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ABSTRACT

In reviewing topics in simulation output analysis, we advo-
cate univariate analysis, micro/macro replications based on
fixed sample sizes, overlapping batches, batch sizes based
on mean squared error, dynamic batch sizes, and a concise
format for reporting results.

1 INTRODUCTION

We follow one thread through the topic of simulation output
analysis. That thread’s core is composed of the Purdue Ph.D.
dissertations by Kang (1984), Song (1988), Pedrosa (1994),
Wood (1995), and Yeh (2002). Purdue M.S. theses by Scott
(1990), Yeh (1999), and Wieland (2003) are related. As in
earlier tutorials (Schmeiser and Song 1996 and Goldsman
and Schmeiser 1997), the method of batching is central to
this thread.

Output analysis addresses the problem of determining
and reporting the quality of a given stochastic simulation
experiment. Roughly, the issue centers on what is likely
to happen if the experiment were run again with different
random-number seeds.

This tutorial, which is a rewritten and updated dis-
cussion of some content in Schmeiser (1990), begins with
a discussion of simulation experiments designed to esti-
mate performance measures of the modeled system. The
discussion then focuses on standard errors. Of the many ap-
proaches to estimating standard errors, only the approach of
micro/macro replications is pursued. In the context steady-
state simulations, a macro replication is called a batch; a
central problem is to determine automatically a good batch
size.

As in past tutorials (Schmeiser 1992b, Schmeiser 2001),
what follows is relatively informal and contains opinions,
many of which are widely accepted and some of which are
not. Due to the space constraint, references are limited to
the one research thread, ignoring substantial fine work by
others.
2 SIMULATION EXPERIMENTS

The simulation experiments considered here are of two types.
The first type estimates performance measures of a stochastic
system; examples include many industrial, military, and
financial systems. The second type estimates the solution
of a deterministic problem with Monte Carlo sampling;
examples include integration and Markov Chain Monte Carlo
experiments (which are analogous to simulating steady-state
systems Schmeiser 1992a). As does the Winter Simulation
Conference (WSC), we think mostly of the former type,
but the discussion throughout applies to both types.

We now review a simulation world view, performance
measures, point estimation, and sources of error.

2.1 World View

As first discussed in Nelson (1983), all simulation experi-
ments that we consider can be viewed as

G → U → X → Y → θ̂ .

Here G represents a source of randomness, typically one
or more pseudorandom-number generators. The source G

is used to generate random numbers U , almost always
assumed to be independent and uniformly distributed over
the unit interval. The random numbers U are used to generate
random variates X, whose distribution is known via a given
input model. The random variates X are transformed into
output variates Y via a logic model. The output variates
Y are used to compute point estimators θ̂ of performance
measures θ whose unknown values are properties of the
distribution of Y .

The purpose of such simulation experiments is to deter-
mine the values of the performance measures, θ . As such,
simulation is a competitor to closed-form and numerical
analysis of the probability model specified by the input
model and the logical model.
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2.2 Performance Measures

In applications where analysis is via simulation experiments,
multiple performance measures are common. Therefore, θ is
typically best thought of as being a vector of scalar measures.
These scalar measures are often means (such as expected
number of customers in the system), with an important
special case being probabilities (such as the probability the
the number of customers is less then ten). Other measures
are common, including other distribution moments (such as
standard deviations and variances), quantiles (such as the
median number of customers in the system), and dependence
measures (such as the correlation between the number of
customers at Station 1 and Station 2).

At the WSC, such performance measures are often de-
fined for models with continuous time and discrete states.
For our discussion, however, time can be discrete or contin-
uous, or even absent, with no concept of time in the model.
Similarly, states can be discrete or continuous or mixed.
Performance measures can be defined in terms of steady-
state behavior or transient behavior. Transient behavior can
arise from a known initial state or because of seasonality
or because the system terminates. When comparing several
systems, we still think of having one simulation experiment,
with a classic performance measure being the difference be-
tween some mean (such as expected cycle time) for each of
a pair of systems. We are interested in methods that apply
in general.

