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ABSTRACT 

We describe a characterization the three classical world 
views of event scheduling, activity scanning, and process 
interaction and discuss transformations among them. We 
believe that one advantage of each is to allow more concise 
model descriptions by allowing a model specifier to take 
advantage of contextual information.  Automated trans-
formation among world views is difficult due to a mod-
eler’s use of contextual information.  We illustrate this by 
transforming and then simplifying a model representation 
creating a version, similar to what a programmer or mod-
eler might generate. 

1 INTRODUCTION 

A fundamental sub-area of modeling methodology is the 
world view or conceptual framework adopted or imposed 
in the model development process.  Recognition of the im-
portance of a world view or “Weltansicht” is traced to the 
early days of discrete event simulation (DES) (Lackner 
1962).  Much of the early attention to world views emerges 
in the development of simulation programming languages 
(SPLs) and simulators (packages in a general purpose lan-
guage (GPL)).  The need for model specification inde-
pendent of an implementation in an SPL is expressed in the 
early papers of Lackner (1962, 1964).  Kiviat (1969) and 
Lackner are credited with the definition of the three “clas-
sical” world views: event scheduling, activity scanning, 
and process interaction.  The characterization of a world 
view in terms of its embedding in an SPL is described by 
Kiviat (1969) as an inversion of theory and application that 
clearly merits the attention of the simulation community.  

Zeigler (1972, 1976) uses systems theory as a foun-
dation for explaining DES, and a “formal” representation 
of model behavior is given in a notation similar to state 
transition diagrams. Nance (1979) approaches model 
specification as an issue in the development of model 
documentation standards, drawing attention to research in 
program generators, the Conical Methodology, and the 

 

DELTA Project (Holbaek-Hanssen, Hfindlykken and Ky-
gaard 1977).  The significance of time and state relation-
ships that form the core of any DES model specification 
is addressed by Nance (1981) within the context of con-
trasting world view perspectives. 

The Condition Specification (CS), created by Over-
street (1982), seeks to enable an algorithmic (automatic) 
translation of a model represented in one world view to an-
other.  The specification focuses on the most basic or 
primitive characterization of time and state, thus making 
explicit causal dependencies among model objects more 
identifiable (Overstreet and Nance 1985).  Graphical repre-
sentations derived from the CS, akin to those offered by 
Schruben (1983) for the event scheduling world view, 
prove useful in model transformation and simplification 
(Overstreet and Nance 1986) and automated model diagno-
sis (Nance and Overstreet 1987). 

Since each world view is based on a particular SPL  
that provided its own approach to time-advance, model 
implementations are usually closely tied to both a world 
view and the time-advance technique of the SPL used.  
These time-advance techniques can vary significantly in 
the run-time characteristics of executing models (depend-
ing on characteristics of  the model).  If a “world view in-
dependent” model specification could be created, then the 
choice of time-flow technique could be based on issues 
such as run-time efficiencies. 

Note that several of the ideas in this paper appear in 
(Overstreet and Nance 1986) but due to the limited avail-
ability of this reference and continuing interest in the work, 
we describe that research to broaden its availability to the 
simulation community.  

2 CONDITION SPECIFICATION OVERVIEW 

The creation of the semantic forms embedded in a Condi-
tion Specifications (CS) is motivated by interest in better 
understanding the relationships among the three classical 
discrete event world views through enabling automated 
transformations from one world view to another.  Our re-
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search leads to the conviction that direct transformation is 
often made difficult or impossible because of implicit in-
formation (sometimes used by a modeler or programmer to 
simplify the implementation task) that may not occur in 
one world view but which must be explicit in another.  For 
a transformation from one world view to any other to be 
completely automated, this implicit information must 
sometimes be represented explicitly in another world view 
representation and it may be difficult to determine.  We 
provide examples of this in Section 5 with examples of 
world-view-based simplifications.  The relevant point here 
is that the form and some of the semantic content required 
in a CS results from this transformation issue. 

