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ABSTRACT

One feature of many naturally occurring or engineered com-
plex systems is tremendous variability in event sizes. To
account for it, the behavior of these systems is often de-
scribed using power law relationships or scaling distribu-
tions, which tend to be viewed as “exotic” because of their
unusual properties (e.g., infinite moments). An alternate
view is based on mathematical, statistical, and data-analytic
arguments and suggests that scaling distributions should be
viewed as “more normal than Normal”. In support of this
latter view that has been advocated by Mandelbrot for the
last 40 years, we review in this paper some relevant results
from probability theory and illustrate a powerful statisti-
cal approach for deciding whether the variability associated
with observed event sizes is consistent with an underly-
ing Gaussian-type (finite variance) or scaling-type (infinite
variance) distribution. We contrast this approach with tradi-
tional model fitting techniques and discuss its implications
for future modeling of complex systems.

1 INTRODUCTION

A common research theme in the study of complex systems
is the pursuit of universal properties that transcend specific
system details. It is in exactly what those properties are,
and the theories to explain and exploit them, where sharp
differences arise. One aspect of many complex systems
that has received considerable attention is a tendency to-
ward tremendous variability in event sizes, such that they
can be reasonably represented by a so-called “power law”
relationship. That is, the cumulative probability P(X > l)

of observing events greater than a given size l is given
by P(X > l) ≈ l−α and manifests itself as a straight line
of slope −α in a log(P ) vs. log(l) plot (for large values
of l, and for α > 0). For example, consider the relative
sizes of the largest disaster events during the 20th Century
(Figure 1). Simple inspection of the data shows a strik-
ing relationship between the size and frequency of large
events, namely that they are reasonably approximated by
a power law having α = 1. Power law relationships have
been observed within many naturally occurring and man
made systems, including species within plant genera (Yule
1925); mutants in old bacterial populations (Luria and Del-
brück 1943); a number of applications in the social sciences
(Simon 1955), including economics (income distributions,
city populations) and linguistics (word frequencies) (Man-
delbrot 1997); forest fires (Malamud, Morein, and Turcotte
1998); Internet traffic (flow sizes, file sizes, Web documents)
(Crovella and Bestavros 1997) and Internet topology (node
degrees of physical or virtual connectivity graphs) (Falout-
sos, Faloutsos, and Faloutsos 1999); and metabolic networks
(Barabasi and Oltavi 2004). That such a diversity of sys-
tems exhibits similar scaling features has prompted many
researchers to ask whether or not there are universal drivers
of these phenomena.
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Figure 1: Log-log Plot of Event Size Versus Event Rank
(100 Largest Disasters of the 20th Century)

Given the discovery of such “emergent” properties of
complex systems and the ability to describe them with
power law-type relationships or scaling distributions, a fun-
damental issue underlying the attempts by complex sys-
tems researchers to understand and explain these highly
variable event sizes has been the extent to which such high
variability should be viewed as “exotic” (in the sense of
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surprising) or fully expected. For example, the traditional
statistical physics perspective views scaling distributions
as a signature of an internal self-sustaining critical state,
where the details associated with the initiation of events
are a statistically inconsequential factor in determining the
events’ sizes. As a result, scaling distributions and their
quantitative features are generally taken at face value and
considered as simultaneously ubiquitous, arcane, and ex-
otic (Bak 1996, Buchanan 2001, Barabasi 2002), which in
turn argues for the construction of specialized models that
produce or “explain” observed scaling behavior. Examples
include various models based on self-organized criticality
(SOC), edge-of-chaos (EOC), and more recently, scale-free
networks (SFN), and they attempt to describe the observed
phenomena (including high variability) as adaptive, self-
organizing, far-from-equilibrium, or nonlinear. Developed
and refined over the last several decades, these models are
“exotic” in the sense that they rely on mechanisms that are
generic or universal and independent of system-specific de-
tails. They assume that interactions are essentially random,
but have some macroscopic statistic tuned to a special point,
such as a bifurcation point (EOC), a critical density (SOC),
or a power-law degree distribution (SFN). In addition, they
are consistent in that they treat the appearance of power
law (scaling) relationships as evidence of some critical phe-
nomenon, which is in turn indicative of universal features
that contribute to the large-scale properties of all complex
systems. Applications of this approach to many important
complex systems have been documented in the literature.

A completely different approach to dealing with high
variability is based on Highly Optimized Tolerance or Trade-
off (HOT), a recently introduced conceptual framework for
capturing the highly organized, optimized, and “robust yet
fragile” structure of complex systems such as the Internet
(Carlson and Doyle 1999, Carlson and Doyle 2002). HOT
is capable of accounting for many essential features of these
systems with abstract models that are surprisingly simple yet
contrast sharply with their “exotic” statistical physics-based
counterparts (Carlson and Doyle 1999, Li et al. 2004). The
idea of HOT is to put design or evolution in explicitly, yet
use when possible the simple models of statistical physics
to illustrate the essential tradeoffs that arise. To this end, the
HOT-based approach argues that high variability in com-
plex systems should come as no surprise but arises naturally
as result of a rational design process, reflecting an inher-
ent need for tradeoffs between resources and constraints.
While sampling and data analytic methods can make infer-
ring scaling distributions inevitable either correctly in the
presence of high variability data or incorrectly via strong
biases or inadequate statistics, such that assuming scaling
distributions often requires a leap of faith, the qualitative
assessment of the presence or absence of high variability in
a given data set is usually less error-prone. By focusing on
high variability and not on scaling distributions or power
law relationships per se, the overriding concern of the HOT-
based approach is to understand the main mechanisms that
cause complex systems to exhibit high variability and not
to produce yet another “exotic” explanation for an observed
power law relationship.

