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ABSTRACT 

Exactly computing network reliability measures is an NP-
hard problem. Therefore, Monte Carlo simulation has 
been frequently used by network designers to obtain ac-
curate estimates.  This paper focuses on simulation esti-
mation of network reliability.  Using a heap data struc-
ture, efficient implementation of a previous approach, 
dagger sampling, is proposed.  Two new techniques, 
geometric sampling and block sampling, are developed to 
efficiently sample states of a network.  These techniques 
are event-driven rather than time-driven, and are thus ef-
ficient for highly reliable networks.  To test relative per-
formance, computational experiments are carried out on 
various types of networks using the new procedures.  

1 INTRODUCTION 

In network reliability analysis, a telecommunication net-
work with unreliable components is usually modeled as 
an undirected network G(V, E) with node set 
V={v1,…,vn} and arc set E={e1,…,em} under the follow-
ing assumptions: 

 
• Nodes are perfectly reliable; however, arcs ran-

domly fail. 
• Each arc ei ∈ E, independently from each other, 

can be in either of two states, operative or failed, 
with respective probabilities pi and qi=1-pi.  

• No repair is allowed. 

 

Let 1 2{ , , , }= … mx x xX  denote the state vector of 

G(V,E) such that 1=ix  if arc ei is in the operative state and 
0=ix  if arc ei is in the failed state.  Hence, the probability 

of observing a particular state X is given by 
 

 Pr{ } [ (2 1)].
i

i i i
e E

q x p
∈

= + −∏X  (1) 

 
The main function of a telecommunication network is to 

provide connectivity service.  Let T ⊂ V be a set of some 
specified nodes of G(V, E).  Network reliability analysis is 
concerned with the following question:  “What is the prob-
ability that all nodes in T are connected to each other?”  
With respect to connectivity, a network can be in either of 
two states: connected or not connected.  Therefore, the struc-
ture function is defined as: 

 

 
1 if all nodes in  are connected,

( )
0 otherwise.


Φ = 


T
X  

 
An important problem in network reliability analysis is 

to calculate the expected value of  the structure function 
( )Φ X , i.e., 

 
 [ ( )] ( ) Pr{ }

∈

= Φ = Φ∑
S

R E
X

X X X  (2) 

 
where S is the state space of the all possible network states.  
If T=V, then Equation (2) refers to all-terminal reliability 
and the exact calculation of R for any T is known to be NP-
hard in general networks (Ball 1980). 
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In general, exact calculation of Equation (2) is ex-
tremely difficult due to the enormous number of possible 
states (a network with m arcs has 2m possible states).  There-
fore, Monte Carlo (MC) simulation has been a common al-
ternative to estimate Equation (2).  In the naive implementa-
tion of MC simulation, K state vectors are sampled from S 
with the probability distribution given in Equation (1), then 
the estimator for Equation (2) is calculated as 

 

 ( )

1

1ˆ[ ( )] ( )
=

Φ = Φ∑
K

k

k

E
K

X X  

  
where ( )kX  is the state of the network in the kth sample. 

The naive implementation of MC simulation has been 
criticized for being inefficient, especially when individual 
arc reliabilities are high; therefore, several alternatives have 
been proposed.  Alternative approaches can be considered in 
three main groups. The first group is called state based tech-
niques. They aim to generate state vector more efficiently 
(e.g., Markov Model of Mazumdar, Coit, and McBride 
(1999)) or to introduce negative correlation between sam-
pled state vectors (e.g., Dagger sampling by Kumamoto, Ta-
naka, Inoue, and Henley (1980)). The second group uses the 
sample space of arc permutations instead of the original 
sample space S (e.g., the Sequential Construc-
tion/Destruction of Easton and Wong (1980) and Destruc-
tion, Creation, and Merging Processes of Elperin, Gertsbakh, 
and Lomonosov (1991)). These approaches are particularly 
efficient if all arcs have identical reliability.    