In a CS, a model is a collection of Objects and a col-
lection of Action Clusters (ACs). Each object is composed 
of attributes and possibly additional objects. The attributes 
record part of the state of the object. Note that additional 
object state information may be used to improve run-time 
efficiency, support time management, or provide auto-
mated data collection, but this information may not explic-
itly appear in any AC.  The additional objects, if any, com-
plete the attribute definition for the composite object. The 
model itself is usually such a composite object.  (We note 
that objects play no role in event scheduling or activity 
scanning representations and are used when generating 
process interaction representations.) 

A collection of ACs defines the dynamic behavior of a 
model. Each AC consists of a boolean expression and a 
collection of actions (such as changing the value of an at-
tribute or scheduling some future action). The actions of an 
AC are to occur whenever that AC’s boolean expression, 
also called its condition, is TRUE.  Thus the form of a CS 
is similar to the production rule approach to knowledge 
representation (Newell and Simon 1972). The CS approach 
has been described elsewhere (Overstreet and Nance 1985, 
Zeigler 1984, pp.353-358).  While the treatment here is 
brief, it should be sufficient to follow the development. 
Some additional specifics of CSs are illustrated in the ex-
ample in Section 3. 

Zeigler discusses constructing a model specification 
by describing its “entity structure” (Zeigler 1984). The ap-
proach taken here is influenced by Zeigler’s work, al-
though exhibiting a significant departure. The objects in a 
CS do not provide a “partitioning” (in the mathematical 
sense) of the model like that of Zeigler’s entity structure. 
We find the idea of objects providing a partition of the 
model into “disjoint submodels” (whatever that may mean) 
appealing and abandon this idea with reluctance. However, 
we find it necessary to do so when considering models 
with objects that participate in joint activities. To generate 
an acceptable specification in the process interaction world 
view automatically, the activities (and the state variables 
necessary to control the activities) may need to be associ-
ated with each of the objects participating in the activity.  
If this occurs, no partition is created.  
2.1 Condition Specification Example 

We use the classical Machine Repairman model as an ex-
ample of a CS and later to illustrate world view 
transformations. This model is from (Palm 1947) and (Cox 
and Smith 1961). 

Informal Model Description:  A single repairman ser-
vices a group of n identical semiautomatic machines. Each 
machine requires periodic service based on a negative ex-
ponential random variable with parameter “meanUptime.” 
The repairman starts in an idle location and, when one or 
more machines require service, the repairman travels to the 
closest failed machine. Service time for a machine follows 
a negative exponential distribution with parameter “mean-
Repairtime.” After servicing a machine, the repairman 
travels to the closest machine needing service or to the idle 
location to await the next service request.  The closest ma-
chine is determined by minimal travel time.  Travel time 
between any two machines or between the idle location 
and a machine is determined by a function evaluation. 

An object specification for this model is provided in 
Figure 1.  Each attribute is associated with one or more 
model objects and has a name and a type. The attribute 
types are typical of those available in many programming 
languages except for the addition of “time-based signal.” A 
time-based signal is a boolean expressions, with its value 
changing from FALSE to TRUE due to the passage of 
simulation time. 

 

Figure 1:  Machine Repairman Object Specification 
 
Figure 2 contains ACs for the model; each AC consists 

of a name (used in the graphic representations of the next 
section), a condition, and a set of actions.  Conceptually 