This HOT perspective of high variability is fully con-
sistent with a view advocated by Mandelbrot, who has
provided for the last 40 years mathematical, statistical, and
data-analytic arguments that demonstrate that highly vari-
able event sizes are in a sense just as “normal”—or even
more “normal”—than Gaussian-type event sizes. The main
purpose of this paper is to pay tribute to Mandelbrot’s
ground-breaking work in this area as summarized in (Man-
delbrot 1997) and review his key probabilistic and statistical
arguments that form the basis for a rigorous treatment of
high variability in observed event sizes. When reviewing in
Section 2 the mathematical results and illustrating in Section
3 the statistical techniques, we follow closely (Willinger et
al. 2004), where the focus is mainly on the observed high
variability in Internet-related measurements. In Section 4 we
discuss with a few examples how the HOT-based approach
to high variability yields findings that are fully consistent
with the real system (via supporting measurements), but
contrast sharply with those that are based on the “exotic”
statistical physics-based models.

2 MODELING HIGH VARIABILITY

We introduce in this section the class of subexponential distri-
butions which provides a rigorous and convenient mathemat-
ical framework for dealing with high variability phenomena.
To further distinguish between finite versus infinite variance
distributions, we consider a subclass of the subexponential
distributions, called heavy-tailed or scaling distributions,
and elaborate on some key mathematical properties of the
latter. For a more comprehensive treatment of these top-
ics, we refer to a survey on subexponential distributions by
Goldie and Klüppelberg (1998) and to early works by Man-
delbrot on scaling distributions reproduced in Mandelbrot
(1997).

2.1 Heavy-Tailed or Scaling Distributions

Focusing throughout this paper on non-negative random
variables X, let F(x) = P [X ≤ x], x ≥ 0, denote the cumu-
lative distribution function (CDF) of X and F̄ (x) = 1−F(x)

the complementary CDF (CCDF). A typical feature of
commonly-used distribution functions is that their (right)
tails decrease exponentially fast, implying that all moments,
including exponential moments, exist and are finite. In prac-
tice, this property ensures that X exhibits low variability and
thus concentrates tightly around its mean. To describe in a
mathematically convenient way high variability phenomena,
we introduce next the class of subexponential distribution
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functions. Following Goldie and Klüppelberg (1998), we
call F (or X) subexponential if

lim
x→∞

P [X + Y > x]
P [X > x] = 2,

where Y is an independent copy of X. This definition can
be shown to be equivalent to

lim
x→∞

P [X1 + · · · + Xn > x]
P [max(X1, . . . , Xn) > x] = 1 for some (all) n ≥ 2,

where X1, X2, . . . are IID non-negative random variables
with distribution function F . This shows that in contrast to
low variability distributions, the sum of n IID subexponential
random variables is likely to be large if and only if their
maximum is likely to be large, and accounts for the non-
negligible probability that there will be extremely large
values in a subexponential sample. This definition also
implies that for subexponential distributions, we have

F̄ (x)/e−εx → ∞ as x → ∞ for all ε > 0;

that is, the (right) tail of a subexponential distribution de-
cays more slowly than any exponential, implying that all
exponential moments of a subexponential are infinite. Well-
known examples of subexponential distributions include the
Lognormal, Weibull, Pareto of the first or second kind, and
stable laws, while the Gaussian, exponential, and Gamma
are examples that are not in the class of subexponentials.
It is sometimes convenient to consider the slightly more
general class of long-tailed distribution functions (Goldie
and Klüppelberg 1998), but for the purpose of this paper,
this generalization is not needed.

To distinguish between subexponential distributions
whose regular moments can also be infinite (e.g., between
Lognormal and Pareto), we next consider the subclass of
subexponentials consisting of the heavy-tailed or scaling
distributions. To this end, a subexponential distribution
function F(x) or random variable X is called heavy-tailed
or scaling if for some 0 < α < 2

P [X > x] ≈ cx−α as x → ∞ (1)

where 0 < c < ∞. The parameter α is called the tail index.
For 1 ≤ α < 2, F has infinite variance but finite mean;
for 0 < α < 1, F has not only infinite variance, but also
infinite mean. In general, all moments of F of order β ≥ α

are infinite. Heavy-tailed distributions are called scaling
distributions because the sole response to conditioning is
a change in scale; that is, if X is heavy-tailed with index
α and x > w, the conditional distribution of X given that
X > w satisfies

P [X > x|X > w] = P [X > x]
P [X > w] ≈ c1x

−α,

which—at least for large values of x—is identical to the
(unconditional) distribution P [X > x], except for a change
in scale. In contrast, the non-heavy-tailed exponential dis-
tribution gives

P(X > x|X > w) = e−λ(x−w),

that is, the conditional distribution is also identical to the
(unconditional) distribution, except for a change of loca-
tion rather than scale. A more general definition involving
regularly varying tails is possible (Goldie and Klüppelberg
1998), but such a generalization makes applying and infer-
ring scaling behavior cumbersome.