The third group is called bounding techniques, which 
can be considered as stratified and importance sampling 
variance reduction techniques (Van Slyke and Frank 
1972; Kumamoto, Tanaka, and Inoue 1977; Fishman 
1986).  This group requires prior information such as the 
path and cut sets of the network studied. Bounding tech-
niques cannot directly be applied in the case of a non-
binary structure function since they are based on cut and 
path sets assuming a binary structure function.  

In this paper, we introduce event-driven approaches 
for efficiently generating network states as alternatives to 
the usual time-driven implementations of state based 
simulation techniques.  Event-driven implementation of 
dagger sampling (DS) is devised using a heap data struc-
ture and two new techniques, block sampling (BS) and 
geometric sampling (GS), are proposed to efficiently 
generate state vectors.  Since these are based on directly 
generating network states, both new techniques are easy 
to implement and can be used for very general networks 
(e.g., for binary or continuous ( )Φ X , or for distinct fail-
ure reliabilities) without requiring prior information.  

A thorough computational study is conducted to 
compare the performance of these simulation techniques 
over various types of networks in terms of density (ratio 
of m to n), size, and individual arc reliabilities.   

2 EXISTING STATE BASED APPROACHES  
AND PROPOSED EVENT-DRIVEN 
IMPLEMENTATIONS  

The most basic simulation technique to generate state vec-
tors is Crude Monte Carlo Sampling (CMCS).  In CMCS, a 
state vector X is sampled by individually simulating the state 
of each arc ei∈E using a Bernoulli random variable (r.v.) 
with mean pi.  To estimate reliability, K state vectors are 
sampled as defined above and connectivity is checked for 
each state sampled.  In turn, the ratio of the number of con-
nected network states to sample size K yields an unbiased 
estimator of reliability. 

 
PROCEDURE CMCS 
1 up=0 
2 FOR k=1,…,K DO { 
3  FOR each ei∈E DO { 
4   IF Uni[0,1] ≤ pi THEN xi =1 ELSE xi =0 } 
5  X={xi: ei∈E} 
6  up=up+Φ(X) 
7 } 
 
The estimator of R in CMCS is given by 

 

 ( )

1

1ˆ ( )
K

k

k

upR
K K=

= Φ =∑ X . 

  
Since the outcome of Φ(⋅) is a Bernoulli trial with the 

expected value of R, the variance of estimator R̂  is given 
by  

 

 ( )
2

1

1 (1 )ˆVar( ) Var( ( ))
K

k

k

R RR
KK =

−= Φ =∑ X  (3) 

 
and the coefficient of variation (cv) on 1-R is equal to  

 

 
ˆVar( )

=
1 (1 )

=
− −

R Rcv
R R K

. 

  
Estimating reliability for highly reliable networks is 

daunting. CMCS is inherently inefficient, requiring a total 
of m×K random numbers, most of which are used to sam-
ple operational states of arcs.  For example, consider a 
highly reliable arc (e.g., pi = 0.999).  In this case, K random 
numbers are used to simulate a rare event (xi=0), which 
will be observed only once in 1,000 samples, on average. 
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2.1 Event-Driven Simulation for Network  

Reliability Estimation 

CMCS is a discrete time-driven approach in which the time 
is advanced in increments of time units (replications) and 
events (arc failures) for each unit time increment are simu-
lated.  On the contrary, in the event-driven approach, time 
points at which future events occur are generated, and then 
the simulation time is advanced to the time point of the most 
imminent of events and the state of the system is evaluated.  
An event-driven simulation progresses by simulating the 
next event time for the most imminent of the event(s) and 
updating a timetable accordingly.  In some cases, the event-
driven approach can be more efficient than the time-driven 
approach to estimate reliability and performability.  

In this section we develop the event-driven version of 
DS.  In the event-driven simulation approach to network re-
liability, events are arc failures or repairs.  Implementation 
of this approach requires: (i) an event list containing the next 
time when each arc failure will occur, (ii) a timing routine to 
determine the time of the most imminent of arc failures, and 
(iii) an event routine updating the network state and generat-
ing the next failure times whenever arc failures occur.  We 
use a heap data structure for the implementation of all meth-
ods.  A heap is a priority queue allowing efficient removal 
and insertion of elements to and from a collection of ele-
ments stored in a binary tree structure and organized accord-
ing to their keys, which identify weights or priorities of ele-
ments.  Here, arcs correspond to heap elements and the key 
of an arc ei is the next failure time (event time et(i)) of the 
arc.  The following heap operators are used: 

• insertElement(PQ, ei, et(i)): insert arc ei with key 
et(i) into heap PQ. 