Object Attribute Type 

environ- 
ment 

systemTime 
n 

maxRepairs 
meanUptime 

meanRepairtime 
initialization 

nonnegative real 
const pos integer 
const pos integer 
const pos real 
const pos real 

time based signal 

machine 
 

n 
maxRepairs 
meanUptime 

meanRepairtime 
mach[1..n] 
failure 
arrMach 
endRepair 
numRepairs 
failed[1..n] 

const pos integer 
const pos real 
const pos real 
const pos real 
const 1..n 

time based signal 
time based signal 
time based signal 
nonnegative integer 

boolean 

repair- 
man 

maxRepairs 
meanRepairtime 

status 
location 
endRepair 
arrMach 

numRepairs 
arrIdle 

const pos integer 
const pos real 

{avail,travel,busy} 
{idle,1..n} 

time based signal 
time based signal 
nonneg integer 

time based signal 
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(implementations may be quite different), whenever the 
condition of an AC becomes true, its associated actions are 
to occur.  If multiple conditions can become true at the 
same instant and the actions are order-dependent, then this 
is considered a specification error and the conditions 
should be extended to resolve this.  (This problem could 
also be resolved by associating a priority to resolve “ties” 
but that is not the approach we have taken. 

 

Figure 2: Machine Repairman Action Clusters 
 

The SETALARM action has two or more parameters: 
the first names the time-based signal to be set, the second 
the time the alarm is to occur.  Any subsequent parameters 
are used to pass values to any AC associated with that 
time-based signal. 

To illustrate the semantics of Figure 2, the simulation 
stops when numRepairs is greater than maxRepairs 
(the termination AC); a “begin repair” occurs for some 
machine, whenever arrMach is true (that is, the repair-
man has arrived at a machine, an event scheduled by the 
“travel to mach” AC). 

Action Cluster 
Id: 

  Condition 

Actions 

initialization: 
 initialization 

INPUT n,maxRepairs, 
  meanUptime,meanRepairtime 
CREATE(repairman) 
FOR i = 1 TO n 
  CREATE(machine[i]) 
  mach[i] = i 
  mailed[i] = false 
  SETALARM(failure, 
    negExp(meanUptime),i) 
numRepairs = 0 
location = idle 
status = avail 

termination: 
  numRepairs > 
    maxRepairs 

STOP 

failure(i): 
   failure 

failed[i] = true 

begin repair(i): 
 arrMach 

SETALARM(endRepair, 
   negExp(meanRepairtime,i) 
status = busy 
location = mach[i] 

end repair(i): 
  endRepair 

SETALARM(failure, 
   negExp(meanUptime),i) 
failed[i] = false 
status = avail 
numPrepairs = numRepairs+1 

travel to idle: 
 (FOR ALL i, NOT 
 failed[i]) AND 
 status = avail 
 AND location≠ 

idle 

SETALARM(arrIdle, 
  travelTime(location,idle)) 
staus = travel 

arrive idle: 
 arrIdle 

status = avail 
location = idle 

travel to mach: 
 status = avail 
 AND(FOR SOME i 
   failed[i]) 

SETALARM(arrMach,travelTime( 
  loction,mach[i]), 
  closestFaileMach(failed, 
  location)) 
status = travel 
We omit the definitions of the functions closest-
FailedMach which identifies the closest failed machine 
to the repairman’s current location and the function 
travelTime that determines the travel time from the re-
pairman’s current location to a particular machine or the 
idle location. 

2.2 Action Cluster Interaction Graphs 

One advantage of a CS is that it can be used to deduce in-
teractions among components of a specification.  A repre-
sentation that supports this analysis is an Action Cluster 
Interaction Graph (ACIG) (Overstreet 1982, pp. 130-131).  
In an ACIG, nodes represent ACs and directed edges the 
ability of one AC to directly cause the occurrence of an-
other AC, that is, in an ACIG, an edge leads from AC 1 to 
AC 2 if the actions of AC 1 can cause the condition of AC 
2 to become true either at the same instant AC 1 is acti-
vated or at a future instant (through a SETALARM action). 

Figure 3 is the ACIG for the Machine Repairman ex-
ample. In this figure, an AC that can cause another AC to 
occur in the same instant (that is, with no change in simu-
lation time) is connected to it by a solid edge. If an AC 
directly causes another AC to occur at a future time 
(through a SETALARM action), the ACs are connected 
by a dashed edge. 

