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ABSTRACT 

Building computational models of real world systems usu-
ally requires the interaction of decision modules and simu-
lation modules. Given different models and algorithms, the 
major hurdles in building a principled and robust system 
are model composibility and algorithm interoperability. 
We describe an approach to the composibility problem in-
cluding initial results. This exposition is given in the con-
text of Linear Programming as the decision technique and 
Discrete Event Simulation as the simulation technique, 
both applied to the design and operation of semiconductor 
supply/demand networks. 

1 INTRODUCTION 

A recurring theme in developing computational models of 
the real world is the necessity of including both physical 
and logical processes. The system being studied presuma-
bly has some physical behavior that develops over time, 
but requires direction from some logical process to select 
among possible actions to achieve a system performance 
goal (see Figure 1).  
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Figure 1: The Abstract Computation Problem 

 

Although the algorithms, models, and data usually 

overlap to some degree, decision making and decision exe-
cution are generally very different computationally. There 
are at least two extreme options that can be employed to 
address these differences.  

On one hand, a system design can force the required 
functionality into a single monolithic model. However the 
result is often very difficult to develop, validate, verify, 
use, and maintain because of the confounding of the deci-
sion making and decision execution processes.  

On the other hand, the models and algorithms for deci-
sion making and decision execution can be designed and 
implemented separately and then used together in an inte-
grated fashion. One major difficulty with this approach lies 
in the details of integrating the operation of the decision 
making module and the decision execution module. While 
there exists a rich and extensive literature on computational 
models for both decision making and decision execution, 
most examples where these models are used in combina-
tion rely on ad hoc approaches to integration of the specific 
implementations of interest. From a more general and for-
mal perspective, the computational issues with robust inte-
gration are model composibility (our particular focus here) 
and module interoperability (see Figure 2).  Composability 
is concerned with how to create different models that are 
semantically consistent.  Interoperability is focused on the 
software used to support communication and synchroniza-
tion at runtime. 

In addition to composibility and interoperability, an-
other domain-independent issue inherent in this approach 
is the concept of “netting”. Execution of the plan will  
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Figure 2: Composibility and Interoperability 

 
rarely (if ever) produce the state of the stochastic world 
expected by the planning module. This “netting” will have 
to reconcile the expected and actual states of the world for 
the decision module, and while this problem is universal, 
its solution is highly dependent on the details of the do-
main. Composibility is similar in that it is universal in this 
class of problems, but different in that it has both domain 
independent and dependant facets as we will show here. 

To explore these issues without loss of generality, we 
have selected as an application domain that of managing a 
semiconductor supply/demand network (SSDN) (Figure 3). 
The decision module is charged with building a plan for 
current and future activities including starting materials 
into factories, shipping materials between locations, and 
moving materials into and out of warehouses based on a 
profitability goal. The execution module is intended to 
manage the (virtual) current and future application of the 
plan to the factories, warehouses, and transportation links 
of the real system including as much of the stochasticity of 
the real world as is possible and appropriate. The decision 
module needs as input the state of the world resulting from 
the past application of the previous plan, and produces the 
plan for the future. The execution module needs the plan of 
action to project forward in time to produce the future 
states of the world. Clearly these are quite different algo-
rithms requiring different models. 
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Figure 3: An Example from Manufacturing in a SSDN 
To ground our exposition of composability, interop-
erability, and netting, we have selected, without loss of 
generality, specific decision and execution approaches for 
experimentation. From the range of possible mathematical 
and heuristic decision algorithms, Linear Programming 
(LP) has been selected. Discrete Event Simulation (DES) 
has been selected from the range of possible continuous 
and discrete real world execution projection approaches. 
To reiterate, the focus of our work is not LPs and DESs for 
SSDN, but rather the general and specific aspects of the 
composability of their models in this application domain. 
We have described our work in the domains of LP and 
DES in other publications (Kempf et al. 2001, Kempf 
2004) and the references they contain. 

The practical use of the test-bed resulting from robust 
model composibility (and attendant module interoperabil-
ity and netting) is the improved design and operation of the 
SSDN example. This type of economic system can gener-
ate, in the case of Intel Corporation, 30B$ in annual reve-
nue. Given the complexity of operating such a network, the 
test bed partially described here is invaluable. The ability 
to refine decision processes as well as the number, loca-
tion, topology, and properties of the physical entities with-
out the overhead of continuously reconfiguring interfaces 
is a major improvement over existing methods. 