2.3 Point Estimators of Performance Measures

The “answer” provided by a simulation experiment is θ̂ , the
vector of observed point estimates, which is hoped to be close
to the unknown performance-measure vector θ . The vector
of point estimates is an observation of the vector of point
estimators; by definition there is only one such observation
arising from the simulation experiment. If there appears to
be more than observation θ̂ , these are averaged to create the
single observation. The fundamental difficulty in simulation
output analysis is that we wish to make a statement about
the quality of the single point estimate θ̂ .

The point estimator θ̂ is a function of the output variates
Y . The function used is typically the “natural” estimator.
For example, a probability is estimated with the fraction of
successes, an expected value is estimated with the sample
mean Y = ∑n

i=1 Yi/n, a variance is estimated with sample

variances S2 = (
∑n

i=1 Y 2
i − nY

2
)/(n− 1) and a coefficient

of variation is estimated with S/Y .
Such natural estimators are appropriate regardless of

whether the data Y are independent. For example, the output
data might be time in a steady-state system for n consecutive
customers. In such an autocorrelated situation, the sample
variance is biased. The bias, however, is asymptotically
negligible and is small compared to the standard deviation
of S2 (Ceylan and Schmeiser 1993, Wood 1995). That the
natural estimators work well regardless of correlations is
reflected in their use by commercial simulation languages.
The same point is supported by the histograms and em-
pirical cumulative distribution functions reported by some
commercial simulation languages.

The functional form can differ from the natural estimator
in many smart ways. For example, initial data are often
ignored when estimating steady-state performance measures.
For example, when estimating a variance when the mean µY

is known, the sample variance S2 can be replaced to gain the
extra degree of freedom provided by

∑n
i=1(Yi−µY )2/n. For

example, using the midpoints of histograms cells (rather than
storing all observations) can be computationally efficient at
small cost in lost statistical information (Schmeiser and
Deutsch 1977). Our goal is to have output analysis that
does not depend upon the form of the point estimators.

2.4 Error Sources in Simulation Experiments

The statistical quality of a simulation experiment is a function
of the sampling distribution of the vector of point estimators.
For any one scalar point estimator, the mean squared error

Mse(θ̂ , θ) = E[(θ̂ − θ)2] = Bias2[θ̂ , θ ] + Var(θ̂)

is a classical measure of quality. Viewed this way, bias and
variance are the two ways that a simulation experiment can
fail.

Bias can arise from at least six sources. Five sources
must be controlled by the construction of the experiment.
First, the pseudorandom numbers U at best only appear to
be independent and uniformly distributed on the unit inter-
val. Second, the distribution of the random variates X can
differ from the known input model, often for convenience,
such as using x = (u0.135 − (1 − u)0.135)/0.1975 as a sim-
ple approximation to generate a standard normal random
variate. Third, initial transients and stopping rules can bias
point estimators. Fourth, some good point estimators are
inherently biased, such as using order statistics to estimate
quantiles. Fifth, the computer-number system is only an
approximation to the real-number system; for example, all
distributions are bounded on a computer and computations
have round-off error.

The sixth source of bias is modeling error. It also should
be small by construction of the experiment, but unlike the
other five sources of error it is quite application dependent,
with an important tradeoff between model tractability and the
difference between the real-world’s performance measure,
say θ0, and the simulated model’s performance measure
θ . This modeling error can arise from error in the input
model, which is often estimated from real-world data, or
from error in the logical model, which is often intentional
to simplify coding. Sensitivity analysis can be used to
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provide a sense of the effect of the unknown modeling
error. Simulation practitioners need to understand that the
simulation-experiment’s point estimators know nothing of
θ0; by definition the experiment’s purpose is to estimate the
model’s θ . Others disagree (Barton et al. 2002).

The effect of the six sources of bias depend on the
run length (i.e., sample size of the output data Y ). Sim-
ulation run lengths are typically long, much longer than
corresponding real-world experiments. Long runs can ex-
pose bias caused by flaws in random-number generators,
random-variate generators, and computer arithmetic. Mod-
eling error that is negligible at short run lengths can become
dominant for long runs. On the other hand, long runs make
negligible the effects of initial transients, stopping rules,
and estimator bias.

Variance arises for only one reason: sampling error. If
the experiment were to be replicated using a different source
of randomness (typically different random-number seeds),
the point estimate would change. Sampling error depends
on the sample size of the output data Y . Ideally—with
zero bias and with reasonable point estimators—as the run
length goes to infinity, the sampling distribution converges
to the point θ .

