
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

MULTI-FORMALISM MODELING APPROACH FOR
SEMICONDUCTOR SUPPLY/DEMAND NETWORKS

Gary W. Godding

Component Automation Systems
Intel Corporation

5000 W. Chandler Blvd – MS CH3-68
Chandler, AZ 85226, U.S.A.

 Hessam S. Sarjoughian

Arizona Center for Integrative Modeling & Simulation
Computer Science & Engineering Dept.

Arizona State University
Tempe, AZ 85281-8809, U.S.A.

Karl G. Kempf

Decision Technologies
Intel Corporation

5000 W. Chandler Blvd – MS CH3-10
Chandler, AZ 85226, U.S.A.

ABSTRACT

Building computational models of real world systems usu-
ally requires the interaction of decision modules and simu-
lation modules. Given different models and algorithms, the
major hurdles in building a principled and robust system
are model composibility and algorithm interoperability.
We describe an approach to the composibility problem in-
cluding initial results. This exposition is given in the con-
text of Linear Programming as the decision technique and
Discrete Event Simulation as the simulation technique,
both applied to the design and operation of semiconductor
supply/demand networks.

1 INTRODUCTION

A recurring theme in developing computational models of
the real world is the necessity of including both physical
and logical processes. The system being studied presuma-
bly has some physical behavior that develops over time,
but requires direction from some logical process to select
among possible actions to achieve a system performance
goal (see Figure 1).

Decision Algorithm

Projection Algorithm

Past and Current
World State

Current and Future
Action Plan

Decision Algorithm

Projection Algorithm

Past and Current
World State

Current and Future
Action Plan

Figure 1: The Abstract Computation Problem

Although the algorithms, models, and data usually

overlap to some degree, decision making and decision exe-
cution are generally very different computationally. There
are at least two extreme options that can be employed to
address these differences.

On one hand, a system design can force the required
functionality into a single monolithic model. However the
result is often very difficult to develop, validate, verify,
use, and maintain because of the confounding of the deci-
sion making and decision execution processes.

On the other hand, the models and algorithms for deci-
sion making and decision execution can be designed and
implemented separately and then used together in an inte-
grated fashion. One major difficulty with this approach lies
in the details of integrating the operation of the decision
making module and the decision execution module. While
there exists a rich and extensive literature on computational
models for both decision making and decision execution,
most examples where these models are used in combina-
tion rely on ad hoc approaches to integration of the specific
implementations of interest. From a more general and for-
mal perspective, the computational issues with robust inte-
gration are model composibility (our particular focus here)
and module interoperability (see Figure 2). Composability
is concerned with how to create different models that are
semantically consistent. Interoperability is focused on the
software used to support communication and synchroniza-
tion at runtime.

In addition to composibility and interoperability, an-
other domain-independent issue inherent in this approach
is the concept of “netting”. Execution of the plan will

Godding, Sarjoughian, and Kempf

Projection Module

Decision Module

M
od

el
C

om
po

sa
bi

lit
y

M
od

ul
e

In
te

ro
pe

ra
bi

lit
y

Projection
Engine

Projection
Model

Decision
Model

Decision
Engine

Projection Module

Decision Module

M
od

el
C

om
po

sa
bi

lit
y

M
od

ul
e

In
te

ro
pe

ra
bi

lit
y

Projection
Engine

Projection
Model

Decision
Model

Decision
Engine

Figure 2: Composibility and Interoperability

rarely (if ever) produce the state of the stochastic world
expected by the planning module. This “netting” will have
to reconcile the expected and actual states of the world for
the decision module, and while this problem is universal,
its solution is highly dependent on the details of the do-
main. Composibility is similar in that it is universal in this
class of problems, but different in that it has both domain
independent and dependant facets as we will show here.

To explore these issues without loss of generality, we
have selected as an application domain that of managing a
semiconductor supply/demand network (SSDN) (Figure 3).
The decision module is charged with building a plan for
current and future activities including starting materials
into factories, shipping materials between locations, and
moving materials into and out of warehouses based on a
profitability goal. The execution module is intended to
manage the (virtual) current and future application of the
plan to the factories, warehouses, and transportation links
of the real system including as much of the stochasticity of
the real world as is possible and appropriate. The decision
module needs as input the state of the world resulting from
the past application of the previous plan, and produces the
plan for the future. The execution module needs the plan of
action to project forward in time to produce the future
states of the world. Clearly these are quite different algo-
rithms requiring different models.

