful working set in RAM. In other
conditions, for instance when physical memory is small in
relation to effective cache size we may see a more aggressive
drop in performance as virtual memory is utilized.

5.3 Adaptive Caching Experiments

Observe that the performance of caching depends on many
factors. In fact the impact of these factors on performance
may change dynamically while the simulation runs. We
suspect that adaptive techniques could be used to optimize
caching parameters at run time. As an initial demonstration
of this idea, we implemented a simple adaptive scheme,
time sensitive caching (described above), and evaluated its
performance.

The general idea is to track the cost of consulting the
cache (which may change with time) in comparison to the
cost of running the actual computation. If the computation
cost exceeds a user defined multiple of the caching cost,
the system chooses to use caching, otherwise it allows the
application to compute the events, even if they are redundant.

We evaluated the approach by varying the cost of event
computation from 0 to 3 milliseconds, then measuring per-
formance for: a) a simulation without caching, b) a simu-
lation using simple caching, and c) a simulation using time
sensitive caching. Speedup was computed for simulation
b) and c) in comparison to simulation a).

We conducted an initial experiment using the same
application and caching parameters as in the experiments
above. In this case we discovered that there was hardly any
benefit to the adaptive technique until event computation
costs were reduced to below 10 microseconds. The results
were noisy and our ability to instrument the experiment
over such small time intervals is limited. We suspect that
the cost of caching in these conditions may be artificially
low due to the large hash table and limited size of the state
space.

In order to evaluate adaptive caching more fairly, we
adjusted one of the parameters of the caching algorithm to
make caching more expensive. In particular, we reduced
the size of the hash table from 600 elements to 10 elements.
This change forces a linear search for matches much more
often. While a hash table of 10 elements may be artificially
small, we believe that this change may more accurately
reflect the relationship between caching and computation
costs in other simulation applications.
Figure 5 shows speedup results for simulations using
simple caching and adaptive time sensitive caching. The
adaptive algorithm was set to select caching when the cost
of event computations exceeded a factor of four of the
caching cost. Notice that speedup for the adaptive tech-
nique is approximately 1.0 for event granularities of 0 to
2.0 milliseconds. In comparison, simple caching suffers a
speedup ratio of 0.8 for very small event computation costs,
and only improves to 1.0 when event granularity approaches
1.0 milliseconds. This means that the adaptive technique
improves performance over simple caching in this region.

As event granularity increases beyond 1.5 milliseconds,
both simple caching and adaptive caching begin to exceed
speedups of 1.1. In future work we will continue to evaluate
the factors affecting performance in this region.

6 ADVANTAGES AND LIMITATIONS

Our particular caching implementation offers several ad-
vantages, but suffers from some limitations as well. In
any case, the focus of this work is to evaluate the effects
of various caching parameters on simulation performance,
and to look for opportunities to use adaptive techniques.
These results should apply to any caching approach (e.g.
middleware, function caching, or staged simulation).

The key advantages to our approach stem from the
middleware implementation. In particular the simulation
kernel requires no change, and the user application code
requires only the addition of simple checkpoints. No major
structural revision of the application code is necessary.
From a user’s point of view, integrating our caching scheme
requires very little effort.

Performance results show that in the worst case our
caching technique offers no speedup, but in the best case
(for the P-Hold application) speedup approaches three.
In comparison Walsh has reported speedups exceeding
40x (Walsh and Sirer 2003). Our speedup is limited pri-
marily by the cache hit rate for the P-Hold application.
Speedup, using any algorithm, will be limited to 3.33x
when the hit rate is 70%. 40x speedups imply a hit rate of
nearly 98%. The nature of our caching approach (that we
cache on state/event pairs) will probably limit our hit rate,
and thus speedup, in most applications.

The caching mechanism works effectively only when
there are no side effects. If there is random information,
(such as timestamp information or the result of a random
number generator), in the results to be cached, the caching
technique becomes ineffective. This is because the proba-
bility of reusing the computation becomes negligible.

The caching technique will be more effective for ap-
plications having smaller state size. If the size of the state
is huge it will adversely affect the efficiency. Larger state
size means more space will be occupied for each entry in

Chugh and Hybinette
 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 0.5 1 1.5 2 2.5 3

Sp
ee

du
p

(N
o

C
ac

hi
ng

/C
ac

hi
ng

)

Computation Granularity (msec)

Speedup versus Computation Granularity

Time Sensitive
Not Time Sensitive

Figure 5: Speedup of Adaptive Time Sensitive Caching
to the cache resulting in fewer entries, thus reducing the
probability of a hit.

Our results are based on experiments with the P-Hold
application. Techniques involving caching do not inherently
work efficiently with the randomness element involved.
With randomness the number of event computation results
possible will become unmanageable.