3 STANDARD ERROR

Sources of error do, however, exist. Bias and sampling error
are always present. Simulation output analysis is concerned
with telling the simulation practitioner the quality of the
point estimate. Because even a bad experiment could by
accident have θ̂ = θ , the quality of the point estimate must
be discussed in terms of the sampling distribution of the
point estimator θ̂ .

In this section we discuss the central role of the standard
error, the standard deviation of any one scalar component
of θ̂ . We first explain why other properties of the sampling
distribution are ignored, then argue against various classical
uses of the standard error, and propose a simple way of
using standard errors to report point estimators and their
precision.

3.1 As a Measure of Sampling Error

With substantial generality, long simulation run length causes
the sampling distribution of θ̂ to be approximately normal.
This central-limit-theorem effect applies directly to sam-
ple means, but also to sample standard deviations, sample
variances, sample correlations, and sample quantiles.

Occasionally, non-normality is noticeable. Distribution
kurtosis is

α4 = E[(Y − E(Y ))4]/Var2(Y ).
For normal output data Y , the kurtosis is α4 = 3; the sample
mean is normally distributed for every run length n; but the
natural kurtosis point estimator,

α̂4 = n−1
n∑

i=1

(Yi − Y )4

S4 ,

is skewed, with a mode that is far less than three, even
for long run lengths. The reason is that the fourth power
makes the tails quite important, but in most replications the
extreme tails are under represented. Of course, α̂4 is a sum,
so large n does induce normality.

Under the assumption of point-estimator normality, the
sampling distribution is characterized by the bias and vari-
ance of θ̂ . Therefore, Mse(θ̂ , θ) is the ideal measure of
quality. By definition, however, the value of the perfor-
mance measure θ is unknown, so we cannot estimate mse
because the bias is unknown. We assume zero bias, which
is widely acceptable (even for α̂4).

Therefore, the quality of the point estimator centers on
Var(θ̂). Mean absolute deviation could be used, but as in
most applications the mathematical convenience of variance
leads to its dominant use. Often the variance is forsaken
for its square root, Ste(θ̂), because the standard error has
the same units as θ and it is the quantity used in many
classical analyses.

So far, we have discussed only a single performance
measure. The covariance matrix of θ̂ is the natural extension
of the variance when θ̂ is a vector. The covariance ma-
trix contains more information than the vector of standard
errors (the square roots of covariance-matrix’s diagonal ele-
ments). In addition, the covariance matrix can be estimated.
In the next subsection, about uses of standard error, we ar-
gue that scalar standard errors suffice for most simulation
applications.

3.2 Classical Uses

Before discussing standard-error estimation in the next sub-
section, we discuss some uses of the estimate Ŝte(θ̂).

The most classic use is to create a confidence interval.
Under the assumption of a normal sampling distribution, a
((1 − α) × 100)-percent confidence interval for θ is

θ̂ ± z1−(α/2) × Ŝte(θ̂),

where zp is the pth quantile of the standard-normal dis-
tribution. If the quality of the standard error is not so
good, the standard-normal zp commonly is replaced by
the corresponding Student-T value t1−(α/2),ν , with degrees
of freedom ν chosen (somehow) to reflect the quality of
the standard-error estimator. Because the underlying as-
sumptions are not true, all such confidence intervals are
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approximate. In addition, few readers of such confidence
intervals can explain their meaning. Schmeiser (2001) dis-
cusses other reasons to avoid confidence intervals. (Given,
however, that confidence interval procedures continue to be
developed, see Kang and Schmeiser 1990 and Schmeiser
and Yeh 2002.)

When θ is a vector, such a confidence interval can
be computed for each component. If the covariance ma-
trix were estimated, the corresponding multidimensional
ellipsoid confidence region could be computed, centered at
θ̂ . Even more so than for single-dimensional confidence
intervals, we avoid confidence regions for simulation ex-
periments. What is a typical user to do with such a region,
especially in dimensions higher than two?