Fabrication-1

Fabrication-n

Assembly-1

Assembly-m

how much to hold
how much to release

how much to ship and the destination
how much to hold

how much to release

stochastic duration
stochastic yield

stochastic duration
stochastic yield

stochastic duration

PL
A

N

ST
A

TE

Factory Warehouse Transportation

Fabrication-1

Fabrication-n

Assembly-1

Assembly-m

how much to hold
how much to release

how much to ship and the destination
how much to hold

how much to release

stochastic duration
stochastic yield

stochastic duration
stochastic yield

stochastic duration

PL
A

N

ST
A

TE

Factory Warehouse TransportationFactory Warehouse Transportation

Figure 3: An Example from Manufacturing in a SSDN
To ground our exposition of composability, interop-
erability, and netting, we have selected, without loss of
generality, specific decision and execution approaches for
experimentation. From the range of possible mathematical
and heuristic decision algorithms, Linear Programming
(LP) has been selected. Discrete Event Simulation (DES)
has been selected from the range of possible continuous
and discrete real world execution projection approaches.
To reiterate, the focus of our work is not LPs and DESs for
SSDN, but rather the general and specific aspects of the
composability of their models in this application domain.
We have described our work in the domains of LP and
DES in other publications (Kempf et al. 2001, Kempf
2004) and the references they contain.

The practical use of the test-bed resulting from robust
model composibility (and attendant module interoperabil-
ity and netting) is the improved design and operation of the
SSDN example. This type of economic system can gener-
ate, in the case of Intel Corporation, 30B$ in annual reve-
nue. Given the complexity of operating such a network, the
test bed partially described here is invaluable. The ability
to refine decision processes as well as the number, loca-
tion, topology, and properties of the physical entities with-
out the overhead of continuously reconfiguring interfaces
is a major improvement over existing methods.

2 RELATED WORK

2.1 Model Composability

With model composability, a large problem can be parti-
tioned and appropriate modeling approaches used to model
the overall system. An approach to model composability,
therefore, must ensure semantic integrity of the parts and
their combinations. Composite models with appropriate
semantic underpinning can then be ensured to correctly
execute and interoperate. The lack of an approach and its
associated methodology to support simulation model com-
posability is a well recognized and documented concern
(e.g. Davis and Anderson 2003; Fishwick 1995). For
SSDN, it is possible to integrate LP and DES models using
custom-built bridges through a combination of program-
ming languages and communication protocols (e.g., God-
ding and Kempf 2001). Similarly, Agent and DES models
can be composed by ensuring correct ordering of events
and valid types of message exchanges (Sarjoughian and
Plummer 2002). These kinds of approaches result in
pseudo composability – achieving model integration
through interoperability between a simulation engine and
an optimization engine or an interpreter.

2.2 Multi-Formalism Modeling

Constructing models using two or more modeling ap-
proaches requires a multi-formalism approach where each
part of a composite model is described in a formalism that

Godding, Sarjoughian, and Kempf

is most suitable. Within a system theoretic framework,
much progress has been made on formal theories and
methodologies of how to construct discrete and continuous
simulation models that have well-defined properties such
as conversion of continuous data to discrete data and cor-
rectness of synchronization between continuous and dis-
crete simulation protocols (Zeigler, Praehofer, and Kim
2000). Other approaches such as Ptolemy II (Plotomy
2004) offer capabilities to compose continuous models of
physical systems with discrete models of controllers that
are responsible for managing behavior of the former. Un-
fortunately, neither of these approaches or other similar
ones are suitable for the SSDN. For example, an agent
based approach such as (Swaminathan, Smith, and Sadeh
1998) does not address how to compose complex decision
models with large stochastic data flows. For these formal-
isms to support development of complex decision models
and thus SSDN, their underlying frameworks need to be
extended with new concepts and methods.

Due to the unavailability of a suitable framework for
modeling SSDN, decision and process modules are gener-
ally combined using ad-hoc low-level programming tech-
niques. Optimization modules have been integrated with
simulation modules for specific cases (e.g. Hung and
Leachman 1996) resulting in ad-hoc composability. Cus-
tomized combination of models, however, are not based on
sound principles that can support well-defined relation-
ships among the components of a composed model.