 

Figure 3: Machine Repairman Action Cluster Graph 
 
See (Overstreet and Nance 1985) for a discussion of 

how this graph can be generated from a CS and some of 
the interesting problems involved in this process. The 
graph is introduced here since representations in each of 
the three world views are generated from it in Section 4. 

initialization 

failure 

travel to mach 

begin repair 

end repair 

travel to idle 

arrive idle 

termination 
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3 INFORMAL CHARACTERIZATION  

OF WORLD VIEWS 

We do not attempt a formal characterization of the three 
world views, see (Zeigler 1976, Chapter 9) for a more for-
mal approach). The characterization of each world view is 
based on our interpretation of the concepts found in 
SIMSCRIPT (Dimsdale and Markowitz 1964) for the event 
scheduling world view, in CSL (Buxton and Laski 1963) for 
the activity scanning world view, and in SIMULA (Dahl and 
Nygaard 1966) for the process interaction world view. 

We base our ideas on world view as providing differ-
ent types of locality.  Locality is defined by Weinberg as 
“that property when all relevant parts of a program are 
found in the same place” (Weinberg 1971). Locality is 
generally regarded as a positive attribute by the software 
engineering community since software is usually more eas-
ily understood, reused and maintained if all the parts of a 
program that provide certain behaviors are  linked in a 
readily identifiable manner. 

Unfortunately, what is “relevant” highly depends on 
the issue of interest. Thus it is impossible for one arrange-
ment of the source text of a specification or program) to 
exhibit locality for all possible questions that the source 
text might be accessed to answer. 

We assert that each world view attempts to capture a 
different kind of locality: 
 

• Event scheduling provides locality of time:  each 
event routine in a model specification describes 
related actions that should always all occur in one 
instant. 

• Activity scanning provides locality of state:  each 
activity routine in a model specification describes 
all actions that should occur due to the model as-
suming a particular state (that is, due to a particu-
lar condition becoming true.) 

• Process interaction provides locality of object:  
each process routine in a  model specification de-
scribes the action sequence of a particular model 
object. 

 
These characterizations are illustrated by the transfor-

mations in the next section. 

4 WORLD VIEW TRANSFORMATIONS 

Transformations into each of the three world views can be 
treated as a two step process. First, appropriate subgraphs 
are generated from an ACIG, with different types of sub-
graphs for each world view. This can be done entirely 
automatically as described below. The second step simpli-
fies each specification by use of precondition/postcondition 
analysis. The complexity of this step deserves the added 
discussion given below. 
A CS contains three types of ACs: 
 
1. determined if the attributes in the condition ex-

pression are all time-based signals,  
2. contingent if the condition expression contains no 

attributes which are time-based signals, an 
3. mixed if the conditions contains both time-based 

signal and non-time-based signal attributes. Thus 
the condition value for a determined AC depends 
only on the value of simulation time (at least, after 
the signal has been scheduled). 

 
The simple transformation of a CS with mixed ACs 

into an equivalent specification with no mixed ACs is ac-
complished by the addition of attributes (Overstreet 1982). 
For the development that follows, it is convenient to as-
sume that the specification contains no mixed ACs. 

Each Condition Specification contains one special at-
tribute, “initialization.” The transformation algorithms dis-
cussed below are based, in part, on identifying those attrib-
utes that are time-based signals. For these algorithms, it is 
useful to treat the “initialization” attribute as both time-
based (for event scheduling) and non-time-based (for activ-
ity scanning). This dual treatment is not unreasonable be-
cause it seems equally correct to regard initialization as oc-
curring when system time is zero (it is a determined or 
time-based action) or as occurring because  the model exe-
cution is initiated (a contingent action—the model should 
be initialized in every generation of sample behavior). 