• removeMin(PQ): return and remove the element 
with the smallest key from PQ. 

• minElement(PQ): return (without removing) the 
smallest key of heap PQ. 

• initializeHeap(PQ): initialize an empty heap PQ.  

O(m) memory space is required to store the heap data 
structure.  The heap operators, removeMin(), insertEle-
ment(), and minKey(), have time complexity of O(log(m)), 
O(log(m)), and O(1), respectively. 

2.2 Event-Driven Approach for Dagger Sampling 

Kumamoto, Tanaka, Inoue, and Henley (1980) proposed DS 
to improve upon the sampling inefficiency of CMCS.  In 
DS, only a single random number is used to sample Li con-
secutive states of arc ei.  Here, Li is called a sub-block of arc 
ei and equals 1/qi.  Using a single random number U, a 
sub-block of Li consecutive states of arc ei is generated as 
follows.  If U >qiLi, then xi=1 for all samples within the sub-
block; otherwise, xi=0 in the (U/qi+1)th sample, and xi=1 in 
all other samples.  DS is superior to CMCS in terms of not 
only using fewer random numbers but also having a smaller 
sampling variance.  Using a single random number to gener-
ate a sub-block of samples induces a negative correlation be-
tween the state vectors of a sub-block.  Therefore, DS can be 
considered a multi-dimensional antithetic variable technique 
for variance reduction.  The major drawback of DS appears 
when individual component reliabilities are very high, but 
relatively different.  In this case, each arc ei will have a very 
different sub-block size Li and assembling these sub-blocks 
to obtain state vectors is difficult and memory intensive.  For 
example, the time-driven DS procedure given by Fishman 
(1986) has a memory requirement of O(Lm), where L is the 
least common multiple of the Li’s and can be quite large 
when arc reliabilities are not identical.  To overcome this 
drawback, we present an efficient event-driven implementa-
tion of  DS requiring only O(m) memory space. The follow-
ing procedure is the event-driven implementation of DS us-
ing a heap data structure. 
 
PROCEDURE DS 
Li  sub-block size of arc ei 
NBi  number of sub-blocks to be simulated for arc ei 
Bt(i) number of sub-blocks simulated for arc ei 
1 initializeHeap(PQ) 
2 set Li = 1/qi for each ei∈E 
3 L= the least common multiples of Li’s 
4 NBi=L/Li for each ei∈E 
5 up=0, np=0; 
6 FOR each ei∈E DO { 
7  Bt(i)=1, failed=no 
8  DO { 
9   U=Uni[0,1] 
10   IF (U<qi×NBi) THEN  
    {et(i)=(Bt(i)-1)×Li+U/qi+1, failed=yes} 
11   Bt(i)=Bt(i)+1 
12  }WHILE(failed=no & Bt(i) <NBi) 
13  IF (failed=yes) THEN insertElement(PQ, ei, et(i)) 
14 } 
15 DO { 
16  etmin=MinElement(PQ) 
17  set xi=1 for each ei∈E 
18  DO { 
19   ei=removeMin(PQ), xi=0, and failed=no 
20   DO { 
21    U=Uni[0,1] 
22    IF (U < qi×NBi ) THEN  
    {et(i)=(Bt(i)-1)×Li+U/qi+1,  failed=yes} 
23    Bt(i)=Bt(i)+1 
24   } WHILE(failed=no &Bt(i)<NBi) 
25   IF (failed=yes) THEN insertElement(PQ, ei, et(i)) 
26  } WHILE (etmin=MinElement(PQ)) 
27 up=up+ ( )Φ X   
28 } WHILE (PQ is not empty) 
29 R=up/L 
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The procedure DS has two parts.  In the first part (be-
tween lines 6 and 14), the initial failure times of arcs are 
generated and inserted into heap PQ.  In the second part 
(between lines 15 and 28), arcs with the most imminent 
failure times are removed from the top of the heap, the 
network state is updated, the next failure times are gener-
ated, and the removed arcs are inserted into the heap again.  
In DS, arcs are allowed to fail at most once within a sub-
block size of Li replications.  This is controlled by variable 
Bt(i), which counts the number of sub-blocks that arc ei has 
been simulated.  A single random number U is used to de-
termine the failure time of arc ei within the Bt(i)th sub-
block as follows (see lines 10 and 22).  If U < qi×NBi, then 
the failure time of arc ei is calculated as et(i)=(Bt(i)-
1)×Li+U/qi+1, and this event is inserted into heap PQ.  
Otherwise, no failure occurs within the sub-block.  In both 
cases, the simulation time moves to the next sub-block by 
simply increasing Bt(i) by one.  These steps are either re-
peated until a failure is observed or the maximum number 
of sub-blocks is reached (DO-WHILE loop between lines 20 
and 24).  As a result, only arc failures are stored in the 
heap by skipping sub-blocks without a failure.  The pro-
posed procedure is an efficient event-driven approach to 
DS with a memory requirement of only O(m), which is 
much less than O(Lm) of the procedure given in Fishman 
(1986) and Kumamoto, Tanaka, Inoue, and Henley (1980). 