3 BACKGROUND

3.1 Linear Programming Formalism

The purpose of an LP is to find the best answer when many
exist. Linear programming can be classified as a selection al-
gorithm where an answer is selected from a set of many dif-
ferent possibilities. Models described in linear programming
consist of an objective function, a set of constraints, a set of
cost variables, a set of decision variables, and a set of con-
stants (Wu and Coppins 1981). The LP relationships includ-
ing constraints and objective functions must all be linear.

LPs have been applied successfully to a wide range of
planning applications (Hopp and Spearman 1996, Chopra
and Meindl 2001) when each problem can be described as a
set of linear constraints and a cost function. Linear pro-
gramming, however, is not suitable for describing dynamic
(time-driven) behavior of systems. Instead, constraints and
objective function are useful for formulating the inputs to an
optimization problem – i.e., a problem that searches for the
best assignment of values assigned to decision variables to
achieve the maximum (minimum) objective function value.

3.2 DEVS Formalism

The DEVS (Discrete Event System Specification) is a
modeling formalism for describing (discrete and continu-
ous) dynamical systems as discrete-event models. Complex
models can be hierarchically constructed from atomic and
coupled models that communicate with other models.

An atomic model specifies input variables and ports,
output variables and ports, state variables, internal and ex-
ternal state transitions, confluent transition function, output
and time advance functions (Zeigler, Praehofer, and Kim,
2000). An atomic model is stand-alone component capable
of autonomous and reactive behavior with well-defined
concepts of causality, timing, handling multiple inputs and
generating multiple outputs.

A coupled model description specifies its constituents
(atomic and coupled models) and their interactions via ports
and couplings. A coupled model can be composed from a
finite number of atomic and other coupled models hierarchi-
cally. Due to its inherent component-based support for
model composition, this framework lends itself to simple,
efficient software environments such as DEVSJAVA
(ACIMS 2003). Coupled models, similar to atomic models,
have sound causality, concurrency, and timing properties
that are supported by various simulation protocols in either
distributed or stand-alone computational settings.

While this formalism may be used for optimization, its
conceptual framework is not well suited to support linear
programming or other optimization modeling approaches
where general mathematical equations specify constraints
among decision variables (Godding, Sarjoughian, and
Kempf, 2003). Instead, DEVS and more generally systems
theory is concerned with describing the structure and behav-
ior of a system and simulating it for some period of time.

3.3 SSDN Modeling Using LP and DEVS

Composing multi-formalism models described in linear
programming and discrete-event formalisms requires a set
of well-defined concepts that account distinctly for both
composition and interoperability. Many benefits can be
foreseen with such an approach. For example, it can enable
development of a methodology for describing models
composed of decision models and process models without
requiring modelers to delve into the details of a given
simulation engine and a given optimization solver. Evalua-
tion of decision policies against physical process flows, or
evaluation of the impact on decision policies when the
physical system is changed would be possible without re-
quiring custom software development. In addition, if a
methodology is available, it would pave the way to enable
the development of tools that allow modelers of different
expertise (such as mathematicians and simulation model-
ers) to create different, yet semantically consistent model
components of the composite model that could then seam-
lessly execute and interoperate.

4 APPROACH

Two significant issues must be addressed to support com-
position and execution of SSDN multi-formalism models.
One is how to support the complex data transformations

Godding, Sarjoughian, and Kempf

required between the models. The second is how to enforce
semantically correct composition of the different models.

Our approach to manage the data transformations is a
broker between the models. The broker is referred to as a
Knowledge Interchange Broker (KIB). This broker must
provide capabilities beyond those offered by the simula-
tion/execution (e.g., ILOG CPLEX and DEVS simulation
protocol) and middleware (e.g., CORBA) layers.

Our approach to enable the enforcement of the compo-
sition of semantically correct models is to introduce the
concept of a common model. This model would provide a
common vocabulary to impose constraints on the decision
and physical models.

