
Proceedings of the 2004 Winter Simulation Conference
R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

STOCHASTIC PETRI NETS FOR MODELLING AND SIMULATION

Peter J. Haas

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120, U.S.A.
ABSTRACT

Stochastic Petri nets (SPNs) have proven to be a powerful
and enduring graphically-oriented framework for modelling
and performance analysis of complex systems. This tutorial
focuses on the use of SPNs in discrete-event simulation. Af-
ter describing the basic SPN building blocks and discussing
the modelling power of the formalism, we present elements
of a steady-state simulation theory for SPNs. Specifically,
we provide conditions on the building blocks of an SPN that
ensure long-run stability for the underlying marking pro-
cess (or for a sequence of delays determined by the marking
process) and the validity of estimation procedures such as
the regenerative method, the method of batch means, and
spectral methods.

1 INTRODUCTION

Developing and analyzing stochastic simulation models
of complex computer, manufacturing, telecommunication,
workflow, or transportation systems is almost always a chal-
lenging task. Real-world systems usually comprise multiple
activities or processes that proceed concurrently. Activities
often have precedence relationships, e.g., assembly of a part
in a manufacturing cell does not begin until assembly of
each of its subparts has completed. Specified activities may
be synchronized in that they must always start or terminate
at the same time. Activities frequently compete for limited
resources, and one activity may have either preemptive or
nonpreemptive priority over another activity for use of a
resource. The generalized semi-Markov process (GSMP)
is the traditional framework for mathematical modelling of
general discrete-event stochastic systems. Although useful
for a unified theoretical treatment of discrete-event systems,
the GSMP framework is not always well suited to practical
modelling tasks. In particular, the modeller is forced to
specify the “state of the system” directly as an abstract vec-
tor of random variables. Such a specification can be highly
nontrivial: the system state definition must be as concise
as possible for reasons of efficiency, but must also contain
enough information so that a sequence of state transitions
and transition times can be generated during a simulation
run and system characteristics of interest can be determined
from the sequence.

Stochastic Petri nets (SPNs), introduced by the computer
science community in the early 1980s, are very appealing
in that they not only have the same modelling power as
GSMPs but also admit a graphical representation that is well
suited to top-down and bottom-up modelling of complex
systems. SPNs are a probabilistic extension of the original
nets introduced by Carl Adam Petri in his 1962 Ph.D.
dissertation. At present, the literature contains over 8800
books, papers, and reports dealing with Petri nets and their
extensions. A variety of computer packages are available for
simulation and analysis of Petri nets, and ISO/IEC standard
15909 for Petri net models is currently under development.

This tutorial provides an introduction to SPNs, with
an emphasis on those aspects of SPNs that are pertinent to
simulation. We first describe the basic SPN building blocks,
illustrate the use of SPNs as models of discrete-event sys-
tems, and discuss the modelling power of the formalism.
We then present elements of a steady-state simulation theory
for SPNs by providing conditions on the building blocks
of an SPN that ensure long-run stability for the key sto-
chastic processes associated with the net and the validity
of estimation procedures such as the regenerative method,
the method of batch means, and spectral methods. Our pre-
sentation primarily follows the monograph of Haas (2002)
as well as recent papers by Glynn and Haas (2004, 2005),
and we refer the reader to these sources for further details
of the results presented here as well as various extensions,
refinements, and pointers to the SPN literature.

2 THE SPN MODEL

The SPN framework provides a powerful set of building
blocks for specifying the state-transition mechanism and
event-scheduling mechanism of a discrete-event stochastic
system. We give an overview of the SPN building blocks
and then formally define the “marking process” of the SPN,

Haas
which records the state of the net as it evolves over continuous
time.

2.1 Building Blocks

An SPN is specified by a finite set of places and a finite
number of transitions along with a normal input function,
an inhibitor input function, and an output function (each of
which associates a set of places with a transition). A marking
of an SPN is an assignment of token counts (nonnegative
integers) to the places of the net. A transition is enabled
whenever there is at least one token in each of its normal
input places and no tokens in any of its inhibitor input
places; otherwise, it is disabled. An enabled transition fires
by removing one token per place from a random subset of
its normal input places and depositing one token per place
in a random subset of its output places. An immediate
transition fires the instant it becomes enabled, whereas a
timed transition fires after a positive (and usually random)
amount of time. In the context of discrete-event systems,
the marking of the SPN corresponds to the state of the
system, and the firing of a transition corresponds to the
occurrence of an event.

SPNs have a natural graphical representation—see Fig-
ure 1—that facilitates modelling of discrete-event systems.
This bipartite graph of the places and transitions of an
SPN determines the event-scheduling mechanism. In the
graphical representation of an SPN, places are drawn as
circles, immediate transitions as thin bars, and timed tran-
sitions as thick bars. Directed arcs connect transitions to
output places and normal input places to transitions; arcs
terminating in open dots connect inhibitor input places to
transitions. Tokens are drawn as black dots.