2 RELATED WORK 

2.1 Model Composability 

With model composability, a large problem can be parti-
tioned and appropriate modeling approaches used to model 
the overall system. An approach to model composability, 
therefore, must ensure semantic integrity of the parts and 
their combinations. Composite models with appropriate 
semantic underpinning can then be ensured to correctly 
execute and interoperate. The lack of an approach and its 
associated methodology to support simulation model com-
posability is a well recognized and documented concern 
(e.g. Davis and Anderson 2003; Fishwick 1995). For 
SSDN, it is possible to integrate LP and DES models using 
custom-built bridges through a combination of program-
ming languages and communication protocols (e.g., God-
ding and Kempf 2001). Similarly, Agent and DES models 
can be composed by ensuring correct ordering of events 
and valid types of message exchanges (Sarjoughian and 
Plummer 2002). These kinds of approaches result in 
pseudo composability – achieving model integration 
through interoperability between a simulation engine and 
an optimization engine or an interpreter. 

2.2 Multi-Formalism Modeling 

Constructing models using two or more modeling ap-
proaches requires a multi-formalism approach where each 
part of a composite model is described in a formalism that 
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is most suitable. Within a system theoretic framework, 
much progress has been made on formal theories and 
methodologies of how to construct discrete and continuous 
simulation models that have well-defined properties such 
as conversion of continuous data to discrete data and cor-
rectness of synchronization between continuous and dis-
crete simulation protocols (Zeigler, Praehofer, and Kim 
2000). Other approaches such as Ptolemy II (Plotomy 
2004) offer capabilities to compose continuous models of 
physical systems with discrete models of controllers that 
are responsible for managing behavior of the former. Un-
fortunately, neither of these approaches or other similar 
ones are suitable for the SSDN. For example, an agent 
based approach such as (Swaminathan, Smith, and Sadeh 
1998) does not address how to compose complex decision 
models with large stochastic data flows. For these formal-
isms to support development of complex decision models 
and thus SSDN, their underlying frameworks need to be 
extended with new concepts and methods. 

Due to the unavailability of a suitable framework for 
modeling SSDN, decision and process modules are gener-
ally combined using ad-hoc low-level programming tech-
niques. Optimization modules have been integrated with 
simulation modules for specific cases (e.g. Hung and 
Leachman 1996) resulting in ad-hoc composability. Cus-
tomized combination of models, however, are not based on 
sound principles that can support well-defined relation-
ships among the components of a composed model. 

3 BACKGROUND 

3.1 Linear Programming Formalism 

The purpose of an LP is to find the best answer when many 
exist. Linear programming can be classified as a selection al-
gorithm where an answer is selected from a set of many dif-
ferent possibilities. Models described in linear programming 
consist of an objective function, a set of constraints, a set of 
cost variables, a set of decision variables, and a set of con-
stants (Wu and Coppins 1981). The LP relationships includ-
ing constraints and objective functions must all be linear.  

LPs have been applied successfully to a wide range of 
planning applications (Hopp and Spearman 1996, Chopra 
and Meindl 2001) when each problem can be described as a 
set of linear constraints and a cost function. Linear pro-
gramming, however, is not suitable for describing dynamic 
(time-driven) behavior of systems. Instead, constraints and 
objective function are useful for formulating the inputs to an 
optimization problem – i.e., a problem that searches for the 
best assignment of values assigned to decision variables to 
achieve the maximum (minimum) objective function value. 

3.2 DEVS Formalism 

The DEVS (Discrete Event System Specification) is a 
modeling formalism for describing (discrete and continu-
ous) dynamical systems as discrete-event models. Complex 
models can be hierarchically constructed from atomic and 
coupled models that communicate with other models.  

An atomic model specifies input variables and ports, 
output variables and ports, state variables, internal and ex-
ternal state transitions, confluent transition function, output 
and time advance functions (Zeigler, Praehofer, and Kim, 
2000). An atomic model is stand-alone component capable 
of autonomous and reactive behavior with well-defined 
concepts of causality, timing, handling multiple inputs and 
generating multiple outputs.  