4.1  Event Scheduling 

In an event scheduling world view, a modeler first identi-
fies actions that are scheduled (i.e., time-based) and then 
for each of the scheduled actions, everything else that 
might happen as a consequence of that action both at the 
same instant of time and at some point in the future. Thus 
for each determined action, a modeler identifies both con-
tingent actions (which can occur as a result of the deter-
mined action and in the same instant) and additional de-
termined actions that occur as a direct result of the original 
determined action. Each event specification then consists 
of one determined AC and a collection of contingent ACs 
that may be caused by it. 

Given an ACIG for a model specification, determined 
actions are identified by those nodes with dashed input 
edges (using the notation of Figure 3) plus the initialization 
AC. The contingent actions which can occur in the same 
instant as each determined action and which can be caused 
by the determined action are identified by the solid edges 
leading from the determined node. These subgraphs, called 
event subgraphs, are easily generated from an ACIG. Each 
subgraph represents the sequence of actions of one event 
specification. Figure 4 contains the five event subgraphs 
for the Machine Repairman model. 
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Figure 4: Machine Repairman Event Subgraphs 
 
For the five event subgraphs, subgraph 1 contains the sin-
gle AC “initialization.”  Subgraph 2 starts with the AC 
“failure,” and, since a “failure” may cause a “travel to 
mach” to occur in the same instant (if the repairman is 
available), it also contains the AC “travel to mach.” A “be-
gin repair” can cause no other actions to occur in the same 
instant so the graph contains this single AC, but the “end 
repair” AC can cause either a “termination,” a “travel to 
idle,” or a “travel to mach” to occur in the same instant, so 
the subgraph contains all four ACs. As depicted in sub-
graph 5, the “arrive idle” AC can cause an instant “travel to 
mach.” 

4.2 Activity Scanning 

We assert that the use of an activity scan world view re-
quires the modeler first to identify all conditions to which 
the model must respond other than those dependent strictly 
on the passage of simulation time. After identifying these 
conditions, the modeler specifies for each condition all ac-
tions that should occur unconditionally including actions 
that should occur at a future time. Each activity specifica-
tion consists of one condition and a collection of actions 
which must all occur whenever that condition is TRUE. 

Given an ACIG for a model specification, contingent 
actions are identified by those nodes with solid input edges 
(using the notation of Figure 3). The determined actions that 
can occur as a direct result of each contingent action are 
identified by the dashed edges leading from the contingent 
node. Thus subgraphs, called activity subgraphs, are easily 
generated in which each subgraph represents the sequence of 
actions for one activity specification. Figure 5 contains the 
activity subgraphs for the Machine Repairman model. 

Activity subgraph 1 indicates that, once an “initializa-
tion” has occurred, a “failure” is scheduled to occur. Like 
wise, activity subgraph 2 indicates that once a “travel to 
 

arrive
idle

end 
repair 

termi- 
nation 

travel 
to idle 

travel 
to mach 

travel 
to mach

begin 
repair 

travel 
to mach

failure 

initiali- 
zation 

Event 
Subgraph 3
 

Event 
Subgraph 3 

Event 
Subgraph 1 

Event 
Subgraph 5

Event 
Subgraph 4 
Figure 5:  Machine Repairman Activity Subgraphs 

 
mach” has occurred, a “begin repair,” an “end repair,” and 
a “failure” must necessarily occur (unless the simulation is 
terminated).  From subgraph 3, the “travel to idle” results 
in an “arrive idle,” and a “termination” results in no other 
actions. 

4.3 Process Interaction 

We assert that a process interaction world view requires 
the modeler first to identify all model objects whose action 
sequences must be defined. Subsequently, the modeler 
specifies the sequence of actions for each object. 

The object specification, illustrated in Section 2, asso-
ciates each attribute with one or more objects, from which 
each AC can be associated with one or more model ob-
jects. Each AC is associated with each model object if the 
object contains an attribute (1) that occurs in the AC condi-
tion, or (2) that the AC alters. 