Hypothesis testing is another classical use of standard
errors. Schmeiser (2001) discusses reasons to avoid hypoth-
esis testing. The key reason is that in simulation experiments
the model is created by the practitioner, so the null hypoth-
esis is known to be false (or, maybe occasionally, true).
The hypothesis test is then really a test of whether the
simulation-experiment’s run length is sufficient to detect
that the null hypothesis is false. Short runs fail to reject;
long runs reject. Not very interesting.

Standard errors are also used to determine when to
stop running a simulation experiment. Various algorithms
exist to stop when the run length is sufficient to provide
some specified property, such as a confidence interval of a
specified width. Most experiments’ run lengths, however,
are determined by the amount of time available. Gradu-
ate students notoriously run thesis simulation experiments
for days and weeks, whatever time is available before the
defense. Automated stopping rules can easily ask an ex-
periment to run for years or centuries, depending upon the
specified precision. Coupled with the usual situation where
there are multiple performance measures, dynamic stopping
rules seem applicable in few applications. Exceptions are
when comparing systems, either a small number of given
systems (Goldsman, Nelson, and Schmeiser 1991) or within
optimization and root-finding algorithms.

3.3 Reporting Simulation Results: A Proposal

Despite seeing little purpose for Subsection 3.2’s classi-
cal uses of the estimated standard error, we do think that
reporting the precision of a simulation-experiment’s point
estimators is important. Such reporting, of course, is the
purpose of simulation output analysis and the topic of this
tutorial.

Song and Schmeiser (1994) argue for a simple method
of reporting the results of a simulation experiment. Such
experiments often have many point estimates, with space
in the reporting page at a premium. Therefore, the goal
is to report the point estimates—and their precisions—
unambiguously and concisely.
Suppose that the simulation experiment has been run
and that a vector of point estimates θ̂ and a corresponding
vector of standard-error estimates Ŝte(θ̂) are available. Our
purpose is to report each point estimate and its precision,
as indicated by its standard error.

There are two underlying ideas. (1) Print only mean-
ingful digits of the point estimate. (2) Print, at most, the two
leading digits of the standard-error estimate. This leaves the
issues of defining meaningful and of formatting the printed
information. Here is one concrete proposal. Define a digit
of the point estimate as being meaningful if it is not to the
right of the leading digit of the standard-error estimate; the
leading digit is the left-most non-zero digit. For example,
suppose that θ̂ = 1234.56789 and Ŝte(θ̂) = 0.0345678.
Then the leading digit of Ŝte(θ̂) is the three in the one-
hundreths column, so the meaningful digits of θ̂ are 1234.57,
obtained by rounding the last meaningful digit. We advocate
reporting these values with the format 1234.57@3, read as
“θ̂ is equal to 1234.57 at standard error 0.03”.

4 ESTIMATING STANDARD ERRORS

We now discuss methods for estimating standard errors.
For simplicity, we assume that the standard error of one
component of θ is to be estimated from output identically
distributed observations Y1, Y2, . . . , Yn. Analogous discus-
sion applies if, for example, Y exists continuously in time,
such as the number of customers in the system.

4.1 Classical Special Cases

In a first course, two special cases for independent and identi-
cally distributed (iid) data are invariably covered. In the first
case, θ is the probability of an event A. Then the point esti-
mator θ̂ is p̂, the relative frequency of observations in A, the
standard error is Ste(p̂) = [(p(1−p))/n]1/2, and the usual
standard-error estimator is Ŝte(p̂) = [(p̂(1−p̂))/(n−1)]1/2.
In the second case, θ is the mean E(Y ). Then the point
estimator is the sample mean Y , the standard error is
Ste(Y ) = Std(Y )/

√
n, and the standard-error estimator is

Ŝte(Y ) = S/
√

n.
Other special cases are less common and less tractable.

For example, assume iid data and that the performance
measure is θ = Var(Y ). The point estimator is the sample
variance, S2, and its standard error is the square root of
[Var2(Y )/n][α4 −(n−1)/(n−3)]. A natural standard-error
estimator is obtained by estimating the variance Var(Y ) and
the kurtosis α4.