3 NEW EVENT-DRIVEN SAMPLING 
TECHNIQUES FOR NETWORK  
RELIABILITY 

In this section, we devise two new methods to estimate net-
work reliability.  These are event-driven approaches and 
called BS and GS.  The BS approach is an efficient altera-
tion of the event-driven version of  DS. 

3.1 Block Sampling 

Using a heap data structure overcomes the large computer 
memory requirement of DS.  However, the inability to con-
trol L due to different sizes of sub-blocks is another short-
coming of DS.  In this section, we develop a new sampling 
method to remedy this problem by using sub-blocks of 
equal sizes.  Consider a block of L consecutive state vec-
tors, X(1),...,X(L), which are generated by using CMCS.  Let 
Yi denote the number of times that arc ei is in the failed 
state in L consecutive replications.  It is clear that Yi fol-
lows a binomial distribution with the following probability 
mass function (p.m.f.):  

 

 Pr{ } 0, , .y L y
i i i

L
Y y q p y L

y
− 

= = = 
 

…  

  
The main idea behind BS is to construct state vectors 

directly from r.v. Yi instead of individually sampling its 
elements.  In BS, failures of arc ei within a block of L rep-
lications are generated in two steps: (i) sample Yi from the 
binomial distribution with parameters L and qi; (ii) ran-
domly distribute Yi failures over L replications to deter-
mine the replications with xi=0.  Once individual arc fail-
ures are generated, the state vector of the network can be 
constructed.  The procedure is given as follows:  

 
PROCEDURE BS 
1 for each ei∈E do { 
2  Generate Yi from Binomial(L, qi) 
3  FOR l =1,…,Yi DO { 
4   Choose integer k from [1, L] without replacement  
5   insertElement(PQ, ei, k) 
6   }  
7  } 
8 DO { 
9  set 1=ix for each ei∈E, up=0, and np=0  
10  etmin=MinElement(PQ) 
11  DO { 
12   ei=removeMin(PQ) 
13   xi=0 
14  } WHILE (etmin=MinElement(PQ)) 
15  up=up+ ( )Φ X  
16 } WHILE (PQ is not empty) 
17 R=up/L  

 
The procedures DS and BS are given for a block of 

simulation, if B independent replications of blocks are per-
formed, the estimation of network reliability is given as  

 

 
1

1ˆ ˆ .
B

i
i

R R
B =

= ∑   

 
In DS and BS, state vectors within the same block are 

not s-independent since the same random numbers are used 
to generate them.  Therefore, Equation (3) cannot be used 
to obtain an unbiased estimate of ˆ( )Var R .  To obtain an 
unbiased esti.mate of the variance, estimates from B inde-
pendent replications of blocks can be used as follows: 