Scaling distributions are also called power law dis-
tributions, and we will use below the notions of scaling,
heavy-tailed, and power law distributions interchangeably
and only insist that the right tail of the distribution satisfies
property (1). One of the most publicized features of scaling
distributions which follows trivially from (1) is that their
CCDF, when plotted on a log-log scale, appears as a straight
line, at least asymptotically. The CCDF plots for a number
of well-known distributions are shown in Figure 2.
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Figure 2: CCDF Plots of Some Known Distributions

An important but more obscure feature of scaling dis-
tributions that distinguishes them from their commonly-
considered non-heavy-tailed counterparts concerns their
mean residual lifetime defined as E(X − x|X > x). While
it is well-known that the mean residual lifetime of an ex-
ponential distribution with parameter λ is constant, i.e.,

E(X − x|X > x) = 1

λ
,

the majority of non-heavy-tailed distributions have decreas-
ing mean residual lifetime. In stark contrast, the mean
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residual lifetimes of scaling distributions are linearly in-
creasing, i.e.,

E(X − x|X > x) ≈ cx.

Finally, some simple constructions that yield scaling
distributions include the following.

• For U uniform in [0, 1], set X = 1/U , then X is
heavy-tailed with α = 1.

• For E (standard) exponential, set X = exp(E),
then X is heavy-tailed with α = 1.

• The mixture of exponential distributions with pa-
rameter 1/δ having a (centered) Gamma(a, b) dis-
tribution is a Pareto distribution with α = a.

• The distribution of the time between consecutive
visits of a symmetric random walk to zero is heavy-
tailed with α = 1/2.

2.2 Invariance Properties

Scaling distributions enjoy a number of invariance prop-
erties that (sometimes uniquely) characterize them. We
follow here the presentations in Mandelbrot (1997), show
that scaling distributions are essentially invariant under trans-
formations such as aggregation, mixture, maximization, and
marginalization, and discuss some practical implications of
this invariance property.

2.2.1 Aggregation

The classical central limit theorem (CLT) is often cited as
the reason for the ubiquity with which Gaussian (normal)
distributions occur in nature. While more general versions
of the CLT are available and can be found, for example, in
Feller (1971), in its standard form (e.g., Whitt 2002), the
classical CLT states:

Theorem 1 Suppose that (Xn : n ≥ 1) is a sequence
of IID random variables with distribution function F , where
F has finite mean m and finite variance σ 2). Let Sn =
X1 + · · · Xn, n ≥ 1 denote the nth partial sum. Then, as
n → ∞,

n−1/2(Sn − mn) ⇒ σN(0, 1),

where N(0, 1) is the standard Gaussian (normal) distribu-
tion having mean 0 and variance 1.

For a somewhat less well-known version of the CLT,
we recall that a random variable U is said to have a stable
law (with index 0 < α ≤ 2) if for any n ≥ 2, there is a real
number dn such that

U1 + U2 + · · · + Un = n1/αU + dn,
where U1, U2, . . . , Un are independent copies of U .
Following Samorodnitsky and Taqqu (1994), the stable laws
on the real line can be represented as a four-parameter
family Sα(σ, β, µ), with the index α, 0 < α ≤ 2; the
scale parameter σ > 0; the skewness parameter β, −1 ≤
β ≤ 1; and the location (shift) parameter µ, −∞ < µ <

∞. When 1 < α < 2, the shift parameter is the mean,
but for α ≤ 1, the mean is infinite. There is an abrupt
change in tail behavior of stable laws at the boundary
α = 2. While for α < 2, all stable laws are heavy-
tailed in the sense that they satisfy condition (1), the case
α = 2 is special and represents a familiar, not heavy-
tailed distribution—the Gaussian (normal) distribution; i.e.,
S2(σ, 0, µ) = N(µ, 2σ 2). The following is a simple version
of the stable-law CLT.

Theorem 2 Suppose that (Xn : n ≥ 1) is a sequence
of non-negative, IID random variables with scaling distri-
bution function F with 1 < α < 2 (implying finite mean m

but infinite variance). Let Sn = X1 + · · · Xn, n ≥ 1 denote
the nth partial sum. Then, as n → ∞,

n−1/α(Sn − mn) ⇒ Sα(1, β, 0).