4.1 KIB

The proposed multi-formalism composability approach for
SSDN focuses on combining two classes of models – op-
timization and simulation models expressed in LP and
DEVS formalisms, respectively. This approach is based on
a three-layer worldview where the modeling, simula-
tion/execution, and middleware layers are separated from
one another (Sarjoughian and Cellier 2001). Within the
modeling layer, decision policies can be modeled as linear
programs and discrete event simulation can be used for
modeling process flows. A conceptual view of the model-
ing layer is depicted in Figure 4.

decision moduledecision
policies

manufacturing
processes

external control

local control

external data

inventoryinventory finish
line

finish
line

release
quantity

WIP (work
in process)semi-

finished
goods

finished
goods

Knowledge
Interchange

Broker

decision moduledecision
policies

manufacturing
processes

external control

local control

external data

inventoryinventory finish
line

finish
line

release
quantity

WIP (work
in process)semi-

finished
goods

finished
goods

Knowledge
Interchange

Broker

Figure 4: Three Layer World View with KIB

The KIB must provide its own modeling constructs

and execution capabilities to support composition of deci-
sion models and process models. The KIB can be viewed
from three complementary perspectives. First, it needs to
provide primitive capabilities for translating (or mapping)
of data from LP to DEVS and vice versa. This requires not
only syntactical (structural) translation between LP and
DEVS but also imposing semantically sound behavior of
the composed model and its constituents.
Second, given the decision and process behavior of the
SSDN, it is necessary to describe how the SSDN applica-
tion domain affects or constrains the KIB. For example, the
decision and process models illustrated in Figure 4 need to
use the same names for the messages and have a common
model of what data is shared, exchanged, and the transfor-
mations needed for a composed model.

Third, the specification of the KIB must account for
timing between the LP and DEVS models. This includes
enforcement of (time-based) causal relationships support-
ing their concurrent execution, and their synchronized
communications.

Figure 5 illustrates some simple primitive capabilities
of the KIB. Part (a) is a scenario showing the generic ag-
gregation and disaggregation of the port ID for messages
between LP and DEVS. LP models do not have ports while
DEVS models do. Part (b) is a domain specific scenario
exemplifying the passing of messages and data transforma-
tion between the SSDN decision policy and the associated
manufacturing process flow it is controlling.

LP to DEVS, port information added

DEVS to LP, port information discarded

atomic

coupled

…

DEVS

(a) general KIB capability

finish line

inventory

finished
goods

warehouse
(b) domain specific

Release Schedules

Process State

goals

constraints

…

product
release

LP

Netting and disaggregation

Data Aggregation

Knowledge Interchange Broker (KIB)

LP to DEVS, port information added

DEVS to LP, port information discarded

atomic

coupled

…

DEVS

(a) general KIB capability

finish line

inventory

finished
goods

warehouse
(b) domain specific

Release Schedules

Process State

goals

constraints

…

product
release

LP

Netting and disaggregation

Data Aggregation

Knowledge Interchange Broker (KIB)

Figure 5: Capabilities of KIB

Netting is a special type of transformation needed to

correct discrepancies between the plan and what actually
happened. One simple strategy is to divide the plan into
smaller time periods and add or subtract the differences
from the current time to the next period. For example, the
netting algorithm could divide a weekly plan by seven and
at the end of each day, add or subtract the daily discrepan-
cies to the plan for the next day.

4.1.1 LP and DEVS I/O Composability via KIB

The mathematical representations for LP and DEVS mod-
eling formalisms are shown in Table 1. Each formalism
provides a set of general modeling constructs for describ-
ing a class of behaviors – e.g., dynamical discrete process
models with DEVS. To form a composable modeling ap-
proach, it is necessary to formulate appropriate logic for
the KIB to support the transformation of data/control be-

Godding, Sarjoughian, and Kempf

tween LP and DEVS, the addition of missing data/control,
and the deletion of superfluous data/control that is irrele-
vant. Furthermore, it is central for the KIB to support cau-
sality, concurrency, and synchronization as the keys to cor-
rect behavior specification and combined execution of LP
and DEVS models.