 

 2

1

1ˆ ˆ ˆ( ) ( ) .
( 1)

B

i
i

Var R R R
B B =

= −
− ∑   

 
In BS, since state vectors within the same block are 

not s-independent, it is necessary to show that BS is unbi-
ased (i.e., a state X is sampled with the probability of 
Pr{X}).  Although the state vectors within the same block 
are not s-independent, the individual elements of a state 
vector X are s-independent.  Therefore, if Pr{ 0}=ix  is 
equal to qi in BS, then a state vector X can be sampled with 
the probability given in Equation (1).  In the following, it is 
shown that the BS procedure (i.e., first sampling the num-
ber of failures, then distributing them randomly over repli-
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cations) produces unbiased samples from S.  Pr{ 0}=ix  
can be calculated by conditioning on Yi as follows: 

 

 
0

Pr{ 0} Pr{ 0 | } Pr{ }.
L

i i i i
y

x x Y y Y y
=

= = = = ⋅ =∑  

  
Since failures are randomly distributed over L sam-

ples, for a given y, Pr{ 0 | }= =i ix Y y  is equal to y/L.  Thus,  
 

 
0

1

1

Pr{ 0}

1
.

1

L
y L y

i i i
y

L
y L y

i i i
y

Lyx q p
yL

L
q q p

y

−

=

− −

=

  
= =   

  
 −  

=   −  

∑

∑
 (4) 

 
The summation term in Equation (4) is equal to 1 

since it is the sum of the p.m.f of the binomial distribution 
with parameters L-1 and iq  for all possible outcomes.  
Hence,  

 
 Pr{ 0} .i ix q= =  
  

The result above shows that BS produces unbiased 
samples.  Next, the variance of estimator R̂ is analyzed for 
BS.  The variance of estimator R̂  within a block size of L 
is given by 

 

 

( )

1
2

( ) ( )

1 1

Var( ( ))
1ˆVar( ) .

2 Cov( ( ), ( ))

L
i

i

L L
i j

i j i

R
L

=

= = +

 Φ 
 =
 
+ Φ Φ 
 

∑

∑ ∑

X

X X
 (5) 

 
Calculating ( ) ( )Cov( ( ), ( ))Φ Φi jX X  is intractable since 

Φ(⋅) is a very complex function.  Nonetheless, the covari-
ance between the corresponding elements of two state vec-
tors can be calculated, and then used to make an assess-
ment about the covariance between state vectors.  For a 
given Yi, the covariance between ( )j

ix  and ( )k
ix of state vec-

tors X(j) and X(k) in the same block, j≠k, is 
 

 

( ) ( ) ( ) ( )

( ) ( )

2

2

Cov( | ) E{ | }

E{ | }E{ | }

( )( 1) ( )
( 1)

( ) .
( 1)

j k j k
i i i i i i

j k
i i i i

x , x Y y x x Y y

x Y y x Y y

L y L y L y
L L L

y L y
L L

= = =

− = =

− − − − = −  −  
− −=

−

 

 
 

Therefore, 
 

 

( ) ( ) ( ) ( )

0

Cov( ) Cov( | ) Pr{ }

( 1)
.

L
j k j k

i i i i i i
y

i i

x ,x x ,x Y y Y y

q q
L

=

= = =

−
=

∑
 (6) 

 
If Φ(⋅) is a coherent structure function and, if for each 

( )j
ix ∈ ( )jX  and ( )k

ix ∈ ( )kX , ( ) ( )Cov( , ) 0j k
i ix x < , then 

( ) ( )Cov{ ( ), ( )} 0i jΦ Φ <X X  (Kumamoto, Tanaka, and 
Inoue 1980).  Therefore, based on Equation (6), BS has less 
sampling variance than CMCS.  Notice that the first part of 
Equation (5) is the variance of the CMCS estimator for K=L 
and the second part (the summation of covariance terms) is a 
negative number due to the fact that Φ(⋅) is a coherent struc-
ture function and the corresponding elements of state vectors 
with the same block are negatively correlated. 