Again, more general versions of this non-classical CLT
are available and can be found, for example, in Feller
(1971) or Whitt (2002). For a detailed treatment of stable
distributions, we refer to Samorodnitsky and Taqqu (1994).
Together, these results show that the Gaussian and scaling
distributions are both invariant under aggregation. More
precisely, the classical and non-classical CLTs state that
the stable distributions are the only fixed points of the
renormalization group transformation (i.e., aggregation) and
that Gaussian distributions are, in fact, a very special case
(i.e., α = 2).

2.2.2 Maximizing Choices

Consider the case of n independent random variables denoted
X1, X2, . . . , Xn and assume that their distribution functions
are scaling distributions with the same tail index parameter
α, but possibly with different scale coefficients ci > 0; that
is,

P(Xi > x) ≈ cix
−α for (1 ≤ i ≤ n).

For 1 ≤ k ≤ n, define the random variables Mk to be the
k-th successive maxima given by

Mk = max(X1, X2, . . . , Xk).

Using that P(Mk ≤ x) = ∏
1≤i≤k P (Xi ≤ x), it is easy to

show that for large x,

P [Mk > x] ≈ cMk
x−α,
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where cMk
= ∑

1≤i≤k ci . Thus, the k-th successive maxima
of scaling distributions are also scaling, with the same tail
index α, but different scale coefficients than the individual
Xi’s.

As for the converse (i.e., Mk is scaling only if the Xi’s
are scaling), for the invariance-up-to-scale to hold formally,
the distributions of the Xi’s need not follow the scaling dis-
tribution exactly. In fact, a result from extreme value theory
(see for example Resnick 1987) identifies the invariant dis-
tributions as the Frechet distributions and characterizes the
distributions of the Xi’s that are in the domain of attraction
of the Frechet distribution. The Frechet distribution is de-
fined by P [M > x] = 1−exp(−x−α), x > 0 and is clearly
scaling for large x. As a consequence, the individual Xi’
s must be so close to being scaling distributions as to be
scaling for all practical purposes. In this sense, scaling dis-
tributions are the only distributions that are invariant under
the transformation of maximization. In particular, Gaussian
distributions lack this invariance property.

2.2.3 Weighted Mixtures

As before, assume that X1, X2, . . . , Xn are n independent
random variables with scaling distribution functions Fi , all
with the same tail index parameter α, but possibly with
different scale coefficients ci > 0. Consider the weighted
mixture Wn of the Xi’s, and denote by pi the probability
that Wn = Xi . It is easy to show that

P [Wn > x] =
∑

piP [Xi > x] ≈ cWnx
−α,

where cWn = ∑
pici is the weighted average of the separate

scale coefficients ci . Thus, the distribution of the weighted
mixture of scaling distributions is also scaling, with the
same tail index α, but a different scale coefficient than the
individual Xn’s.

Mathematically, the converse (i.e., Wn is scaling only
if the Xi’s are scaling) holds only to a first approximation.
In fact, in the limit as n → ∞, the invariant “distributions”
for W are of the form P [W > x] = cx−α, x ≥ 0, which
are improper distribution functions because they yield an
infinite total probability. However, for all practical pur-
poses, the Xi’s are typically restricted by some relation
of the form 0 < a ≤ x which results in perfectly well-
defined (conditional) distribution functions of the scaling
type. With these qualifications, scaling distributions are the
only distributions that are invariant under the transformation
of weighted mixture.

2.2.4 Marginalization

Recall that stable distributions are trivially scaling. For the
sake of completeness, we note that the stable distributions,
like the Gaussian, have natural extensions to the multivariate
case. Indeed, the multivariate stable distributions can be
characterized as being those for which every linear combi-
nation of the coordinates has a (scalar) stable distribution.
We call this transformation marginalization and refer to
Samorodnitsky and Taqqu (1994) for an in-depth treatment
of stable distributions and their properties.

2.3 Scaling Distributions:
More Normal than Normal

Aggregation, mixture, maximization, and marginalization
are transformations that occur frequently in natural and en-
gineered systems and are inherently part of many measured
observations that are collected about them. For example, ag-
gregate incomes are more widely collected and reported than
each type of income separately; the flow or file/document
sizes transmitted across the Internet and observed at a par-
ticular link within the network are naturally a mixture of
distributions of the different file/document sizes residing
on the various file/Web servers; for historical data such
as natural or technological disasters (i.e., droughts, floods,
earthquakes, hurricanes, blackouts, nuclear accidents), the
fully recorded and commonly available observations reflect
a maximizing choice and correspond to the exceptional (i.e.,
largest, or most catastrophic) events; and the marginaliza-
tion transformation is relevant for dealing with a variety
of multidimensional economic quantities. In turn, these
invariance properties suggest that the presence of scaling
distributions in data obtained from complex natural or engi-
neered systems should be considered the norm rather than
the exception and should not require “special” explanations.

