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ABSTRACT

Hybrid system modeling refers to the construction of system
models combining both continuous and discrete dynamics.
These models can greatly reduce the complexity of a phys-
ical system model by abstracting some of the continuous
dynamics of the system into discrete dynamics. Hybrid
system models are also useful for describing the interaction
between physical processes and computational processes,
such as in a digital feedback control system. Unfortunately,
hybrid system models poorly capture common software ar-
chitecture design patterns, such as threads, mobile code,
safety, and hardware interfaces. Dealing effectively with
these practical software issues is crucial when designing
real-world systems. This paper presents a model of a com-
plex control system that combines continuous-state physical
system models with rich discrete-state software models in
a disciplined fashion. We show how expressive modeling
using multiple semantics can be used to address the design
difficulties in such a system.

1 INTRODUCTION

Traditionally, control systems have been designed by mod-
eling the behavior of a system using ordinary differential
equations and analytically solving for continuous-time con-
trol signals with desired properties. Unfortunately, the
behavior of many interesting systems cannot be easily de-
scribed using ordinary differential equations alone. These
systems, such the canonical bouncing ball system, often in-
clude conceptually instantaneous state transitions that cannot
be adequately represented using standard differential equa-
tion formalisms. Modeling the system in more detail to
remove instantaneous behaviors is possible using differen-
tial equations alone, at the expense of greatly increasing
the complexity of the model.

Recently, multi-formalism techniques for analysis and
control of hybrid systems (Lygeros et al. 2001) containing
both continuous and discrete dynamics have been developed.
By directly expressing discrete state transitions, many prob-
lematic sytems can be cleanly modeled as hybrid systems.
Less commonly, hybrid system formalisms are used to de-
scribe the interaction between discrete computation systems
and the physical world. This interaction often arises in
the form of embedded systems, such as digital control sys-
tems (Liu et al. 1999, Eker et al. 2001), high-performance
data acquisition systems (Ludvig et al. 2002), and hetero-
geneous electronic systems containing analog and digital
components (Liu 1998). In these cases, the discrete and
continuous portions of a system are tightly coupled and their
interaction is crucial to the proper behavior of the system.

Unfortunately, although hybrid system formalisms pro-
vide a framework for describing the interaction between
software and the physical world, hybrid systems are not a
good model for designing embedded software. It is not gen-
erally practical to explicitly model the computational states
of embedded software through the discrete states of a hybrid
system model because of the large number of explicit states
required. Furthermore, such a model bears little resem-
blance to efficient executable code, making implementation
synthesis difficult.

We have approached this problem by constructing a
design environment, called Ptolemy II (Davis et al. 2001),
that is capable of modeling both the hybrid dynamics of phys-
ical systems and complex software architectures. Ptolemy
II emphasizes the disciplined construction of hierarchically
heterogeneous (Eker et al. 2003) system models using mul-
tiple modeling formalisms, called models of computation
(Lee 2002). In Ptolemy II, each model of computation is
represented by a director that gives modeling semantics to a
particular level of hierarchy in the model. Hierarchical het-
erogeneity allows discrete-state and continuous-state models
to be constructed from primitive components and be robustly
composed to build hybrid system models. These models
can be further composed with models of embedded software
constructed using semantics appropriate for software design.
Since every model exposes an opaque component interface
that completely describes all interaction with other com-
ponents, complex models can be constructed from smaller
models without overwhelming a system architect.

We call this style of component-based modeling actor-
oriented design. One advantage of actor-oriented modeling
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is abstraction: systems can be represented at high lev-
els of abstraction, facilitating rapid creation of executable
simulation models. The functional behavior and current
state of a component are encapsulated inside the compo-
nent. Timing and concurrency can be represented directly
as part of an actor-oriented model, enabling detailed sim-
ulation of software systems interacting with the physical
world. Furthermore, since actors have well-defined inter-
faces, a model of a hybrid embedded system can often
be easily partitioned into a software model and an envi-
ronment model, enabling hardware-in-the loop simulation
and automatic implementation synthesis. Given correct, de-
tailed models of a physical system, actor-oriented modeling
provides a correct-by-construction path to the construction
of embedded software. This paper illustrates these de-
sign techniques using a model of an autonomous vehicle
controller for the Caltech Multi-vehicle Wireless Testbed
(Cremean et al. 2002) as an extended example.