Figure 1: SPN Building Blocks

Heuristically, an SPN changes marking in accordance
with the firing of a transition enabled in the current marking
(or with the simultaneous firing of two or more transitions
enabled in the current marking). Here the new marking
may coincide with the current marking. The times at which
transitions fire are determined by a stochastic mechanism.
Specifically, a clock is associated with each transition. The
clock reading for an enabled transition indicates the remain-
ing time until the transition is scheduled to fire. Clocks run
down at marking-dependent speeds, and a marking change
occurs when one or more clocks run down to 0. The tran-
sitions enabled in a marking therefore compete to change
the marking: the transitions whose clocks run down to 0
first are the “winners.”

At time 0 the initial marking and clock readings are
selected according to an initial probability distribution. At
each subsequent marking change there are three types of
transitions:

1. A new transition is enabled in the new marking and
either is not enabled in the old marking—so that
no clock reading is associated with the transition
just before the marking change—or is in the set
of transitions that triggers the marking change—so
that the associated clock reading is 0 just before
the marking change. For such a transition, a new
clock reading is generated according to a probability
distribution that depends only on the old marking,
the new marking, and the set of transitions that
triggers the marking change.

2. An old transition is enabled in both the old and
new markings and is not in the set of transitions
that triggers the marking change. The clock for
such a transition continues to run down (perhaps
at a new speed).

3. A newly disabled transition is enabled in the old
marking and disabled in the new marking. If the
transition is not in the set of transitions that triggers
the marking change, then it is “cancelled” and its
clock reading is discarded. Otherwise, the clock
associated with the transition has just run down to
0 and no new clock reading is generated.

As mentioned before, we distinguish between imme-
diate transitions that always fire the instant they become
enabled and timed transitions that fire only after a positive
amount of time elapses. The clock reading generated for a
new immediate transition is always equal to 0 with prob-
ability 1, whereas the clock reading generated for a new
timed transition is always positive with probability 1. If at
least one immediate transition is enabled in a marking—as
in Figure 1—then the marking is immediate; otherwise,
the marking is timed. An immediate marking vanishes the
instant it is attained.

SPNs are well-suited to modelling concurrency, syn-
chronization, precedence, and priority, and are conducive
to both bottom-up and top-down modelling. In bottom-up
modelling, a detailed subnet is developed for each com-

Haas
ponent of a system, and then the subnets are combined to
form the overall SPN model. In top-down modelling, a
preliminary SPN model is developed that captures the main
interactions between the components of the system without
modelling each component in detail. Then the subnets cor-
responding to the system components are each progressively
refined until the model is sufficiently detailed.

Example 1 (Cyclic queues with feedback) Consider
a closed network of queues with two single-server service
centers and N (≥ 2) jobs; see Figure 2. With fixed prob-
ability p ∈ (0, 1), a job that completes service at center 1
moves to center 2 and with probability 1 − p joins the tail
of the queue at center 1. A job that completes service at
center 2 moves to center 1. The queueing discipline at
each center is first-come, first-served. Successive service
times at center i (i = 1, 2) are i.i.d. as a random variable
Li having a continuous distribution function. For future
reference, we also assign a “position” to each job in the
network, as indicated in the figure.

Figure 2: Cyclic Queues with Feedback (Five Jobs)

An SPN model of this system is displayed in Figure 3.
The tokens in place d1,i correspond to the jobs waiting in
queue at center i, and a token in place d2,i corresponds to
a job that is undergoing service at center i. A marking of
the net corresponds to a vector of the four token counts
in places d1,1, d2,1, d1,2, and d2,2, respectively; e.g., the
marking displayed in Figure 3 is denoted as s = (2, 1, 1, 1).

e1,i = start of service at center i

e2,i = completion of service at center i

Figure 3: SPN Representation of Cyclic Queues with Feed-
back

Whenever transition e2,2 fires, it removes a token from
place d2,2 and deposits a token in place d1,1, reflecting the
fact that a job that completes service at center 2 moves
to center 1. Whenever transition e2,1 fires, it removes a
token from place d2,1; moreover, it deposits a token in place
d1,2 with probability p and in place d1,1 with probability
1−p. In this manner the SPN model captures the feedback
mechanism in the network of queues.

Transition e1,i = “start of service at center i” is im-
mediate for i = 1, 2, reflecting the fact that a job starts
to undergo service at the same instant it is selected for
service. Whenever transition e1,i fires, it removes a token
from place d1,i and deposits a token in place d2,i . Sup-
pose, for example, that the marking is s = (2, 1, 1, 1) as
pictured in Figure 3 and transition e2,2 fires, so that the
marking changes to the immediate marking s′ = (3, 1, 1, 0).
Then transition e1,2 becomes enabled and fires immediately,
changing the marking to s′′ = (3, 1, 0, 1). Transition e2,2
becomes enabled at this marking change and a new clock
reading is generated from the distribution of L2. Observe
that, due to the inhibitor arcs, transition e1,i never fires
when place d2,i contains a token, reflecting the fact that
at most one job at each center can undergo service at any
time.