For estimating means from steady-state data,

Var(Y ) = Var(Y )

n
[1 + 2

n∑
h=1

(1 − h

n
)ρh], (1)
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where ρh = Corr(Yi, Yi+h) is the lag-h autocorrelation. In
the limit as the run length n goes to infinity,

nVar(Y ) = Var(Y )γ0,

where γ0 = 1 + 2
∑∞

h=1 ρh is the (asymptotic) number
of dependent observations that contain the same statistical
information as one independent observation. That is, the n

dependent observations are equivalent to n/γ0 independent
observations. When, as typically occurs in queueing models,
the autocorrelations are positive, assuming the iid value
of γ0 = 1 leads to underestimating Var(Y ), giving the
misleading interpretation that the point estimator is better
than it is.

The natural standard-error estimator obtained from
Equation 1 replaces the variance Var(Y ) by S2 and the
autocorrelations ρh by an autocorrelation estimator such as

ρ̂h = (n − h)−1 ∑n−h
i=1 YiYi+h − Y

2

S2 .

Although the variance estimator S2 cancels, and therefore
does not need to be calculated, the natural standard-error es-
timator requires O(n2) computation. Such a computational
effort is inappropriate since, unlike real-world experiments,
computing effort spent in estimating the standard error could
be used to reduce the standard error (by increasing the value
of n). Worse, the natural estimator is not good statistically
because for large values of n most of the autocorrelations are
essentially zero; their estimators ρ̂h, however, are subject
to random errors and worse, they are themselves positively
correlated, causing the random effects to accumulate.

Far better is truncating to only m autocorrelations and
using an estimator such as

V̂ar(Y ) = S2

n
[1 + 2

m∑
h=1

(1 − h

m
)ρ̂h], (2)

which requires only O(nm) computation and is statistically
better—assuming that m is chosen to ignore only ρh values
that are negligible. The weighting factor, sometimes called
the lag window, decreases from one to zero; its triangular
shape is a bit arbitrary, but the shape of the window is less
important than the value of the window width m.

Equation 2 has two disadvantages: it applies only to
sample means and a good value of the parameter m needs
to be determined. Both disadvantages are addressed in the
next section.

4.2 Micro/Macro Replications

We wish to have a standard-error estimator that is general,
computationally efficient, and statistically good. General in
the sense of any stationary data and for any point estimator
θ̂ , not restricted to sample means. Computationally efficient
in the sense of O(n) or a bit larger, but certainly much
less than O(n2). Statistically good in the sense that the
standard-error estimator should have a small mean squared
error.

In this section, we discuss using micro/macro replica-
tions to estimate standard errors. In addition to the three
criteria of the previous paragraph, the method uses only
the elementary statistics of Equation 2 and is therefore
reasonably easy to implement and to explain.

The approach is to estimate the standard error not for the
usual grand point estimator θ̂ , but for a related micro/macro
estimator. Partition the experiment’s run length n into k

equal-size contiguous macro replications, each composed
of m = n/k micro replications. The micro/macro point
estimator is then

θ̂ =
∑k

j=1 θ̂j

k
,

where each θ̂j is defined analogously to θ̂ but is calculated
using only the data in the j th of the k macro replications.
If θ̂ is the sample mean of the experiment’s n observations,

then θ̂ = θ̂ for any values of m and k. If k = 1 and m = n,

then again θ̂ = θ̂ .
The useful key thought is that, in general, for small

numbers of macro replications k, θ̂ ≈ θ̂ . Why? First, the
grand point estimator’s bias is O(n−1) and the micro/macro
point estimator’s bias is O(m−1). Second, both the point
estimator’s variances are O(n−1). Third, because they are
computed from the same output data, the correlation between

θ̂ and θ̂ is quite high. For the first reason, the grand point
estimator is preferred to the micro/macro point estimator.
For the second and third reasons, we calculate the standard
error of the micro/macro point estimator and report it as
the standard error of the reported grand point estimator.

The micro/macro point estimator is, regardless of the
functional form of θ̂ , the average of the k macro-replication
estimators θ̂j . Because it is an average of identically dis-
tributed data, Equation 2 applies, with ρh now referring
to the autocorrelation between macro-replication point es-
timators θ̂j and θ̂j+h. Typically the value of k is small,
however, so rather than trying to estimate the autocorre-
lations between batches, the value of k is chosen so that
the macro-replication size m = n/k is large (see Subsec-
tion 4.5). Large values of m provide almost independent
macro-replication estimators θ̂j (e.g., Kang and Schmeiser
1987), which in turn yields the standard-error estimator

V̂ar(θ̂) = S2
θ

k
, (3)
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where S2
θ = [∑k

j=1 θ̂2
j − kθ̂

2]/(k − 1). Maybe surprisingly,
for steady-state output data, the standard-error estimators of
Equations 2 and 3 are asymptotically equal, differing only
in end effects.