In addition to a smaller sampling variance compared to 
CMCS, one obvious advantage of BS is that it uses fewer 
random numbers for the same number of replications since it 
generates only failures.  To generate L states of arc ei, BS 
requires one binomial r.v. for Yi and on average L×qi random 
numbers to distribute Yi failures over L replications. (See 
page 562 of Ross (1997) for how to choose k numbers out of 
n numbers (k ≤ n) without replacement using only k random 
numbers.)  On the other hand, CMCS uses L Bernoulli r.v.s 
for the same sample size.  As qi approaches 0, BS requires 
fewer and fewer random numbers, making BS computation-
ally less expensive for networks with highly reliable arcs.  
However, as arc reliabilities approach 1, the negative corre-
lation between the state vectors diminishes.  Compared to 
DS where sub-block size Li depends on 1/qi, BS uses a sin-
gle block size L for each arc.  Therefore, BS can be used 
without difficulty or alteration for networks with different 
component failure probabilities.   

3.2 Geometric Sampling 

Consider K replications of CMCS where xi (the state of 
arc ei) is sampled in K discrete time points.  Let Yi be a 
r.v. corresponding to the number of states of arc ei sam-
pled until the first failure is observed.  Since xi is a Ber-
noulli r.v. with mean pi, Yi is a geometric r.v. with the fol-
lowing p.m.f.: 

 

 
1(1 ) 1, 2,

Pr{ }
0 otherwise.

− − == = 


…y
i i

i

p p y
Y y  (7) 

 
This observation is key to our new technique called 

GS.  The GS procedure is an event-driven simulation 
where events are arc failures randomly occurring at dis-
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crete time intervals given by Equation  (7).  In order to im-
plement GS, a heap data structure is used as follows.  
 
PROCEDURE GS: 
1 initializeHeap(PQ) 
2 FOR each arc ei∈E DO { 
3  ai = 1/ln(pi)  
4  et(i) = ailn(U)+1 
5  insertElement(PQ, ei, et(i))  
6 } 
7 up=0, np=0; 
8 FOR k=1,…,K DO { 
9  set 1ix = for each ei∈E 

10  etmin = minElement(PQ) 
11   DO { 
12    ei=removeMin(PQ) 
13    set xi = 0 
14    et(i) = et(i)+ ailn(U)+1 
15    insertElement(PQ, ei, et(i)) 
16    } WHILE (etmin=minElement(PQ)) 
17  up=up+ ( )Φ X  
 } 
  

In the procedure above, geometric r.v.s are generated 
by the inverse-transformation method from the cumulative 
mass function of the geometric distribution (lines 4 and 
14).  It can be shown that  ln( ) / ln( )iU p  is a geometric 
r.v. with mean 1/ iq  (Law and Kelton 2000). 

In each replication within the DO-WHILE loop between 
lines 11 and 16, arcs with the same most imminent failure 
time (etmin) are removed from the top of the heap, the state 
of the network is updated by setting their state to failed, the 
next failure times are generated, and these arcs are inserted 
into the heap again.  Note that the procedure generates 
network states with at least one failed arc.  For state Xo 
with all arcs operational, Φ(Xo)=1 and 0( ) 1Ω =X .  Hence, 
estimation of R is given as:  

 

 0 0
ˆ Pr{ } (1 Pr{ }).upR

K
= + −X X  

  
 The correctness of the GS procedure is based on the 
memoryless property of the geometric distribution which 
implies ( ) ( )Cov( ) 0k l

i ix ,x =  for any two distinct k and l rep-
lications for each ei∈E; hence, ( ) ( )Cov( ( ), ( )) 0k lΦ Φ =X X .  
Therefore, GS does not provide variance reduction com-
pared to CMCS, however, its efficiency stems from the 
fact that random numbers are only generated to simulate 
arc failures, and state Xo is skipped without being actually 
generated.  For the same number of replications, GS im-
plicitly considers 1/(1-Pr{Xo}) times more states than 
CMCS.  Therefore, as Pr{Xo} approaches one, the effi-
ciency of GS significantly increases.  That is, for highly 
reliable networks, GS becomes comparatively more effi-
cient than CMCS. 