2 CALTECH MULTI-VEHICLE WIRELESS
TESTBED

Murray et al. at Caltech have developed a platform for
experimenting with coordinated control of autonomous ve-
hicles, called the Multi-Vehicle Wireless Testbed (MVWT)
(Cremean et al. 2002). The platform consists of a number
of ground vehicles operating in a controlled environment.
Propulsion for each vehicle is provided by a pair of ducted
fans mounted on top of the vehicle. By applying the same
force to each fan, the vehicle will move forward in a straight
line, while applying a different force to each fan causes the
vehicle to turn. An embedded computer controls the fans
through off-the-shelf motor controllers connected to an RS-
232 interface. The vehicles slide on three industrial casters,
allowing them to slide sideways while turning. The operating
environment of the vehicles includes a video camera-based
localization system (the Lab Positioning System), which
broadcasts location and orientation information for each
vehicle over 802.11b wireless ethernet using connectionless
User Datagram Protocol (UDP) datagrams. Because of the
embedded, highly mobile nature of the vehicles, control
commands such as way points are entered from a separate
base station computer and transmitted to individual vehicles.

From a control-oriented viewpoint, the continuous-time
dynamics of a Caltech vehicle can be modeled by the
equations (from (Cremean et al. 2002)):

m ẍ(t) = −η ẋ(t) + [Fs(t) + Fp(t)] cos θ(t)
m ÿ(t) = −η ẏ(t) + [Fs(t) + Fp(t)] sin θ(t)
J θ̈(t) = −ψ θ̇(t) + [Fs(t) − Fp(t)] r

where friction is assumed to be proportional to velocity.
Fs(t) and Fp(t) are inputs to the system corresponding to
the forces applied to the starboard and port fans respectively.
The system state σ(t) = [x(t), ẋ(t), y(t), ẏ(t), θ(t), θ̇(t)]T

is available to a control algorithm through the localiza-
tion system. The vehicle dynamics are similar to a two
dimensional approximation of winged aircraft dynamics
(Evans et al. 2001), making the testbed useful for experi-
menting with aircraft control systems. The Caltech group
has implemented Linear-Quadratic Regulator (LQR) based
state-feedback digital control of the above dynamics capable
of tracking smooth trajectories.

In the physical system, there are several hardware lim-
itations that serve to complicate the design of the control
system. For instance, in the physical system, Fs and Fp are
limited to a maximum of approximately 5 Newtons, and
cannot operate in reverse. The fans are driven by discrete-
input motor controllers, resulting in quantization of the
forces that can actually be applied to the vehicle. The
localization system is only capable of capturing 60 frames
of video per second, limiting the availability of location
estimates. Lastly, the computational system is distributed
(between the localization system, the base station and var-
ious vehicle controllers) and communicates over a shared
media with the potential to lose data.

While these issues are partially addressed through robust
LQR control system design techniques, simulation is still
a crucial step in the design of such a system. In particular,
some system requirements must be specified explicitly at
the software level. For instance, one design requirement of
the system is that the base station must be able to record
telemetry from the vehicle and dynamically reconfigure the
executing controller. A safety requirement may state that if
the communication network fails or if the vehicle begins to
spin out of control, that the controller should power down
automatically. Simulation allows for these scenarios to be
modeled and appropriate action integrated into the software
model. Effectively modeling such behaviors, which might
be implemented using dynamic loading of mobile code
or software reconfiguration, requires software architecture
models that are fundamentally different from models of
the physical system. However, these models must be able
to interact with physical system models in a simulation
environment.