The mathematics of micro/macro replications apply to
any simulation experiment. (Scott 1990 and Schmeiser
and Scott 1991 discuss SERVO, general-purpose software
for obtaining standard errors for all point estimators.) In
the simplest case of iid output data, the only reason for
a large value of m micro replications is normality of the
macro-replication estimators, since they are independent
for any values of k and m. For stationary output data, the
macro replications can be either truly independent replica-
tions or asymptotically independent batches from one run.
The choice is a perennial topic, but the tradeoff is simple:
truly independent macro replications incur the disadvan-
tage of the initial-transient bias in each macro replication;
asymptotically independent batches from one run incur the
initial-transient bias only once. Because methods to deal
with the initial-bias transient are ad-hoc and often difficult
to implement, my preference is to use one run.

Typically WSC output-analysis tutorials discuss vari-
ous other approaches, such as the regenerative method and
standardized time series, for estimating standard errors. The
alternatives to micro/macro replications, however, focus al-
most entirely on sample averages. The ability to generalize
to any type of point estimator is unique to micro/macro
replications.

4.3 Steady-State Batching

For steady-state output data, micro/macro replications is usu-
ally called the method of nonoverlapping batching. Using
nonoverlapping batches is intuitively appealing, but alter-
natives are reasonable and can improve the quality of the
standard-error estimator. (As in the previous subsection,
the grand estimator θ̂ is calculated from the simulation
experiment’s n output observations and does not depend
upon batching strategy.) There are n − m + 1 batches, all
identically distributed with size m. Let B denote a subset
of the integers {1, 2, . . . , n − m + 1} and let |B| denote the
cardinality of B. Then for large batch sizes m, for any
selection of B a reasonable standard-error estimator is

V̂ar(θ̂) = S2
B

n/m
, (4)

where S2
B = [∑j∈B θ̂2

j − |B|θ̂2]/(|B| − 1).
Nonoverlapping batches, Equation 3, is the special case

of B= {1, m + 1, 2m + 1, . . . , (k − 1)m + 1}. Overlapping
batches (Meketon and Schmeiser 1984) is B= {1, 2, . . . , n+
m − 1}. Partially overlapping batches and spaced batches
are defined analogously.
Regardless of the choice of B, the expected value of

S2
B is E[(θ̂j − θ̂ )2], which depends only on the batch size

m. Because of the correction factor n/m, which is the
asymptotic ratio of variances between a batch of size n and

of size m, the expected value of V̂ar(θ̂) in Equation 4 does
not depend on the choice of B.

A key point is that independence of the batch statistics,
θ̂j , is not important for obtaining a good standard-error es-
timator. Because all batches are identically distributed, the
best statistical performance arises with overlapping batches,
despite that being the alternative with the highest autocor-
relation between batch statistics θ̂j . Spacing batches, by
omitting some output data from S2

B, reduces dependence
among batch statistics but increases the variance of the
standard-error estimator because fewer batches are used in
the computation. Song and Schmeiser (1993) show the
advantage of overlapping estimators by viewing graphs of
various estimators’ quadratic forms.

4.4 Determining Batch Size

For any batching method B, the batch size m needs to
be chosen. What are the tradeoffs? Large batch sizes
yield the needed asymptotic property that the variance of
batch statistics is inversely proportional to batch size. Large
batch sizes yield batch statistics that are normally distributed.
Small batch sizes yield more batches. That is, the choice
of batch size m balances bias, due to poor asymptotics, and
variance, due to few batches.

Schmeiser (1982), in considering nonoverlapping
batches for confidence intervals on the mean, advocates
choosing 10 ≤ k ≤ 30, even when the run length n is quite
large. This is reasonable (even for general batch statis-
tics), since the quality of S2

B is improved little with many
batches k, but the correction factor n/m can be arbitrarily
inappropriate when the asymptotics do not hold.