7 FUTURE WORK

The future work involves adding additional adaptability, as
in (Acar, Blelloch, and Harper 2002) to the caching mech-
anism i.e. integrating adaptive computing with coarse level
functional caching. Adaptive functional programming main-
tains relationship between input and output as input changes.
It keeps track of the input parameters, and therefore instead
of re-evaluating the whole function from scratch, adaptive
functional programming updates the output by re-evaluating
part of the program effected by changes in the input. The
output is made adaptive to input by recording dependen-
cies during initialization phase. Adding adaptability to the
caching will improve efficiency but can make the technique
proposed application dependent. We also like to fine tune
our replacement strategy, and are considering similar ap-
proaches that are used in for functional caching as discussed
in (Pugh 1988).
8 CONCLUSION

We have investigated factors that impact the effectiveness of
caching to speedup discrete event simulation. The key idea
is enables an application to take advantage of caching with
only minor revision. The overhead associated with caching
includes hashing, retrieving results and adding new event
computation results. Our system tracks the time spent on
caching and the time spent on actual computation. If caching
becomes more expensive than the actual computation we
stop using the cache. In this case the simulation application
runs as if there is no caching middleware involved.

Performance results show that in the worst case our
caching technique offers no speedup, but in the best case
(for the P-Hold application) speedup approaches three.

REFERENCES

Acar, U. A., G. E. Blelloch, and R. Harper. 2002, January.
Adaptive functional programming. ACM SIGPLAN No-
tices 37 (1): 247–259.

Bellman, R. E. 1957. Dynamic programming.. first ed.
Princeton, New Jersey: Princeton University Press.

Das, S. R., R. Fujimoto, K. S. Panesar, D. Allison, and
M. Hybinette. 1994, December. GTW: A Time Warp
system for shared memory multiprocessors. In Pro-
ceedings of the 1994 Winter Simulation Conference

Chugh and Hybinette
Proceedings, ed. J.D. Tew, S. Manivanna, D.A. Sad-
owski, A.F. Seila, 1332–1339: Society for Computer
Simulation International.

Ferenci, S. L., R. M. Fujimoto, M. H. Ammar, and K. Peru-
malla. 2002, May. Updateable simulation of communi-
cation networks. In Proceedings of the 16th Workshop
on Parallel and Distributed Simulation (PADS-2002),
107–114.

Fujimoto, R. M. 1990, January. Performance of Time Warp
under synthetic workloads. In Proceedings of the SCS
Multiconference on Distributed Simulation, Volume 22,
23–28: SCS Simulation Series.

Hybinette, M., and R. M. Fujimoto. 2001. Cloning paral-
lel simulations. ACM Transactions on Modeling and
Computer Simulation (TOMACS) 11 (4): 378–407.

Liu, Y. A., and T. Teitelbaum. 1995, June. Caching Interme-
diate Results for Program Improvement. In ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, 190–201. La Jolla, CA:
ACM Press.

Michie, D. 1968, April. “memo” functions and machine
learning. Nature 218:19–22.

Pugh, W. 1988, July. An improved replacement strategy
for function caching. In Proceedings of the 1988 ACM
Conference on Lisp and Functional Programming, 269–
276. ACM: ACM.

Pugh, W., and T. Teitelbaum. 1989, January 11–13,. Incre-
mental computation via function caching. In Confer-
ence Record of the Sixteenth Annual ACM Symposium
on Principles of Programming Languages, 315–328.
Austin, Texas: ACM SIGACT-SIGPLAN: ACM Press.

Walsh, K., and E. G. Sirer. 2003, December. Staged simu-
lation for improving scale and performance of wireless
network simulations.

West, D. 1988, January. Optimizing Time Warp: Lazy
rollback and lazy re-evaluation. M.S. Thesis, University
of Calgary.

AUTHOR BIOGRAPHIES

ABHISHEK CHUGH received the M.S. in Computer Sci-
ence from the University of Georgia in the Spring of 2004.
His e-mail address is <achugh@arches.uga.edu>.

MARIA HYBINETTE is an Assistant Professor of Com-
puter Science at the University of Georgia. She earned the
Ph.D. (2000) and M.S. (1994) in Computer Science from the
Georgia Institute of Technology and a B.S. (1991) in Math
and Computer Science from Emory University, all inAtlanta,
Georgia. Her e-mail address is <maria@cs.uga.edu>
and her web page is <www.cs.uga.edu/˜ maria>.

mailto:achugh@arches.uga.edu
mailto:maria@cs.uga.edu
http://www.cs.uga.edu/~maria

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 336
	02: 337
	03: 338
	04: 339
	05: 340
	06: 341
	07: 342
	08: 343
	09: 344