4 COMPUTATIONAL EXPERIMENTS  
AND DISCUSSIONS 

In this section, the performances of the new techniques that 
we have developed in this paper are tested for all-terminal 
reliability.  Since Markov Model (MV) (Mazumdar, Coit, 
and McBride 2000) is also an alternative event-driven ap-
proach, it was also coded and included in comparisons. 
Two performance criteria are most often used in the litera-
ture: the variance of the estimator for a given number of 
replications and the CPU time required.  If VM and TM de-
note the variance achieved and the time taken by using 
technique M, the relative efficiency is given by 
∆VM=(VCMC/VM)×(TCMC/TM).  The higher ∆ MV  is, the better 
technique M is.  The CPU time requirement of CMCS de-
pends on the data structure used to represent the network 
within a computation (mainly due to memory requirements 
and updating procedures) and the connectivity check algo-
rithm.  We use an arc list representation and the graph 
merging connectivity algorithm, which favors this repre-
sentation, for CMCS.  In addition, if no arc failure occurs, 
the connectivity check is skipped.   

To investigate the performance of the techniques with 
respect to network density (m/n), two types of grid net-
works with 16 (4×4) and 64 (8×8),  nodes were considered, 
as shown in Figure 1.  To test the performance of the tech-
niques with respect to arc reliabilities, two different sets of 
arc reliabilities were used for (ph, pv, ps, pw): L-type with 
(0.97, 0.99, 0.995, 0.90) and H-type with (0.997, 0.995, 
0.993, 0.991).  In addition, four network density types, (a)-
type being the least dense and (d)-type being the most 
dense, were tested.  Density (a)-type networks have 
( 1)( 2)n n− +  arcs and (b), (c), and (d)-type networks 
are obtained by adding new arcs to the preceding type net-
works as shown in Figure 1.  To identify the networks in 
Tables 2, the number of nodes, density, and reliability type 
are used.  For example, network 16aL corresponds to the 
16-node, 4×4 grid network, with density (a)-type and arc 
reliability L-type.  In addition to these networks, the do-
decahedron network (Fishman 1986) with 20 nodes and 30 
arcs were used.  For all networks, K=107 replications were 
used for CMCS, DS, BS, and GS unless otherwise is ex-
pressed.  Since MV uses a continuous simulation time, the 
CPU time taken by CMCS to perform the specified number 
of replications for a given network was used as the termi-
nation criteria for this technique.  

Table 1 summarizes the simulation results for the do-
decahedron network with different levels of arc reliabil-
ities.  DS and BS did not provide a significant level of 
variance reduction for the dodecahedron network.  How-
ever, the relative efficiency of both methods increased with 
increased arc reliability.  This result can be explained with 
the increased sampling efficiency of these methods in case 
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of highly reliable arcs.  GS did not provide variance reduc-
tion for p=0.80 and p=0.90, however, variance reduction 
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Figure 1: Grid Networks Used in Experiments 

 
was achieved for higher arc reliabilities (3.8 times for 
p=0.99).  It should be noted that the variance reduction ob-
tained by GS is due to generating only network states with at 
least one arc failed.  For example, for p=0.99, the probability 
that all arcs are in the operative state is 0.739, which means 
that on the average, 74% of the time CMCS samples the 
network state with all arcs operative.  In the process of 
event-driven simulation, GS skips this state and samples 3.8 
(≈1/(1-0.739)) times more network states with arc failures 
than CMCS, which in turn provides the variance reduction. 
MV performed poorly for the dodecahedron network with 
p=0.80, p=0.90, and p=0.95.  The performance of MV im-
proved with increased arc and network reliability.   