Table 1: Standard Forms for LP and DEVS

LP Formalism DEVS Formalism

min{cx: Ax=b, x≥0)
 where:
x ∈ ℜn
c ∈ ℜn

b ∈ ℜm
A ∈ ℜm×n

• c is a vector of cost

variables
• x is a vector of deci-

sion variables (un-
knowns)

• b is a vector of con-
stants

• A is the constraint
matrix

<X,S,Y,δint,δext ,δconf, λ, ta>
 where:
• X is the set of input val-

ues
• S is a set of states
• Y is the set of output

values
• δint is the internal state

function
• δext is the external state

function
• δconf is the confluent

function
• λ is the output function
• ta is the time advance

function

Since these two formalisms are distinct, the KIB needs

to translate the inputs and outputs from one formalism to
the outputs and inputs of the other, respectively. This is
appropriate since each formalism can be viewed as a sys-
tem with well-defined input and output interface. The pos-
sible inputs to the LP formalism from DEVS would be the
cost vectors, the constraint matrix, and the constraint val-
ues. (i.e. c, A, and b shown in Table 1). Some or all of
these could be DEVS inputs depending on the problem be-
ing modeled. The outputs of the LP formalism to DEVS
would be x, the decision variables. For the DEVS formal-
ism, the inputs from the LP would be a subset of X – i.e.,
the set of values available on the input ports of atomic and
coupled models. Similarly, the outputs of the DEVS to the
LP would be a subset of Y – i.e., the set of output values
from the atomic and coupled models.

LP and DEVS models may have inputs and outputs
that are independent of one another. For example, a proc-
ess model can generate outputs that are of no interest to the
decision model, yet of importance to observe the process
flows. The process model may receive inputs that are not
sent by the decision model. These types of interactions be-
tween LP and DEVS models provide a basis for formulat-
ing an appropriate logic for the KIB such that it can sup-
port transforming data structures and ensuring causality,
concurrency, and synchronization between the models.
4.2 Problem Domain Common Model

To formulate decision models and process models that are
semantically correct, they need to share some common
data of the problem they are representing. A methodology
is necessary to characterize ways in which various pieces
of the common model can be mapped onto the optimiza-
tion and process models. Additionally, the common model
is important in the development of the KIB – defining
translations (interactions) between the optimization and
simulation models. For example, KIB needs to have a well
defined knowledge representation in order to convert a re-
lease command from the decision layer into an instruction
for the correct entity in the process model. As mentioned
earlier, these translations may involve complex calcula-
tions such as netting.

Figure 6 shows a conceptual representation of how the
common model relates to the other models. The common
model constrains the valid names, configurations, and
translations that can be modeled in the LP, KIB, and
DEVS. The common model needs to specify the structure
of the problem, such as the SSDN topology, and also the
valid relations between the models. For example, the
common model may specify that some specific data values
need to be aggregated from a daily resolution to a weekly
resolution. The KIB transformation model would use this
to specify the detailed aggregation algorithm to use on the
data variables given by the common model.

imposes constraints on ...

SSDN
Common Model

LP
Optimization

Model

DEVS
Simulation

Model

KIB
Transformation

models

imposes constraints on ...

SSDN
Common Model

LP
Optimization

Model

DEVS
Simulation

Model

KIB
Transformation

models

Figure 6: Common Model Relationships

A small example of the type of common structural

data needed to represent the topology and product flow of a
SSDN is shown in Figure 7. This common model is a map-
ping of the BOM (Bill of Materials) to a process flow to-
pology. It specifies facility names, product names, and the
relation of product routes to facility topologies. Material
can be shipped between facilities via transportation, can be
held within a manufacturing line and considered as work in
progress (WIP), or can be sitting in a warehouse.

This model corresponds to a segment of the topology
shown in Figure 3. The possible routes through the net-
work have been modeled for products P1-P7. For example,
raw silicon (P1) can be sent into plant 1 or 2 and fabricated
into one of the P4-P7 products. If the material is made into

Godding, Sarjoughian, and Kempf

Raw Silicon P1

P4 P5
Warehouse1

P5 P6 P7
Warehouse2

Factory Warehouse WIP Transportation

Fabrication1

P4 P5
P2

Fabrication2

P6 P7
P3

Raw Silicon P1

P4 P5
Warehouse1

P5 P6 P7
Warehouse2

Factory Warehouse WIP TransportationFactory Warehouse WIP Transportation

Fabrication1

P4 P5
P2

Fabrication1

P4 P5
P2

P4 P5
P2

Fabrication2

P6 P7
P3

Fabrication2

P6 P7
P3

P6 P7
P3

Figure 7: SSDN Common Model

P5, it can be shipped to either warehouse 1 or 2. The knowl-
edge of which products can be made in what facilities and
where it can be routed must be the same in both models.