After this association of objects and ACs is complete, 
subgraphs are generated to represent the action sequences 
of each object. Each process subgraph contains all nodes 
that represent the ACs associated with that object and the 
edges of the ACIG connecting those nodes. These sub-
graphs, called process subgraphs, also provide sequencing 
of the object actions. Figure 6 contains the process sub-
graphs for the Machine Repairman model. 

This model has three process subgraphs, one for each 
object. Although each process subgraph normally depicts 
the sequence of possible actions for some model object, 
complete sequencing of actions may not be provided. For 
example, for this model, the process subgraph for the envi-
ronment, subgraph 1, consists of two ACs, “initialization” 
and “termination” and the graph is not connected. This is 
not unusual for an environment object (which often con-
tains only initialization and termination ACs), but uncon-
nected process subgraphs can also occur for other model 
objects. The other two subgraphs for the machine and re-
pairman objects do depict action sequences for the objects 
and nicely reveal the cyclical behavior of each. 

begin
repair

end 
repair

failure

initiali-
zation

failure

travel 
to idle 

arrive 
idle 

termi-
nation

travel 
to mach 

Activity 
Subgraph 1

Activity 
Subgraph 2 

Activity 
Subgraph 3

Activity 
Subgraph 4
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Figure 6: Machine Repairman Process Subgraphs 
 

For each of these transformations, the union of the set 
of nodes in the subgraphs may not be the complete set of 
nodes in the original ACIG since some nodes may appear 
in no generated subgraph. Surprisingly, this is not a prob-
lem for generating transformations since for each of the 
three world view transformations, any node not included in 
any of the world view subgraphs cannot occur in any exe-
cution based on the CS (Overstreet 1982). The action clus-
ter associated with any unincluded node likely indicates a 
specification error, though it can be deleted from the speci-
fication without affecting model behavior defined by the 
rest of the specification. 

5 WORLD VIEW BASED SIMPLIFICATION 

Each individual event, activity, and process specification re-
sulting from the above graphs can potentially be simplified 
by removal of unnecessary tests or actions and simplification 
of some control structure.  This is an important part of the 
transformation process, for it allows the resulting specifica-
tions to take additional advantage of the representational ad-
vantages of a target world view.  Effective automation of 
this simplification is possible; Puthoff (1990) describes an 
expert system that performs this task for CSs.  Nance, 
Overstreet and Page (1999) describe improved execution 
performance for several simulation models based on the im-
provements found by Puthoff’s expert system. 

5.1 Precondition/Postcondition Simplification 

All simplifications illustrated here are the result of a 
pre/post condition analysis for sequences of model actions. 

initiali- 
zation 

termi- 
nation 

travel 
to mach 

begin 
repair 

end 
repair 

termi- 
nation 

travel 
to idle 

arrive 
idle

failure

travel 
to mach

begin
repair

end 
repair

termi- 
nation

travel
to idle

Process 
Subgraph 1 

(environment) 

Process 
Subgraph 2 
(machine) 

Process 
Subgraph 3 
(repairman) 
The condition expressions for each AC should define a 
minimal precondition for the actions of that cluster.  Each 
subgraph, whether event, activity, or process, defines a se-
quence of model actions. Analysis of the actions of each 
sequence allows formulation of postconditions for each 
AC.  Comparison of the postcondition of an AC with the 
precondition of each of its successors (as identified by the 
appropriate subgraph) provides one basis for simplification 
of the specification. 

Several types of the possible world-view-based simpli-
fications are illustrated through an example.  Consider a 
specification of the End Repair event following an event 
scheduling world view. A direct transformation (without 
any simplification) of the ACs into an event specification 
is presented in Figure 7.  Lines 1 through 4 are from the 
End Repair AC, lines 5 and 6 from “termination,” lines 7 
through 9 from “travel to idle,” and lines 10 through 13 
from “travel to mach.” 