However, there is an implicit tradeoff between Gaus-
sians being the norm for low variability data and scaling
distributions being the norm for high variability data. In the
former case, the (traditional) CLT imposes only minimal
conditions on the distribution of the individual constituent
(i.e., finite variance), but as a result, invariance properties
can only be obtained for aggregation and marginalization.
In contrast, for high variability data, the relevant CLT re-
quires the (right) tail of the distribution of the individual
constituents to decay at a certain rate, and as a result of this
more restrictive assumption, the individual constituents are
not only invariant under aggregation and marginalization,
but also under maximization and weighted mixtures. The
pragmatic approach to dealing with high variability data
advocated in this paper then consists of viewing Gaussians
as the natural null hypothesis for low variability data, where
variance estimates exist, are finite, and converge robustly
to their theoretical value as the number of observations
increases. Similarly, it views scaling distributions as the
natural and parsimonious null hypothesis for high variability
data, where variance estimates tend to be ill-behaved and
converge either very slowly or fail to converge all together
as the size of the data set increases. In addition, it fully
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exploits the different invariance properties exhibited by low
versus high variability data.

3 INFERRING HIGH VARIABILITY

Increasingly, conventional model fitting is experiencing the
dilemma that when faced with large data sets or with data
having non-traditional characteristics (e.g., high variabil-
ity), standard goodness-of-fit tests to select among alternate
models are in general inadequate and fail to choose the
“best” model. In this section, we suggest an alternative
approach to distinguishing between competing models that
uses conventional model fitting not as an end in itself, but
applies it iteratively to increasingly larger subsets of the
data set at hand and checks for self-consistency among the
resulting models.

3.1 Conventional Model Fitting:
An End in Itself

In simplified terms, conventional model fitting proceeds in
four steps. It starts by considering a given data set “as is”,
that is, all the available observations are taken at once and
at face value. This is followed by selecting parameterized
models or model classes that are deemed appropriate for
the data at hand. In a third step, the full data set is used
to estimate the necessary model parameters, and the last
step consists of selecting the model that fits the data “best”
according to some goodness-of-fit criterion.

Figure 3 illustrates steps 1–3 of this approach with
a single data set and two different models. The data set
is from Willinger and Paxson (1998) and consists of some
240,000 HTTP connection sizes (in bytes) collected at LBL’s
WAN (in- and outbound) for a 24-hour period in June of
1996. The two models are the 2-parameter Lognormal(µ, σ )
distribution and the 2-parameter Pareto(β, α) distribution
(e.g., see Johnson, Kotz, and Balakrishnan 1994). Fitting of
the Lognormal was done by conventional moment-matching
techniques, and fitting of the Pareto involved the “naive” tail
index estimate (i.e., slope of fitted straight line through the
tail of the CCDF, where the CCDF is plotted on a log-log
scale).

While more sophisticated parameter estimation tech-
niques could be used, the outcome of this standard model
fitting exercise is highly predictable. Reasonable models
will provide a reasonable fit, with more highly parameterized
models typically yielding a better fit than more parsimonious
ones. Moreover, because of the voluminous data set and
some “unusual” features in the data (e.g., extreme values that
are genuine and cannot be dismissed as outliers; possible
dependencies), commonly-used goodness-of-fit measures to
choose among comparable candidate models generally fail
to identify the “best” model. For example, models that
are excellent approximations tend to be rejected in large
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Figure 3: Model Fitting by Example: CCDF Plots of Fitted
Lognormal, Fitted Pareto, and Original Data (HTTP Data
Set)

samples, no matter how closely they seem to fit the data,
resulting in similar discussions as, for example, in Downey
(2001) about whether Lognormal or Pareto is a better model
for a range of Internet traffic-related quantities. In view of
G. P. E. Box’s comment that “all models are wrong, but
some models are useful”, conventional model fitting ap-
plied to large data sets offers increasingly less guidance as
to which models are indeed useful and has left, for example,
Internet traffic modeling in a rather precarious state, where
the same set of measurements are fitted with very different,
but apparently equally “good” models, which in turn can
give rise to completely opposite explanations and theories
for one and the same observed phenomenon (see discussion
in Section 4).

3.2 Beyond Conventional Model Fitting:
Borrowing Strength

To find a way out of the above dilemma, we first note
that taking a data set “as is” in step one of the described
model fitting process is somewhat arbitrary. For example,
in the case of the HTTP data set, we may just as well have
ended up with only 1 hour, or half a day, or maybe even
with two days worth of measurements, depending on the
circumstances under which this measurement effort took
place. Thus instead of viewing a given data set as “static”,
we propose taking a more “dynamic” view of the data at hand
and apply Tukey’s principle of “borrowing strength from
large data sets” (Tukey 1986) in practice. To this end, let
D denote the original data set of size N , start with an initial
subset D0 ⊂ D of size N0, and consider successively larger
subsets D1, D2, . . . , Dn satisfying D1 ⊂ D2 ⊂ · · · ⊂ Dn

and of length N0 < N1 < · · · < Nn, with Nn ≈ N .



Willinger, Alderson, Doyle and Li
The main motivation for taking this dynamic view of the
data set D is that it allows for a careful exploration of
the consistency of an assumed model (e.g., a Lognormal or
Pareto distribution) as the number of observations increases.
In particular, making the commonly-used assumption that
one and the same (unknown) underlying process generated
the data at hand in the first place, increasing the number
of observations as we examine the sets D0 through Dn

should have only the following two main effects. First, the
parameter estimates of the fitted model Mi should stabilize,
and second, their accuracy expressed in terms of the widths
of their corresponding 95% confidence intervals CIi should
improve in such a way that ultimately (i.e., as i tends to n),
the confidence intervals CIi should become roughly nested,
with CIi ⊇ CIi+1.