4.3 Behavioral Composability between
LP and DEVS Models

The approach described in Sections 4.1 and 4.2 must sup-
port the passage of time since simulation models are time
driven. The necessity of modeling time has important con-
sequences as alluded to earlier. In particular, causality,
concurrency and synchronization need to be accounted for
with respect to time. For example, causality not only needs
to be consistent in the decision and process model specifi-
cations, but also the concurrent execution of the models
and synchronized data exchange between them need to be
consistent with the causality specification of the KIB.
Some of the details of the causality, concurrency, and syn-
chronization are presented next.

4.3.1 Causality

The KIB will need to enforce the correct causality for mes-
sage passing between the decision and process models. For
example, in the scenarios we are modeling, it is not possible
in the real world for the planning organization to have
knowledge of the future state of the world, so it would not be
correct for the decision algorithm to have any future pro-
jected state from the process models. Causality is already
accounted for within the DEVS framework. However, LP
models are not time dependent and their behaviors do not
evolve over time. Therefore, support for causality of the
composed models may be placed in the KIB. That is, the
KIB will support causality between LP and DEVS models
while preserving the causality of the DEVS models.

4.3.2 Concurrency

The KIB will need to manage concurrency since the execu-
tion and simulation modules must be under the control of
two different processes. One of the most straightforward
methods to support this type of concurrency is via the use
of synchronization.
Aside from synchronization of processes, there is
also the potential of “logical concurrency”. That is both
linear and process models consume logical time. Since
both models can be expressed in terms of time, they can
be executing concurrently in logical or physical time. For
example, assuming it takes two days (logical time) to
generate a plan, the process model may execute concur-
rently with the decision model for two days (logical time)
before receiving a plan.

4.3.3 Synchronization

In addition to causality and concurrency, the KIB also
needs to support synchronization. A basic form of syn-
chronization is to ensure that both input/output exchanges
between the process and decision models are logically cor-
rect – i.e., the order of events produced and consumed by
process and decision models are maintained. More ad-
vanced forms of synchronization can account for timing
and therefore support causality using both ordering and
timing of events given concurrent processes.

5 PROTOTYPE KIB DESIGN

The design and implementation of the KIB was based on
OPL Studio (ILOG 2004) and DEVSJAVA (ACIMS
2003). The KIB was developed using a combination of
software objects specified in DEVSJAVA and JAVATM.
The prototype implementation has been created and tested
with the simple models shown in Figure 8. The DEVS
model consists of an inventory, a finish line, and a finished
goods inventory. The LP calculates release schedules using
Inventory, WIP, and Demand models. The inventory and
WIP data is supplied from the DEVS model. The demand
model is used only by the LP.

LP

Inventory and
WIP model

Demand
Model

Decision
Variables

Release
Schedule

Inventory
Values

WIP
Values

KIB

DEVS

Inventory Finish Line
Finished

Goods
Inventory

Inventory
Message

Release
Command

WIP
Message

Inventory
Message

LP

Inventory and
WIP model

Demand
Model

Decision
Variables

LP

Inventory and
WIP model

Demand
Model

Decision
Variables

Inventory and
WIP model

Demand
Model

Decision
Variables

Release
Schedule

Inventory
Values

WIP
Values

KIB

DEVS

Inventory Finish Line
Finished

Goods
Inventory

DEVS

Inventory Finish Line
Finished

Goods
Inventory

Inventory Finish Line
Finished

Goods
Inventory

Inventory
Message

Inventory
Message

Release
Command

Release
Command

WIP
Message

WIP
Message

Inventory
Message

Inventory
Message

Figure 8: SSDN First Prototype

Godding, Sarjoughian, and Kempf

The SSDN model execution sequence starts with the
DEVS model initializing the KIB. When the KIB receives
the initialization call, it initiates the simulation and sends
the appropriate data to the LP followed by an LP solve re-
quest. The results of the initial solve are sent to the simula-
tion prior to the current time period being completed. This
sequence continues until a desired number of iterations
have been executed.

The implementation of the KIB requires components
for a data model, synchronization, and mappings of outputs
to inputs between LP and DEVS and vice versa. The data
model is necessary for maintaining a representation of the
SSDN common model and the relationships of the LP and
DEVSJAVA models to the SSDN. The synchronization
logic ensures correct ordering of the DEVS messages sent
and received to KIB and also used to request an LP solve at
the proper time instances during the SSDN execution. The
mapping logic performs the necessary data transformations
between the LP and DEVS models.