 
 
EVENT end repair(i:1..n) 
1: SETALARM(failure,negExp(mean_uptime),i) 
2: failed[i] = FALSE 
3: status = avail 
4: numRepairs = numRepairs+1 
5: WHILE(numRepairs>maxRepairs) 
6:   STOP 
7: WHILE((FORALL i IN 1..n, NOT failed[i]) 
AND 
     status=avail AND location≠idle){ 
8:   SETALARM(arrIdle,travelTime(location, 
       idle)) 
9:   status = travel 
     } 
10:WHILE(status=avail AND 
 (FOR SOME i IN 1..n,failed[i])){ 
11:  SETALARM(arrMach,traveltime(location, 
   mach),closestFailedMach(failed, 
   location)) 
12:  status = travel 
 } 
 

Figure 7:  End Repair Event Specification–Unsimplified 
 
Note that the condition of each contingent AC be-

comes the condition for a “while” construct. A “while” is 
required rather than an “if” since the actions of the AC 
should be repeated as long as its condition is satisfied. 

Several types of simplification of this specification are 
possible. For this event specification, all WHILE con-
structs have been replaced with noniterative constructs (the 
simplified specification is presented in Figure 8). For the 
“travel to idle” and “travel to mach” ACs, replacement can 
be done since an action of each changes the value of the 
condition to FALSE.  For example, in Figure 7, the condi-
tion of line 7 specifies that status must have the value 
“avail,” but line 9 sets its value to “travel.”  In the case of 
the “termination” AC, lines 5 and 6 of Figure 7, the STOP 
action of line 6 implies that the condition of the AC need 



Overstreet and Nance 

 
not be reevaluated.  Thus a postcondition of these ACs im-
plies that their precondition is not satisfied without some 
further model action. 
 
 
   EVENT end repair(i:1..n) 
1:   SCHEDULE(failure,negExp(meanUptime),i) 
2:   failed(i)=FALSE 
3:   num_repairs = num_repairs+1 
4:   IF num_repairs>max_repairs 
5:     STOP 
6:   IF FOR ALL i IN 1..n NOT failed[i] 
7:     SCHEDULE(arrIdle,travelTime(  
         locationIdle)) 
    ELSE 
8:     SCHEDULE(arrMach,travelTime(location, 
         mach),closestFailedMach(failed, 
         location)) 
9:   status := travel 
 

Figure 8:  End Repair Event Specification–Simplified  
 

Another obvious simplification is possible when an ac-
tion of a preceding AC eliminates the necessity of testing 
the value of an attribute in the condition of a successor AC. 
This happens several times in this event specification. In 
line 3 of Figure 7, status is set to “avail” thus, its value 
need not be explicitly tested in the conditions of  7 and 10. 

The validity of eliminating the test of the value of lo-
cation of line 7 is more difficult to justify, but still results 
from a postcondition of the “end repair” AC. A partial 
analysis, to illustrate the process, follows. Unlike the sim-
plifications of the test for status in lines 7 and 10, the value 
of location is not altered by the “end repair” AC. But a 
precondition for the occurrence of “end repair” is that loca-
tion not have the value “idle.” This condition is satisfied 
since (1) the value of location is only altered by the “begin 
repair” and “arrive idle” ACs, (2) an “end repair” can only 
occur after a “begin repair” (since this is the only place the 
“endRepair” alarm is set), (3) the value of location is not 
“idle” after the “begin repair” action, and (4) an “arrive 
idle” cannot occur between a “begin repair” and “end re-
pair” (so that the value of location cannot be altered before 
the “end repair” occurs). 

Two other simplifications are made in producing Figure 
8.  First, the two conditions in lines 7 and 10 of Figure 7 are 
such that if one is true, the other is false, so the two WHILEs 
become an IF-THEN-ELSE construct. Secondly, the action 
of line 3 of Figure 7 has been eliminated. This is valid since, 
if the model execution does not terminate, the value of status 
will be changed to “travel” either in lines 9 or 12 since these 
two alternatives are part of an IF-THEN-ELSE action.  So  
setting it the value of status  to “avail” is obviated. 