To examine whether the fitted models Mi are indeed self-
consistent, we combine Tukey’s borrowing strength princi-
ple with Mandelbrot’s “sequential (moment) estimate plots”
(Mandelbrot 1997). The latter is simply a method that plots
the “running (moment) estimates”; that is, the value of a
model parameter estimate or a moment estimate of the data
is plotted as a function of the number of observations used
in the estimation of the parameter/moment. For example,
Figure 4 shows the sequential standard deviation plot for the
HTTP data set. Clearly, while for any fixed n, the sample
standard deviation S(n) always exists and is finite, S(n)

does not seem to converge as n increases, suggesting that
it is conceivable to assume that the second moment does
not exist, i.e, the data set is a sample from an underlying
infinite variance distribution. To compare and become more
familiar with interpreting sequential moment plots, Figure
4 also shows sequential standard deviation plots for (i) a
random permutation of the HTTP data set, (ii) same-sized
samples generated from the fitted Lognormal in Section 3.1,
(iii) same-sized samples generated from the fitted Pareto in
Section 3.1, and (iv) same-sized samples generated from
fitted exponential distributions. While the sequential stan-
dard deviation plot for the randomized sample confirms the
non-existence of a second moment for the data, plots (ii)–
(iv) clearly depict the differences between a subexponential
distribution with finite variance (e.g., Lognormal), a subex-
ponential distribution with infinite variance (e.g., Pareto),
and a non-subexponential distribution (e.g., Exponential).

The observed lack of convergence of the sequential
standard deviation plot for the data in Figure 4 translates
directly into inconsistencies of models that assume finite mo-
ments upfront, either implicitly or explicitly. To illustrate,
for the same HTTP data set, Figure 5 shows the sequential
estimates σ̂ 2(i) of the variance parameter σ 2(i) of fitted
Lognormal models Mi , together with their 95% confidence
intervals CIi (here we used ni = 1000 ∗ i). Figure 5 is
evidence that the parameter estimates σ̂ 2(i) don’t converge
and that successive 95% confidence intervals are so small
so as to have little chance to overlap. In short, while for any
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Figure 4: Sequential Standard Deviation Plot: Original Data
(HTTP Data Set) and Fitted Distributions

fixed i, the fitted Lognormal model Mi appears to provide
an adequate fit for the data set Di , when viewed together,
the disadvantage of using Lognormal distributions to fit our
data sets becomes evident; the resulting models Mi are
clearly inconsistent with one another, and while increasing
the number of observations produces more accurate pa-
rameter estimates, an apparent lack of convergence of the
latter renders the more precise estimates useless. To quote
Mandelbrot (1997, p. 21), “when exactitude is elusive, it
is better to be approximately right than certifiably wrong.”
For the data sets at hand, using the proposed framework
shows that fitting Lognormals is a case of being “certifiably
wrong.”

We next apply our approach to show that fitting Pareto
models to our data is indeed a case of being “approximately
right.” To this end, Figure 6 shows the sequential estimates
α̂(i) of the tail index parameter α of fitted Pareto models
Mi , together with their 95% confidence intervals CIi , where
we used again ni = 1000 ∗ i. More precisely, we use here
the well-known Hill estimator to estimate the tail index
α of a Pareto distribution and exploit the fact that Hill’s
estimator is asymptotically normal to compute approximate
95% confidence intervals for α̂(i). For details about Hill’s
estimator, conditions under which it is asymptotically nor-
mal, and an expression for the 95% confidence intervals, see
for example Resnick (1997). The contrast between Figures
5 and 6 is telling. Not only is there evidence that the tail
index estimates α̂(i) converge as i increases to the full size
of the data sets, but their corresponding CIi’s are such that
the fitted Pareto models Mi are by and large fully consistent
with one another. We take this as strong evidence that in the
case of our data, Pareto models are not only “useful” but in
fact “better” than Lognormal models. In this sense, model
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consistency is a powerful requirement and represents an
effective criterion for selecting among otherwise omparable
alternate models. It also benefits tremendously from the
availability of voluminous data sets.
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3.3 Beyond Borrowing Strength

While we have illustrated our approach with an example
where a Pareto model is picked over a Lognormal model, the
same method succeeds just as well in selecting a Lognormal
over a Pareto when the underlying data is not consistent
with a scaling distribution. For example, it is easy to see
why and how our proposed framework would reject a Pareto
model that was fitted to a large sample generated from a
Lognormal distribution. In particular, our framework does
not only apply to choosing among otherwise comparable
distributions, but works just as well for selecting among
alternate stochastic process models that are deemed reason-
able for having generated the time series at hand in the first
place. In fact, insisting on model consistency turns out to
provide an especially powerful and elegant tool for deter-
mining whether the time series in question is consistent with
long-range dependence or whether a short-range dependent
process is a “better” model for the data (see for example,
Beran 1994). Of course, there will always be situations
where our approach will fail to identify the “best” model
among competing candidates, but in this case, it almost
certainly will be able to reveal whether the fitted candidate
models are all uniformly “good” or “bad” with respect to
the model consistency requirement.