Given that the asymptotics hold, however, more batches
are better than fewer batches, which argues that the optimal
choices of m and k should go to infinity as the run length n

goes to infinity. The resulting consistency of the standard-
error estimator is appealing, as is having a formula to
automate the choice.

4.5 Minimizing MSE

Most of the literature of batching methods is special-
ized to batch means. (Exceptions include Schmeiser,
Avramidis, and Hashem (1990), Hashem and Schmeiser
(1994), Wood (1995), Wood and Schmeiser (1994), and
Wood and Schmeiser (1995), who consider batch variances
and batch quantiles.) This section assumes batch means,
but the high-level conclusions about batch sizes apply to
all batch statistics.



Schmeiser
Goldsman and Meketon (1986) first advocated the use
of mean squared error to choose the batch size m. In
particular, the mse-optimal batch size m∗ minimizes

Mse[V̂ar(θ̂),Var(θ̂)].

The mse depends upon the output-data process, the choice
of batching strategy, and the run length n. (So, using the
same output process and run length, batching strategies can
be compared using the mse criterion.)

Following Goldsman and Meketon (1986), Song (1988)
and Song and Schmeiser (1995) show that the asymptotic
mse-optimal batch size is

m∗ = [2n
cb

cv

γ1

γ0
]1/3 + 1. (5)

Here cb and cv are bias and variance constants that depend
upon the batching strategy; γ0 and γ1 = 2

∑∞
h=1 hρh are

characteristics of the output process.
For a given experiment, the asymptotic minimal mse

depends upon the batching strategy only via the product
cbcv. In this sense, overlapping batch means is the best
strategy among the family of standardized-time-series and
batch-means estimators.

Because the bias and variance constants are known for
any given batching strategy (Goldsman and Meketon 1986,
Song and Schmeiser 1994), and because the run length
n is known, the problem of estimating mse-optimal batch
size reduces to estimating the output process’s center of
gravity γ1/γ0. Estimating the individual autocorrelations
ρh is unnecessary. Pedrosa (1994), based on Pedrosa and
Schmeiser (1993), develops the 121-OBM method that uses
two evaluations of the overlapping-batch-means estimator,
with two batch sizes that differ by one, to estimate the
center of gravity in O(n) computation.

Because the center of gravity must be estimated, the
optimal batch size from Equation 5 also is estimated. Song
and Schmeiser (1995) use the second derivative—with re-
spect to batch size—of the optimal mse as a measure of
robustness to the effect of using estimated, rather than actual,
optimal batch size. This second derivative is proportional
to c2

v/cb. Using this measure, the linear combination of
nonoverlapping batch means and the standardized-area es-
timator (Schruben 1983) has substantially better robustness
than batch means or standardized-area estimators alone.

Because optimal batch sizes depend upon the estima-
tor, and because estimated batch size is a function of the
estimated center of gravity, Yeh and Schmeiser (2004) argue
that robustness measure should be the second derivative of
the mse with respect to the center of gravity. This measure
is proportional to cbcv. In this sense, mse and robustness are
proportional, with the result that overlapping batch means
is the preferred estimator in both senses.
Yeh (1999), Yeh and Schmeiser (2000), and Yeh (2002)
discuss dynamic batching, the context where the output
analysis is not allowed to store the entire realization of
output data for later analysis.

5 CONCLUDING THOUGHTS

The literature of estimating the standard error of the point
estimator θ̂ is vast, but only for the sample average. Even
for that special case, no method exists to ensure that the
standard error is finite. Finiteness is, however, guaranteed
because the experiment is performed on a computer, where
all realizations are finite.

More important, no method exists for determining
whether the performance measure is finite. Certainly many
queueing systems are unstable, with expected number of
customers going to infinity. Such behavior looks much like
an initial transient. Wieland (2003) and Wieland, Pasupathy,
and Schmeiser (2003) discuss the problem of designing a
method for determining whether a given simulated system
is stable.

An appealing idea is to use linear combinations of batch-
ing estimators that have differing batch sizes m. Schmeiser
and Song (1987) and Song and Schmeiser (1988a) provide
empirical evidence. Song and Schmeiser (1988b, 1988c),
Pedrosa (1994), and Pedrosa and Schmeiser (1993) pro-
vide useful results for determining the linear-combination
weights.
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