The result of these simplifications is presented in Figure 
8.  SETALARMs are replaced with SCHEDULEs so that 
the syntax looks more like an event scheduling language. 
Because of space constraints, the additional simplifications 
to complete the event scheduling specification are omitted. 
The process for each of the three world views trans-
formations is similar and consists of deriving postcondi-
tions for sequences of ACs and comparing them with pre-
conditions of other ACs. In general, the transformations 
involve reorganizing provided aggregates of model actions 
and tests into different groupings, followed by elimination 
of resultant redundancies in each new grouping.  The sim-
plifications are desirable if the resulting specification is to 
take full advantage of the target world view 

While some simplifications are easily automated, others 
appear complex. Our experience in this area indicates that 
the automated discovery of some simplifications requires a 
robust theorem proving system; the simplification of line 7 
of Figure 7 provides an example. The proof that it is not nec-
essary to consider the value of  “location” is not trivially 
derived.  Identifying such properties of a specification auto-
matically can be difficult or even impossible; no a priori 
bound for the complexity can be established. 

5.2 Impact of Simplifications 

We believe that modelers, in producing both specifications 
and implementations, intuitively use something like 
pre/postcondition analysis. They sometimes omit model 
actions and tests for parts of preconditions (and sometimes 
entire preconditions) when they know that the tests or ac-
tions are unnecessary.  It seems likely that these omissions 
can be based on more than what we have illustrated in the 
above example (where all are based on analysis of the pro-
vided specification); modelers may also draw both on their 
deep knowledge of possible behaviors of a simulated sys-
tem and on their understanding of implementation details 
of a supporting simulation tool. 

Each eliminated test and action becomes implicit in 
the resulting representation. However in another world 
view, this implicit test or action may require explicit repre-
sentation.  A direct transformation from one world view to 
another can require discovery of what was omitted by a 
specifier or programmer. This poses a problem so formida-
ble that we suspect no general algorithm for direct world 
view transformations can be constructed. 

A converse issue, in a sense, is the challenge of the 
developer of the translator from the model specification to 
the model implementation (the executable program).  The 
CS as a specification tool is focused correctly on what be-
havior is intended.  The implementation describing how 
that behavior is achieved requires additional resolution of 
abstraction and considerably more detail as discussed in 
(Page and Nance 1999).  Automatic translation from the 
CS, or any other specification language representation, 
forces the translator writer to make assumptions and deci-
sions that should include the potential application do-
main(s), the users of the model development environment, 
and the likely costs incurred in experimental use. 
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6 SUMMARY 

In other places (Overstreet and Nance 1984, 1987), we 
have discussed supporting the model specification process 
by providing analysis tools to evaluate a model specifica-
tion during development. The traditional world views pro-
duce model specifications with embedded implicit knowl-
edge  that can simplify the specification process but at the 
price of inhibiting or preventing assistance through analy-
sis.  The benefits of model analysis are still being explored. 

The characterization of each world view as providing a 
different type of locality reflects our view that no single 
world view is necessarily superior to any other for simula-
tion modeling in general. This lack of superiority is due in 
part to the significant variation in model simplification pos-
sible with each world view that is due to properties of the 
model being specified.  The choice of the “proper” world 
view for a particular model can impressively reduce the task 
of specifying model behavior due to the variation in implicit 
actions and conditions possible within each world view. 

The fact that each world view encourages omission (at 
least in terms of how much must be included in the specifi-
cations) appears to make direct translation among the vari-
ous world views impossible.  Automated translation from a 
more basic form, a Condition Specification, into represen-
tations that take advantage of each of the three world views 
is instructive in identifying some benefits of each world 
view.  The CS’s ability to support multiple world views, 
it’s enabling of significant model analysis for both error 
detection and identification of some revealing model char-
acteristics, and the ability to create efficient run-time im-
plementations directly from it makes the CS an useful tool 
for model specification. 
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