A coupled model description specifies its constituents 
(atomic and coupled models) and their interactions via ports 
and couplings. A coupled model can be composed from a 
finite number of atomic and other coupled models hierarchi-
cally. Due to its inherent component-based support for 
model composition, this framework lends itself to simple, 
efficient software environments such as DEVSJAVA 
(ACIMS 2003). Coupled models, similar to atomic models, 
have sound causality, concurrency, and timing properties 
that are supported by various simulation protocols in either 
distributed or stand-alone computational settings. 

While this formalism may be used for optimization, its 
conceptual framework is not well suited to support linear 
programming or other optimization modeling approaches 
where general mathematical equations specify constraints 
among decision variables (Godding, Sarjoughian, and 
Kempf, 2003). Instead, DEVS and more generally systems 
theory is concerned with describing the structure and behav-
ior of a system and simulating it for some period of time. 

3.3 SSDN Modeling Using LP and DEVS 

Composing multi-formalism models described in linear 
programming and discrete-event formalisms requires a set 
of well-defined concepts that account distinctly for both 
composition and interoperability. Many benefits can be 
foreseen with such an approach. For example, it can enable 
development of a methodology for describing models 
composed of decision models and process models without 
requiring modelers to delve into the details of a given 
simulation engine and a given optimization solver. Evalua-
tion of decision policies against physical process flows, or 
evaluation of the impact on decision policies when the 
physical system is changed would be possible without re-
quiring custom software development. In addition, if a 
methodology is available, it would pave the way to enable 
the development of tools that allow modelers of different 
expertise (such as mathematicians and simulation model-
ers) to create different, yet semantically consistent model 
components of the composite model that could then seam-
lessly execute and interoperate. 

4 APPROACH 

Two significant issues must be addressed to support com-
position and execution of SSDN multi-formalism models. 
One is how to support the complex data transformations 
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required between the models. The second is how to enforce 
semantically correct composition of the different models. 

Our approach to manage the data transformations is a 
broker between the models. The broker is referred to as a 
Knowledge Interchange Broker (KIB). This broker must 
provide capabilities beyond those offered by the simula-
tion/execution (e.g., ILOG CPLEX and DEVS simulation 
protocol) and middleware (e.g., CORBA) layers.  

Our approach to enable the enforcement of the compo-
sition of semantically correct models is to introduce the 
concept of a common model. This model would provide a 
common vocabulary to impose constraints on the decision 
and physical models.  

4.1 KIB 

The proposed multi-formalism composability approach for 
SSDN focuses on combining two classes of models – op-
timization and simulation models expressed in LP and 
DEVS formalisms, respectively. This approach is based on 
a three-layer worldview where the modeling, simula-
tion/execution, and middleware layers are separated from 
one another (Sarjoughian and Cellier 2001). Within the 
modeling layer, decision policies can be modeled as linear 
programs and discrete event simulation can be used for 
modeling process flows. A conceptual view of the model-
ing layer is depicted in Figure 4. 
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Figure 4: Three Layer World View with KIB 

 
The KIB must provide its own modeling constructs 

and execution capabilities to support composition of deci-
sion models and process models. The KIB can be viewed 
from three complementary perspectives. First, it needs to 
provide primitive capabilities for translating (or mapping) 
of data from LP to DEVS and vice versa. This requires not 
only syntactical (structural) translation between LP and 
DEVS but also imposing semantically sound behavior of 
the composed model and its constituents. 
Second, given the decision and process behavior of the 
SSDN, it is necessary to describe how the SSDN applica-
tion domain affects or constrains the KIB. For example, the 
decision and process models illustrated in Figure 4 need to 
use the same names for the messages and have a common 
model of what data is shared, exchanged, and the transfor-
mations needed for a composed model. 

Third, the specification of the KIB must account for 
timing between the LP and DEVS models. This includes 
enforcement of (time-based) causal relationships support-
ing their concurrent execution, and their synchronized 
communications.  