While we advocate here that future modeling ef-
forts should adhere more faithfully to Tukey’s “borrowing
strength” principle and thus to making model consistency
a general requirement, the networking community already
practices another data analysis principle that is also attributed
to Tukey and is called “broadening the basis”. While re-
lated to “borrowing strength”, “broadening the basis” refers
more explicitly to attempts on generalizing a finding by
drawing on a wider variety of data (Draper et al. 1993),
collected under similar or even dissimilar conditions, at
different points in space and time. Thus, in the networking
context, broadening the basis is an approach that attempts
to find law-like relationships that describe not a single set
of measurements, but apply to many data sets collected
from the same (or a similar) network or perhaps from very
different networks, at different places within the network,
over different period of time, and under varying networking
conditions. IP flows are a perfect example where applying
this principle has produced overwhelming evidence in favor
of the scaling property of the size distribution of these basic
constituents of aggregate network traffic.

4 DISCUSSION

4.1 Practical Considerations:
Ambiguity in the Data

The mere observation that Gaussians and scaling distribu-
tions are both invariant under aggregation and marginaliza-
tion suggests that the ubiquity with which the latter occur
should be no more surprising than the wide-spread presence
of the former. The fact that under the earlier-mentioned
qualifications, scaling distributions are also invariant under
maximization and mixture while Gaussians are not has a
number of very practical implications for scientific mod-
eling in general. For example, these stronger invariance
properties make scaling distributions insensitive to a wide
range of ambiguities that occur when measuring various
quantities (see for example Bookstein 1990). Ambiguities
commonly exist in levels of aggregation (e.g., grouping into
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classes, choice of time segment), changing environments
(e.g., entries or exits from a population, varying growth
rates, different time segments), differences in accounting
(e.g., treatment of multiple authorship) or measuring (e.g.,
off sets in clock times), etc. As a result of such robustness
properties, the power of empirical studies can be vastly
expanded by demonstrating, for example, that a given set
of observations is not only consistent with a hypothesized
model or distribution, but also that the finding is in fact
insensitive to the ambiguities that are inherent in the pro-
cess of obtaining the measurements in the first place (for
more details, see Willinger et al. 2004). Moreover, the
inherent robustness properties of the scaling distributions
greatly facilitate scientific discovery, because they essen-
tially ensure that detecting and identifying scaling laws in
real data is not only feasible, but can be fully expected to
succeed despite imperfect measurements as well as a wide
range of ambiguities associated with the actual processes of
measuring, accounting, and reporting the data. Properties
of a system that require perfect measurements and tolerate
no such ambiguities are highly unlikely to be useful, let
alone be discovered.

4.2 Power Laws vs. High Variability

While the arguments found in the statistics literature con-
cerning the use of scaling distributions for modeling high
variability/infinite variance phenomena have hardly changed
since Mandelbrot’s attempts in the 1960s to bring scaling
distributions into mainstream statistics, discovering and ex-
plaining strict power law relationships has become a minor
industry in the complex science literature. Unfortunately,
a closer look at the fascination within the complex science
community with power law relationships reveals a very
cavalier attitude towards inferring power law relationships
or strict power law distributions from measurements. In
fact, Figure 7 illustrates a commonly-used technique and
widely-accepted approach for inferring power law behav-
ior. Denoting by x the “size” of an object and by f (x)

its relative frequency of occurrence (with
∫

f (x)dx = 1),
the plot on the left shows for a set of 1,000 observations
the corresponding size-frequency relation on log-log scale
and suggests that the data support a relation of the form
log(f (x)) = log(c) − (1 + α) log(x) for some α > 0 (i.e.,
f (x) = Cx−(1+α)). Moreover, an estimate of the tail index
α is readily available as the slope of a line that fits the
data well. However, as illustrated this popular procedure
lacks rigor and typically results in vastly different tail index
estimates, depending on the degree of sophistication of the
“eyeballing” technique used when fitting a straight line to
the size-frequency data. In the case of Figure 7, the 1,000
observations are generated from a Pareto distribution with
α = 1, but the left plot suggests that α estimates between
0 and 1 would be appropriate.
To demonstrate why size-frequency plots should be
altogether avoided when inferring power law relationships,
we contrast their use in Figure 7 (left plot) with the use
of the CCDF plots (right plot). Examining the CCDF plot
corresponding to the same 1,000 observations as considered
before, we observe that only tail index estimates around
1.0 are consistent with the data. In this sense, many of
the discoveries of power law relationships reported in the
complex science literature are simply the result of a non-
rigorous and inadequate analysis of the underlying data
and have to be revised/modified in view of the evidence
provided by a statistically more robust analysis of the very
same data. Unfortunately, the cavalier approach to dealing
with power law relationships advocated by the complex
science community has its appeal and has occasionally
been adopted by other research communities. Other issues
that—when ignored—readily invite claims of alleged power
law relationships are discussed by Mandelbrot (1997) and
concern, for example, a limited range of observed x-values,
large tail index estimates, and ignoring naturally occurring
small or large “outliers.”