The data model consists of three different sets of data.
The first set of data is the SSDN common model represen-
tation. The second set of data is the DEVSJAVA specific
data such as port names to use for each of the atomic mod-
els. The third set of data is the OPL specific interface data.
The prototype implementation used a Hashtable to hold
this data. Each entry of the Hashtable represents a part of
the SSDN model such as Finish Line. For each of the
SSDN entries, additional entries were linked for DEVS and
LP specific data. The input and output specifications for
DEVS and LP were included so the KIB logic could do the
required data translation. No complex translations of the
data such as disaggregation were required for this imple-
mentation. In the future, when these types transformations
are added, a fourth set of data tied to the KIB will need to
be added. The DEVS portion of the Hashtable is populated
automatically. The DEVS model reports its structure in a
set of initialization messages. The LP portion is populated
manually, although it is important to support automatic
configuration of the data model.

The synchronization between the models is accom-
plished using a clock in the KIB. A clock event occurs at
the end of each time period and specifies what the value of
the next time is. The clock is implemented as an atomic
DEVSJAVA model and is synchronized with the SSDN
process models. The KIB uses the clock to timestamp mes-
sages to and from the LP and to synchronize the execution
of the LP and DEVS models.

The mapping logic translates data representations from
DEVSJAVA event messages to OPL data structures. This
includes the addition and deletion of port information for
DEVS messages, and the translation of DEVS messages
sets into OPL arrays and variables.

6 FUTURE WORK

The research described in this paper provides a basis for
composing LP and DES models. Follow up work falls into
four categories – develop a specification for the SSDN
Common Model, support additional capabilities for the
Knowledge Interchange Broker, apply the composability ap-
proach in real-world settings, and devise a methodology to
assist modelers to develop composable models. Research in
each of these categories is expected to extend the basic ca-
pabilities of the proposed model composability approach.
For example, since the common model is a meta-model im-
posing constraints on the constituent models, its specifica-
tion needs to support representation of the product routing
relations and data transformations between the models.
Similarly, the kinds of transformations within the KIB need
to be extended. In particular, it is important for the KIB to
support a set of generic as well as domain-specific modeling
constructs for input and output transformations – e.g., sup-
porting netting. Furthermore, it is important to show how the
Common Model and the KIB can be used systematically for
developing decision and process models. It is also useful to
provide a roadmap and guidelines to help modelers develop
composable SSDN models.

7 CONCLUSIONS

A multi-formalism modeling approach enabling composi-
tion of models described as decision and projection algo-
rithms is presented. The proposed approach is based on the
separation of decision and physical process models with
the aid of a Common Model and Knowledge Interchange
Broker. The roles of the KIB for LP and DEVS applied to
a SSDN problem were described and demonstrated using a
prototype to offer a sound basis for model composability in
conjunction with simulation/execution interoperability.

One of the key offerings of the multi-formalism mod-
eling approach is its support for describing models in
widely used LP and DES modeling paradigms. A comple-
mentary advantage is the separation between model com-
posability and module interoperability. The ability to use
multiple modeling formalisms and execute each separately
can afford important benefits such as relying on soundness
of the models and the correctness of their distributed exe-
cution. Moreover, modelers can focus their attention on
model specifications since execution (i.e., simulation and
solver) interoperability would already be supported as part
of the multi-formalism approach.

ACKNOWLEDGMENTS

This research is supported by the Intel Research Council,
Chandler, Arizona. The authors would like to express their
appreciation to Bin Xie of the Computer Science & Engi-
neering Department at Arizona State University for assis-
tance in the development of the SSDN model.

Godding, Sarjoughian, and Kempf

8 REFERENCES

ACIMS. 2003. DEVSJAVA Software. Available online via
<http://www.acims.arizona.edu/SOFTWA
RE> [accessed August 19, 2004].

Chopra, S. and P. Meindl. 2001. Supply Chain Manage-
ment: Strategy, Planning, and Operation, Upper
Saddle River, NJ: Prentice-Hall, part 2 (Planning
Demand and Supply in a Supply Chain).