Figure 5 illustrates some simple primitive capabilities 
of the KIB. Part (a) is a scenario showing the generic ag-
gregation and disaggregation of the port ID for messages 
between LP and DEVS. LP models do not have ports while 
DEVS models do. Part (b) is a domain specific scenario 
exemplifying the passing of messages and data transforma-
tion between the SSDN decision policy and the associated 
manufacturing process flow it is controlling.   
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Figure 5: Capabilities of KIB 

 
Netting is a special type of transformation needed to 

correct discrepancies between the plan and what actually 
happened.   One simple strategy is to divide the plan into 
smaller time periods and add or subtract the differences 
from the current time to the next period.  For example, the 
netting algorithm could divide a weekly plan by seven and 
at the end of each day, add or subtract the daily discrepan-
cies to the plan for the next day. 

4.1.1 LP and DEVS I/O Composability via KIB  

The mathematical representations for LP and DEVS mod-
eling formalisms are shown in Table 1. Each formalism 
provides a set of general modeling constructs for describ-
ing a class of behaviors – e.g., dynamical discrete process 
models with DEVS. To form a composable modeling ap-
proach, it is necessary to formulate appropriate logic for 
the KIB to support the transformation of data/control be-
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tween LP and DEVS, the addition of missing data/control, 
and the deletion of superfluous data/control that is irrele-
vant. Furthermore, it is central for the KIB to support cau-
sality, concurrency, and synchronization as the keys to cor-
rect behavior specification and combined execution of LP 
and DEVS models. 

 
Table 1: Standard Forms for LP and DEVS 

LP Formalism DEVS Formalism 
 
min{cx: Ax=b, x≥0)  
    where:  
x ∈ ℜn      
c ∈ ℜn 

b ∈ ℜm  
A ∈ ℜm×n   

 
• c is a vector of cost 

variables  
• x is a vector of deci-

sion variables (un-
knowns) 

• b is a vector of con-
stants  

• A is the constraint 
matrix 

 

 
<X,S,Y,δint,δext ,δconf, λ, ta> 
    where: 
• X is the set of input val-

ues 
• S is a set of states 
• Y is the set of output 

values 
• δint is the internal state 

function 
• δext is the external state 

function 
• δconf is the confluent 

function  
• λ is the output function 
• ta is the time advance 

function 

 
Since these two formalisms are distinct, the KIB needs 

to translate the inputs and outputs from one formalism to 
the outputs and inputs of the other, respectively. This is 
appropriate since each formalism can be viewed as a sys-
tem with well-defined input and output interface. The pos-
sible inputs to the LP formalism from DEVS would be the 
cost vectors, the constraint matrix, and the constraint val-
ues. (i.e. c, A, and b shown in Table 1). Some or all of 
these could be DEVS inputs depending on the problem be-
ing modeled. The outputs of the LP formalism to DEVS 
would be x, the decision variables. For the DEVS formal-
ism, the inputs from the LP would be a subset of X – i.e., 
the set of values available on the input ports of atomic and 
coupled models. Similarly, the outputs of the DEVS to the 
LP would be a subset of Y – i.e., the set of output values 
from the atomic and coupled models.  

LP and DEVS models may have inputs and outputs 
that are independent of one another. For example, a proc-
ess model can generate outputs that are of no interest to the 
decision model, yet of importance to observe the process 
flows. The process model may receive inputs that are not 
sent by the decision model. These types of interactions be-
tween LP and DEVS models provide a basis for formulat-
ing an appropriate logic for the KIB such that it can sup-
port transforming data structures and ensuring causality, 
concurrency, and synchronization between the models. 
4.2 Problem Domain Common Model 

To formulate decision models and process models that are 
semantically correct, they need to share some common 
data of the problem they are representing. A methodology 
is necessary to characterize ways in which various pieces 
of the common model can be mapped onto the optimiza-
tion and process models. Additionally, the common model 
is important in the development of the KIB – defining 
translations (interactions) between the optimization and 
simulation models. For example, KIB needs to have a well 
defined knowledge representation in order to convert a re-
lease command from the decision layer into an instruction 
for the correct entity in the process model. As mentioned 
earlier, these translations may involve complex calcula-
tions such as netting.  