3 BASIC CONTROL MODEL

A Ptolemy II model of the physical dynamics of a single vehi-
cle is shown in Figure 1, where the hierarchical kinetic
and kineticY models are similar to kineticX. This
model is constructed in the style of Simulink, a commercial
tool produced by The Mathworks, Inc. The semantics of
component interaction are designed to support numerical
integration algorithms, implemented by the Integrator
component. The signals communicated between compo-
nents are interpreted as functions of time that are solutions
to a set of Ordinary Differential Equations. Simulation ap-
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Figure 1: A Model of the Continuous Dynamics of a Single Vehicle
proximates the values of these signals at desired points in
time. We call this style of modeling, with continuous-time
signals and numerical integration, the continuous-time (CT)
model of computation.

In this model, the inputs are not taken as continu-
ous functions, but are instead assumed to be discrete-event
signals. Discrete-event signals, unlike continuous-time sig-
nals, are assumed to take values only at a countable num-
ber of points in time. At all other points in time, a
discrete-event signal has no value and is said to be ab-
sent. This style of modeling, with chronological processing
of events in discrete-event signals, is called the discrete-
event (DE) model of computation. The Zero-Order
Hold components convert from discrete-event signals into
continuous-time signals suitable for integration. Similarly,
the PeriodicSampler component produces a discrete-
event signal, which happens to consist of events evenly
spaced in time, from the continuous-time signal. In this
model, the PeriodicSampler models the fact that only
sample values of the continuous-time dynamics are available
to the vehicle controller.

The interaction between the vehicle model, and the con-
troller is shown in Figure 2. This model includes a detailed
model of the data format between the plant and the con-
troller. The localization system broadcasts a UDP datagram
containing the encoded state of the vehicle, approximately
60 times a second. This communication is modeled by an
event consisting of a 56-byte array sent from the vehicle
model to the controller model. In response to each network
packet, the control computer executes the control algorithm
and eventually sends a three byte serial sequence to change
the speed of the fans. The serial communication is modeled
by a separate event sent from the controller. Conversions to
and from arrays of bytes are modeled by Extract Forces
andConstructLocalizationPacket, which are not
shown in detail.

Unfortunately, from the point of view of accurate simu-
lation, we have no idea how long the controller computation
will actually take in the final system. In this model, the
controller is idealized and generates its output event in zero
time. The model includes an explicit model of the computa-
tion and communication delay, given by the TimedDelay
component. Here the delay is assumed to be constant, but
it is trivial to substitute a stochastic delay, perhaps allowing
for the possibility of dropped packets.

A model of an LQR controller for tracking circu-
lar trajectories is shown in Figure 3. In this model,
Extract Vehicle Location decodes localization in-
formation from an array of bytes into a record of values
and Construct Actuator Output encodes the control
output into an array of bytes. The interesting part of the
controller is implemented by Circular Trajectory
Controller, and is shown expanded below. The tra-
jectories are generated in polar form according to pa-
rameters specified in the model. Note that input to the
Circular Trajectory Controller is a structured
record datatype containing six fields, one for each state
variable of the physical system. The state is converted to
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Figure 2: The Toplevel Simulation Model, Showing the Interaction Between the Model of Vehicle
Dynamics and the Model of the Controller
Figure 3: Model of the Vehicle Controller
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Figure 4: A Simulation Plot of the Position of a
Vehicle, Tracking a Counter-Clockwise Circular
Trajectory around the Point (3,3)
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Figure 5: A Partial Trace of the Discrete-Event
Signal Output from the Controller During Sim-
ulation, where the Value of Each Event is an
Array Consisting of a Dummy Start Byte and
One Byte Giving the Speed of Each Fan

another record containing the state in polar form and the
control law is computed in polar space. This controller
uses an idealized model of the forces produced by each
fan (implemented by Force Map), which in a real system
would be replaced by calibrated lookup tables. A simulation
plot is shown in Figure 4, and a trace of localization events
is shown in Figure 5.