Davis, P. K. and R. H. Anderson. 2003. Improving the
Composability of Department of Defense Models and
Simulations, RAND.

Fishwick, P. A. 1995. Simulation Model Design and Exe-
cution: Building Digital Worlds, Prentice Hall.

Godding, G. W. and K. G. Kempf, 2001. A modular, scal-
able approach to modeling and analysis of semicon-
ductor manufacturing supply chains, In Proceedings
IV SIMPOI/POMS, pp. 1000-1007, Sao Paulo.

Godding, G. W., H. S. Sarjoughian, and K.G. Kempf.
2003. Semiconductor Supply Network Simulation, In
Proceedings of 2003 the Winter Simulation Confer-
ence, New Orleans, LA, pp. 1593-1601.

Hopp, W. J. and M. L. Spearman. 1996. Aggregate and
Workforce Planning. In Factory Physics: Founda-
tions of Manufacturing Management, 535-581. New
York: McGraw Hill.

Hung, Y.F. and R. C. Leachman. 1996. A Production
Planning Methodology for Semiconductor Manufac-
turing Based on Iterative Simulation and Linear Pro-
gramming Calculations, IEEE Transactions on Semi-
conductor Manufacturing, 9(2) : 257-269.

Kempf, K. G., K. Knutson, J. Fowler, D. Armbruster, P.
Babu, and B. Duarte. 2001. Fast Accurate Simulation of
Physical Flows in Demand Networks, In Proceedings of
Semiconductor Manufacturing Operational Modeling
and Simulation Symposium, Tempe, AZ, pp. 111-116.

Kempf, K. G. 2004. Control-Oriented Approaches to Sup-
ply Chain Management in Semiconductor Manufactur-
ing, In Proceedings IEEE American Control Confer-
ence, Boston, MA, to appear.

ILOG. 2004. ILOG OPL Studio. Available online via
http://www.ilog.com/products/oplstud
io/ [accessed July 14, 2004].

Ptolemy. 2004. Ptolemy project; Heterogeneous Modeling
and Design. Available online via <http://ptolemy.
eecs.berkeley.edu> [accessed July 14, 2004].

Sarjoughian, H. S. and F. E. Cellier. 2001. Toward a Uni-
fied Framework for Simulation-Based Acquisition, in
Discrete Event Modeling and Simulation Technolo-
gies: A Tapestry of Systems and AI-Based Theories
and Methodologies, ed. H.S. Sarjoughian and F.E.
Cellier, pp. 1-14, Springer-Verlag.

Sarjoughian, H. S. and J. Plummer. 2002. Design and Im-
plementation of a Bridge between RAP and DEVS,
Internal Report, Computer Science and Engineering
Department, Arizona State University, Tempe, AZ,
pp. 1-38.

Swaminathan, J. M., S. F. Smith, and N. M. Sadeh. 1998.
Modeling Supply Chain Dynamics: A Multiagent Ap-
proach, Decision Sciences, 29(3) : 607-632.

Wu, N. and R. Coppins. 1981. Linear Programming and
Extensions, McGraw-Hill.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory
of Modeling and Simulation, Second Edition, Aca-
demic Press.

AUTHOR BIOGRAPHIES

GARY W. GODDING is a Software Engineer at Intel
Corporation and a PhD candidate in the Computer Science
and Engineering department at Arizona State University.
His research includes modeling and simulation of supply
networks, software architecture, and artificial intelligence.
He can be contacted by e-mail at <gary.godding@
intel.com>.

HESSAM S. SARJOUGHIAN is Assistant Professor of
Computer Science and Engineering at Arizona State Uni-
versity, Tempe. His research includes hybrid simulation
modeling and intelligent agents, collaborative modeling,
distributed co-design, and software architecture. His
industrial experience has been with Honeywell and IBM.
For more information visit <http://www.eas.asu.
edu/~hsarjou/index.htm >.

KARL G. KEMPF is Director of Decision Technologies
at Intel Corporation and an Adjunct Professor at Arizona
State University. His research interests span the optimiza-
tion of manufacturing and logistics planning and execution
in semiconductor supply chains including various forms of
supply chain simulation. He can be contacted by e-mail at
<karl.g.kempf@intel.com>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 232
	02: 233
	03: 234
	04: 235
	05: 236
	06: 237
	07: 238
	08: 239