Figure 6 shows a conceptual representation of how the 
common model relates to the other models. The common 
model constrains the valid names, configurations, and 
translations that can be modeled in the LP, KIB, and 
DEVS. The common model needs to specify the structure 
of the problem, such as the SSDN topology, and also the 
valid relations between the models. For example, the 
common model may specify that some specific data values 
need to be aggregated from a daily resolution to a weekly 
resolution. The KIB transformation model would use this 
to specify the detailed aggregation algorithm to use on the 
data variables given by the common model. 
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Figure 6: Common Model Relationships 
 
A small example of the type of common structural 

data needed to represent the topology and product flow of a 
SSDN is shown in Figure 7. This common model is a map-
ping of the BOM (Bill of Materials) to a process flow to-
pology. It specifies facility names, product names, and the 
relation of product routes to facility topologies. Material 
can be shipped between facilities via transportation, can be 
held within a manufacturing line and considered as work in 
progress (WIP), or can be sitting in a warehouse. 

This model corresponds to a segment of the topology 
shown in Figure 3. The possible routes through the net-
work have been modeled for products P1-P7. For example, 
raw silicon (P1) can be sent into plant 1 or 2 and fabricated 
into one of the P4-P7 products. If the material is made into 
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Figure 7: SSDN Common Model 

 
P5, it can be shipped to either warehouse 1 or 2. The knowl-
edge of which products can be made in what facilities and 
where it can be routed must be the same in both models. 

4.3 Behavioral Composability between  
LP and DEVS Models  

The approach described in Sections 4.1 and 4.2 must sup-
port the passage of time since simulation models are time 
driven. The necessity of modeling time has important con-
sequences as alluded to earlier. In particular, causality, 
concurrency and synchronization need to be accounted for 
with respect to time. For example, causality not only needs 
to be consistent in the decision and process model specifi-
cations, but also the concurrent execution of the models 
and synchronized data exchange between them need to be 
consistent with the causality specification of the KIB. 
Some of the details of the causality, concurrency, and syn-
chronization are presented next.  

4.3.1 Causality 

The KIB will need to enforce the correct causality for mes-
sage passing between the decision and process models. For 
example, in the scenarios we are modeling, it is not possible 
in the real world for the planning organization to have 
knowledge of the future state of the world, so it would not be 
correct for the decision algorithm to have any future pro-
jected state from the process models. Causality is already 
accounted for within the DEVS framework. However, LP 
models are not time dependent and their behaviors do not 
evolve over time. Therefore, support for causality of the 
composed models may be placed in the KIB. That is, the 
KIB will support causality between LP and DEVS models 
while preserving the causality of the DEVS models. 

4.3.2 Concurrency 

The KIB will need to manage concurrency since the execu-
tion and simulation modules must be under the control of 
two different processes. One of the most straightforward 
methods to support this type of concurrency is via the use 
of synchronization.  
Aside from synchronization of processes, there is 
also the potential of “logical concurrency”. That is both 
linear and process models consume logical time. Since 
both models can be expressed in terms of time, they can 
be executing concurrently in logical or physical time. For 
example, assuming it takes two days (logical time) to 
generate a plan, the process model may execute concur-
rently with the decision model for two days (logical time) 
before receiving a plan. 

4.3.3 Synchronization 

In addition to causality and concurrency, the KIB also 
needs to support synchronization. A basic form of syn-
chronization is to ensure that both input/output exchanges 
between the process and decision models are logically cor-
rect – i.e., the order of events produced and consumed by 
process and decision models are maintained. More ad-
vanced forms of synchronization can account for timing 
and therefore support causality using both ordering and 
timing of events given concurrent processes. 

5 PROTOTYPE KIB DESIGN 

The design and implementation of the KIB was based on 
OPL Studio (ILOG 2004) and DEVSJAVA (ACIMS 
2003). The KIB was developed using a combination of 
software objects specified in DEVSJAVA and JAVATM. 
The prototype implementation has been created and tested 
with the simple models shown in Figure 8. The DEVS 
model consists of an inventory, a finish line, and a finished 
goods inventory. The LP calculates release schedules using 
Inventory, WIP, and Demand models.  The inventory and 
WIP data is supplied from the DEVS model.   The demand 
model is used only by the LP. 
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Figure 8: SSDN First Prototype 
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The SSDN model execution sequence starts with the 
DEVS model initializing the KIB. When the KIB receives 
the initialization call, it initiates the simulation and sends 
the appropriate data to the LP followed by an LP solve re-
quest. The results of the initial solve are sent to the simula-
tion prior to the current time period being completed. This 
sequence continues until a desired number of iterations 
have been executed. 