The controller model is constructed as a synchronous
dataflow (SDF) model. (Lee and Messerschmitt 1987) In
this model, the signals between components are untimed
sequences of values. Each component processes these se-
quences in order at fixed relative data rates, allowing the
execution of individual components to be statically ordered
in a fixed schedule. Because of the nice scheduling proper-
ties and the ability to synthesize efficient implementations
(Bhattacharyya et al. 1996), SDF is a good model of com-
putation for dataflow-oriented embedded software.

4 IMPLEMENTATION

The model in previous section is a model that is constructed
primarily to allow simulation. Some aspects of the intended
system have been modeled explicitly, such as the format of
information received from the localization system. On the
other hand, some aspects of the system have been abstracted,
such at the communication between the localization system
and the controller. The model represents this communication
as an instantaneous event, while the actual communication
layer incurs some random (possibly infinite) delay. The
model of the vehicle is, itself an abstract representation
of the vehicle and the localization system. These models
cannot be viewed as a program, i.e. a source for synthesis,
without additional information, such as a communication
protocol or a 3D model of the physical vehicle.

The controller on the other hand, is a concrete model.
Given appropriate inputs and outputs, the controller is in a
form which directly corresponds to a software architecture
for implementing the controller algorithm. This architecture
can be automatically generated in a relatively straightfor-
ward mapping from the original. In order to perform the
synthesis procedure, the synthesizeable portion of the simu-
lation model (corresponding to embedded software) is first
partitioned from the abstract portion. The result of par-
titioning the above system is shown in Figure 6. Note
that the communication channels have been replaced with
Datagram, and SerialComm components encapsulating
the UDP and RS-232 communication interfaces.

Note that Figure 6 includes the entire partitioned model,
including the abstract portion corresponding to the vehicle
dynamics. The VehicleModel and Controller mod-
els are as before. In this model, SerialComm encapsulates
an RS-232 serial interface and the DatagramReader and
DatagramWriter encapsulate event-driven communica-
tion using UDP datagrams. While this portion is not useful
for implementation synthesis, it can be used for distributed
simulation. By executing the model of the vehicle on one
computer and a model of the controller on another com-
puter, more accurate simulation of the system behavior can
be performed. In particular, such a simulation includes
actual properties of the communication protocol, such as
network latency and packet loss, rather than an inaccurate
simulation model of those properties. Other combinations
are also possible, resulting in various forms of hardware-
in-the-loop simulation (Sanvido 2002). For instance, the
controller model can be executed in the actual system, tak-
ing the place of an embedded controller. This structure
allows us to test that communication protocols and vehicle
dynamics have been modeled in sufficient detail. Alterna-
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Figure 6: A Partitioned Version of the Simulation Model, where Event Communication Has Been
Replaced with Actors Encapsulating Communication Interfaces
tively, the vehicle dynamics model can be executed with
code generated from the controller model, to test that the
implementation was generated correctly.

5 IMPROVING THE SYSTEM MODEL

The model presented above includes many details that are
abstracted by the differential equation dynamics. How-
ever, from an embedded software perspective, the model is
still very minimal. It does not model how the system is
initialized, for instance, or how the system recovers from
errors. This information must either be specified as part
of code generation, perhaps by specifying a target platform
that provides initialization and reset capabilities, or it must
be specified through a more detailed system model. In
order to show how these might be represented in a more
detailed model, we concentrate on the interaction between
the control algorithm and the base station computer.