4.3 The Internet as a Case Study

To many researchers, the Internet offers an especially at-
tractive case study of a large-scale complex system. The
appealing allusion of a simple, robust, and homogeneous
resource has led to a proliferation of specious claims about it
in the physics and popular scientific literature. For example,
the assumption that the Internet is sufficiently homogeneous
and large-scale to be anemable to statistical physics-inspired
analysis techniques has led to SOC-based models for ex-
plaining the self-similar nature of Internet traffic and has
recently inspired the popular scale-free network models for
explaining reported power law-type relationships associated
with Internet connectivity. However, when trying to explain
the presence of high variability in observed Internet traffic or
Internet topologies, it is important to keep in mind that the
vast majority of measurements from complex systems such
as the Internet are almost never perfect, but are plagued by
all kinds of ambiguities. Moreover, for a number of reasons,
many quantities can hardly ever be measured directly and
tend to be altered by manipulations and transformations of
other measurements that allow for (hopefully) sufficiently
accurate approximations of the quantities in question.

As far as Internet traffic is concerned, scaling distri-
butions entered by way of a mathematical theorem origi-
nally due to Mandelbrot and Cox (see for example Leland
et al. 1994, Crovella and Bestavros 1997 and references
therein). The result states that the self-similar scaling be-
havior of the aggregate link traffic is caused by the high
variability/infinite variance property of the individual con-
stituents that make up the aggregate traffic. It also invites a
direct validation of this explanation by identifying the nec-
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essary measurements (i.e., TCP connection sizes, IP flow
sizes) and checking for consistency with scaling distribu-
tions or, equivalently, with heavy-tailed distributions, where
the latter term is used in much of the self-similar traffic
literature. A simple and popular descriptive model of this
explanation is one in which most files (“mice”) have few
packets, while most packets are in large files (“elephants”).
New results that expand on the theme of Highly Optimized
Tolerance (HOT) (Carlson and Doyle 1999, Doyle and Carl-
son 2000, Carlson and Doyle 2002) consider Web layout
design in the spirit of source coding for data compression
and rate distortion theory. These results not only complete
the present explanation of the observed self-similar Internet
traffic, but they are a promising starting point for a more
complete source/channel coding theory analogous to that
from Shannon information theory for conventional com-
munication problems, though necessarily differing greatly
in detail (Zhu, Yu, and Doyle 2001). This new treatment
builds on theories from robust control and duality in opti-
mization and implies that scaling distributions at the level
of traffic sources must be embraced because they are not
an artifact of current network-specific features (e.g., appli-
cations, protocols), but are likely to be a permanent and
essential characteristic of future network traffic (the bad
news?). At the same time, the new approach also shows
that not only can a new theory be developed to handle
source-level scaling distributions, but if properly exploited,
such behavior at the source level is in fact ideal for ef-
ficient and reliable transport over Internet-like networks
(the good news!). Comparisons with statistical physics-
inspired approaches have appeared elsewhere (e.g. Carlson
and Doyle 1999, Doyle and Carlson 2000, Carlson and
Doyle 2002, Willinger and Doyle 2003) and demonstrate
that these SOC/EOC-based “explanations”—serving at best
as simple null hypotheses—can be convincingly debunked
and are easy to reject.

The use of scaling distributions (in the sense of strict
power law relationships) to describe Internet topology en-
tered by way of empirical studies, first reported by Faloutsos
et al. (1999), who based their empirical findings on tracer-
oute data that had been collected earlier by Pansiot and
Grad (1998). The presence of a scaling relationship in node
degree (i.e., number of connections) for routers within the
Internet is critical to the scale-free story (Barabasi 2002),
but it is well-known among networking researchers that the
inferred node degrees are extremely ambiguous, and inferred
node degree distributions that are not resilient to some of the
most serious ambiguities are likely to be of little scientific
value. When applied to Internet connectivity data (Willinger
et al. 2004), our proposed approach provides evidence that
in contrast to previously made claims, router-level node
degrees are not consistent with scaling distributions. This
finding is shifting the current research efforts from trying
to explain scaling router-level degree distributions to under-
standing the high variability in measurements of IP-level
connectivity. In particular, when trying to develop a mod-
eling approach to router-level Internet connectivity that is
truly explanatory in the sense of Willinger et al. (2002), the
recently popular “scale-free” network models (Barabasi and
Albert 1999) are not only inconsistent with more carefully
interpreted router-level connectivity data, but are in almost
every theoretical and practical aspect completely opposite
from the real Internet. This realization is already yielding
the beginnings of a first-principles approach to router-level
topology modeling that reflects practical constraints and
tradeoffs in networking technology and economics (Li et
al. 2004).
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