The implementation of the KIB requires components 
for a data model, synchronization, and mappings of outputs 
to inputs between LP and DEVS and vice versa. The data 
model is necessary for maintaining a representation of the 
SSDN common model and the relationships of the LP and 
DEVSJAVA models to the SSDN. The synchronization 
logic ensures correct ordering of the DEVS messages sent 
and received to KIB and also used to request an LP solve at 
the proper time instances during the SSDN execution. The 
mapping logic performs the necessary data transformations 
between the LP and DEVS models.  

The data model consists of three different sets of data. 
The first set of data is the SSDN common model represen-
tation. The second set of data is the DEVSJAVA specific 
data such as port names to use for each of the atomic mod-
els. The third set of data is the OPL specific interface data. 
The prototype implementation used a Hashtable to hold 
this data. Each entry of the Hashtable represents a part of 
the SSDN model such as Finish Line. For each of the 
SSDN entries, additional entries were linked for DEVS and 
LP specific data. The input and output specifications for 
DEVS and LP were included so the KIB logic could do the 
required data translation. No complex translations of the 
data such as disaggregation were required for this imple-
mentation. In the future, when these types transformations 
are added, a fourth set of data tied to the KIB will need to 
be added. The DEVS portion of the Hashtable is populated 
automatically. The DEVS model reports its structure in a 
set of initialization messages. The LP portion is populated 
manually, although it is important to support automatic 
configuration of the data model. 

The synchronization between the models is accom-
plished using a clock in the KIB. A clock event occurs at 
the end of each time period and specifies what the value of 
the next time is. The clock is implemented as an atomic 
DEVSJAVA model and is synchronized with the SSDN 
process models. The KIB uses the clock to timestamp mes-
sages to and from the LP and to synchronize the execution 
of the LP and DEVS models.  

The mapping logic translates data representations from 
DEVSJAVA event messages to OPL data structures. This 
includes the addition and deletion of port information for 
DEVS messages, and the translation of DEVS messages 
sets into OPL arrays and variables.  

6 FUTURE WORK 

The research described in this paper provides a basis for 
composing LP and DES models. Follow up work falls into 
four categories – develop a specification for the SSDN 
Common Model, support additional capabilities for the 
Knowledge Interchange Broker, apply the composability ap-
proach in real-world settings, and devise a methodology to 
assist modelers to develop composable models. Research in 
each of these categories is expected to extend the basic ca-
pabilities of the proposed model composability approach. 
For example, since the common model is a meta-model im-
posing constraints on the constituent models, its specifica-
tion needs to support representation of the product routing 
relations and data transformations between the models. 
Similarly, the kinds of transformations within the KIB need 
to be extended. In particular, it is important for the KIB to 
support a set of generic as well as domain-specific modeling 
constructs for input and output transformations – e.g., sup-
porting netting. Furthermore, it is important to show how the 
Common Model and the KIB can be used systematically for 
developing decision and process models. It is also useful to 
provide a roadmap and guidelines to help modelers develop 
composable SSDN models.  

7 CONCLUSIONS 

A multi-formalism modeling approach enabling composi-
tion of models described as decision and projection algo-
rithms is presented. The proposed approach is based on the 
separation of decision and physical process models with 
the aid of a Common Model and Knowledge Interchange 
Broker. The roles of the KIB for LP and DEVS applied to 
a SSDN problem were described and demonstrated using a 
prototype to offer a sound basis for model composability in 
conjunction with simulation/execution interoperability.  

One of the key offerings of the multi-formalism mod-
eling approach is its support for describing models in 
widely used LP and DES modeling paradigms. A comple-
mentary advantage is the separation between model com-
posability and module interoperability. The ability to use 
multiple modeling formalisms and execute each separately 
can afford important benefits such as relying on soundness 
of the models and the correctness of their distributed exe-
cution. Moreover, modelers can focus their attention on 
model specifications since execution (i.e., simulation and 
solver) interoperability would already be supported as part 
of the multi-formalism approach.  
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