The first improvement we consider is the ability to
trigger mode switches from the base station. This is modeled
by augmenting the model of the controller with a finite state
machine to control reconfiguration, as shown in Figure 7.
In each mode, the modal controller behaves as the original
controller, which follows circular trajectory given by a set
of parameters. In response to switch events sent by the
base station over a separate UDP datagram port, the state
machine enters an intermediate switching state. The state
machine waits in the switching state until the position of
the vehicle is reasonably close to the new trajectory, at
which time the state machine automatically transitions to a
new state, reconfiguring the control algorithm to follow the
new trajectory. Although not shown, this model uses the
same control algorithm in each state. The guard leaving the
switching state must be designed so that the new trajectory
can be followed without saturating the available control
inputs. In the new controller state the vehicle follows a
circular trajectory with the new parameters. In this case,
the controller only switched between two fixed trajectories,
in order to emphasize the presence of switching states.
In general, the parameters of the new trajectory and the
switching guard could be received as part of the request for
a trajectory change.
The second improvement that we deal with is the abil-
ity of the base station to dynamically update and modify
the control algorithm remotely. This is modeled using a
MobileModel, as shown in Figure 8. This component does
not have behavior of its own, but simply encapsulates other
components received on its bottom input port. In this case,
the mobile model receives a description of the component
over a CORBA-based publish and subscribe network, en-
capsulated by the PushConsumer and PushSupplier
components. Essentially, the controller publishes a event
service which the base station computer subscribes to, allow-
ing it to push a new component description to the controller.
Although it was not represented here, switching guards are
often important when updating components, in order to
avoid control transients.

A final improvement to the model addresses the need
for automatic shutdown of the system in case of network
failure. A modified controller model is shown in figure
9, along with a simulation plot in Figure 10. Received
localization events are plotted in red, while missed events
are plotted in blue. After .1 seconds, corresponding to 6
missed localization events, the vehicle controller assumes
a network failure and disables the fans.

This model moves from a purely event-driven style of
execution, where the controller was driven by the arrival of a
network packet, to the time-driven Giotto model of compu-
tation (Henzinger et al. 2001, Henzinger et al. 2003). A
Giotto model presents an abstract view of time-triggered
tasks executing in a real-time operating system with deter-
ministic communication. Each signal in the Giotto model
is a special case of discrete-event signal where events occur
periodically in time. Like SDF, Giotto is a model of com-
putation that can be synthesized into efficient embedded
software.

In the model, the state of input channels is updated
based on incoming events from the localization system and
the time of the last event arrival on the input port to the
Giotto model is provided explicitly. The controller task
is triggered at a fixed rate of 100 Hz regardless of when
input events arrive and always sees the newest available
localization input. This architecture does not appreciably
increase the latency of the controller, but ensures that the



Neuendorffer
Figure 7: A Model of a Modal Controller
Figure 8: A Model of the Interaction Between the Base Station Computer (Left)
and the Control System Model (Right)
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Figure 9: A Modified Controller that Detects Network Failure
Figure 10: A Simulation Plot of Position Estimates
of a Vehicle for a Scenario With Network Failure
control algorithm is regularly executed, even in the absence
of fresh localization data. Detection of the network failure
is actually performed by the SafetyShutdown compo-
nent. This component compares the current time with the
time of the last localization event to determine whether or
not a network failure has occurred. The CurrentTime
component gives the current simulation time, as determined
by the toplevel discrete-event driven model. In synthesized
embedded software using a real-time operating system, the
current time would be implemented using a real-time sys-
tem clock. If a network failure is detected, feedback in
the model forces the software to be reinitialized before the
controller will be active again.

6 CONCLUSION

This paper has presented a sequence of Ptolemy II models
illustrating multi-formalism techniques for modeling the be-
havior of embedded control systems. Part of the complexity
in such systems can be handled by building heterogeneous
models with multiple execution semantics. By starting with
an abstract model that is close to a control engineer’s concep-
tualization of the system, we have engineered more complex
behaviors by leveraging more complex modeling idioms that
do not fit into an analytical model of the control system.
Ultimately, the model is designed so that control software
(or hardware) can be automatically synthesized from the
model after sufficient scenario-based simulation. This mod-
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eling approach combines idealized and concrete models of
the system, and provides a path to gain understanding of
idealized portions of the model through hardware-in-the-
loop simulation. In particular, multi-formalism techniques
enable certain complex design scenarios, such as the effect
of network losses on control system behavior, to be easily
specified within a general framework.
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