 
Table 1:  All-Terminal Reliability Simulation Results 
for the Dodecahedron Network (Fishman, 1986) 

p R* Metric DS BS GS MV
V/VM 1.2 1.0 1.0 0.2 0.80 0.8108435855 
∆VM 1.1 0.9 0.8 0.2 
V/VM 1.0 1.0 1.0 0.4 0.90 0.9771308359 ∆VM 1.1 1.1 0.9 0.5 
V/VM 1.0 1.0 1.2 0.8 0.95 0.9973118634 
∆VM 1.4 1.4 1.1 0.8 
V/VM 1.0 1.0 2.2 1.7 0.98 0.9998351727 
∆VM 2.0 2.0 1.6 1.7 
V/VM 1.0 1.0 3.8 3.0 0.99 0.9999796990 
∆VM 3.1 3.2 2.4 3.1 
 

Table 2 summarizes the simulation results for all-
terminal reliability for the grid networks with different 
size, density and arc reliability.  DS, BS, and GS perform 
best for sparse networks with high arc reliabilities, and they 
perform relatively poorly for the 64-node dense networks.  
Being event-driven approaches, their performance mainly 
depends on the probability that all arcs are operative.  This 
probability diminishes as networks get larger and denser.  
The same is true for MV. 

 
Table 2:  All-Terminal Reliability Simulation Results for 
the 16-Node and 64-Node Grid Networks 

Network R Metric DS BS GS MV 
16aL V/VM 1.1 1.0 3.0 1.1 

 
0.985430398 

∆VM 2.7 2.4 2.0 1.1 
16bL V/VM 1.0 1.0 2.7 1.8 

 0.998697153 ∆VM 2.5 2.5 2.0 1.8 
16cL V/VM 1.1 2.2 5.3 3.2 

 
0.999411033 

∆VM 2.8 4.8 3.7 2.6 
16dL V/VM 1.0 1.1 1.3 1.8 

 
0.999941743 

∆VM 1.8 1.9 1.4 1.8 
16aH V/VM 1.0 1.0 15.6 7.0 

 
0.999635710 

∆VM 9.5 9.1 7.5 5.8 
16bH V/VM 1.1 1.0 11.2 5.7 

 0.999938880 ∆VM 8.8 7.5 6.3 5.6 
16cH V/VM 1.0 1.0 6.7 4.6 

 0.999969813 ∆VM 5.9 5.8 4.6 4.6 
16dH V/VM 1.1 0.9 4.3 5.1 

 0.999999509 ∆VM 5.2 4.5 3.6 5.1 
64aL V/VM 1.3 1.0 1.2 0.4 

 0.862765235 ∆VM 1.4 1.0 1.1 0.4 
64bL V/VM 1.1 1.0 1.1 0.6 

 0.998606424 ∆VM 1.1 1.1 1.1 0.6 
64cL V/VM 1.0 1.0 1.1 0.5 

 0.999397343 ∆VM 1.1 1.1 1.1 0.5 
64dL V/VM 1.0 1.2 1.3 0.9 

 0.999984011 ∆VM 1.2 1.5 1.4 0.9 
64aH V/VM 1.0 1.0 4.8 1.5 

 0.997897200 ∆VM 1.7 1.7 1.6 1.4 
64bH V/VM 1.1 0.9 2.7 1.4 

 0.999938151 ∆VM 1.6 1.4 1.4 1.4 
DS = Dagger Sampling (new implementation from this pa-
per of  Kumamoto, Tanaka, Inoue, and Henley (1980)); BS 
= Block Sampling (this paper); GS = Geometric Sampling 
(this paper); MV = Markov Model (new implementation 
from this paper of Mazumdar, Coit, and McBride (2000)); 
*Exactly calculated by using a factoring algorithm and net-
work reductions similar to given by Page and Perry (1988). 
 

5 CONCLUSIONS 

This paper presented event-driven simulation approaches 
to network reliability analysis as an alternative to time-
driven simulation.  Using the event-driven approach and a 
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heap-data structure, several improvements were proposed 
for dagger sampling. In addition, two new sampling tech-
niques were proposed, geometric sampling and block sam-
pling. These new event-based simulations provided vari-
ance reduction with minimum overhead; however, they are 
most effective for highly reliable sparse networks.   These 
techniques can be used for very general structure functions 
and cases where other advance variance reduction tech-
niques are not applicable. 
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