The SPN representation of a system need not be unique.
For example, Figure 4 displays an alternative SPN represen-
tation of the network of queues. This SPN does not distin-
guish between a job undergoing service and jobs waiting in
queue; that is, the tokens in place di correspond to all jobs
(in queue or undergoing service) at center i for i = 1, 2.
Although the original SPN in Figure 3 represents the service
mechanism in greater detail, the SPN in Figure 4 is easier
to work with in practice: the latter SPN has fewer places
and transitions but can be used to study any performance
characteristic that can be studied using the former SPN. �

e1 = service completion at center 1

e2 = service completion at center 2

Figure 4: Alternative SPN Representation of Cyclic Queues
with Feedback

In order to obtain SPN graphs that are more concise, we
can associate “colors” with both tokens and transitions and
work with “colored stochastic Petri nets” (CSPNs). Such
nets are especially well suited for systems that are com-
prised of subsystems having similar structure or behavior.
Chapter 9 in Haas (2002) describes extensions of the results
in this paper to the CSPN setting, and shows how symmetry

Haas
with respect to color can be exploited to improve simulation
efficiency.

2.2 The Marking Process

We now provide some notation for SPNs and formally
define the marking process of the net in terms of an
underlying Markov chain having a general state space.
Let D = { d1, d2, . . . , dL } be a finite set of places,
E = { e1, e2, . . . , eM } be a finite set of transitions, and
E′ ⊂ E a (possibly empty) set of immediate transitions.
The transitions in E − E′ are called timed transitions.
Also let I (e), L(e), J (e) ⊆ D be the sets of normal input
places, inhibitor input places, and output places, respec-
tively, for transition e ∈ E. Denote by G the finite or
countably infinite set of markings. For s ∈ G we write
s = (s1, s2, . . . , sL), where sj is the number of tokens in
place dj ∈ D. Set E(s) = {

e ∈ E : sj ≥ 1 for dj ∈
I (e) and sj = 0 for dj ∈ L(e)

}
, so that E(s) (assumed

nonempty) is the set of transitions that are enabled when
the marking is s. A transition e ∈ E−E(s) is disabled when
the marking is s. Define the set S′ of immediate markings
by S′ = {

s ∈ G : E(s) ∩ E′ �= ∅

}
and the set S of timed

markings by S = G − S′ = {
s ∈ G : E(s) ∩ E′ = ∅

}
.

For E∗ ⊆ E(s), denote by p(s′; s, E∗) the probability
that the new marking is s′ given that the marking is s and
the transitions in the set E∗ fire simultaneously. The new-
marking probabilities are constrained by the requirement that
a transition remove at most one token from each normal input
place and deposit at most one token in each output place
when it fires. The token count of a place may increase or
decrease by more than 1 when transitions fire simultaneously.

As mentioned previously, the clocks associated with
the transitions of the net, along with the speeds at which
the clocks run down, determine which of the enabled tran-
sitions trigger the next marking change. Denote by r(s, e)

(≥ 0) the speed (finite, deterministic rate) at which the clock
associated with transition e runs down when the marking
is s. The requirement that r(s, e) be finite is needed to
ensure that timed transitions never fire instantaneously. We
do not allow zero speeds for immediate transitions; such
transitions always fire the instant that they become enabled.
By convention, r(s, e) = 1 if e ∈ E′ ∩ E(s). We as-
sume that r(s, e) > 0 for some e ∈ E(s). Let C(s) be
the set of possible clock-reading vectors when the mark-
ing is s: C(s) = {

c = (c1, . . . , cM) : ci ≥ 0 and ci >

0 if and only if ei ∈ E(s)−E′ }. (The ith component of a
clock-reading vector c = (c1, . . . , cM) is the clock reading
associated with transition ei .) Beginning in marking s with
clock-reading vector c = (c1, . . . , cM) ∈ C(s), the time
t∗(s, c) to the next marking change is given by t∗(s, c) =
min{ i : ei∈E(s) } ci/r(s, ei), where ci/r(s, ei) is taken to be
+∞ when r(s, ei) = 0. The set of transitions E∗(s, c) that
fire simultaneously and trigger the next marking change is
given by E∗(s, c) = { ei ∈ E(s) : ci − t∗(s, c)r(s, ei) = 0 }.
Observe that E∗(s, c) = E(s) ∩ E′ whenever the marking
s is immediate.

At a marking change from s to s′ triggered by the
simultaneous firing of the transitions in the set E∗, a finite
clock reading is generated for each new transition e′ ∈
N(s′; s, E∗) = E(s′) − (E(s) − E∗). Denote the clock-
setting distribution function (that is, the distribution function
of such a new clock reading) by F(· ; s′, e′, s, E∗). For
e′ ∈ E′, we require that F(0; s′, e′, s, E∗) = 1 for s, s′ and
E∗ so that immediate transitions always fire instantaneously.
For e′ ∈ E−E′, we require that F(0; s′, e′, s, E∗) = 0 for s,
s′ and E∗ so that timed transitions never fire instantaneously.
For each old transition e′ ∈ O(s′; s, E∗) = E(s′)∩(

E(s)−
E∗), the old clock reading is kept after the marking change.
For e′ ∈ (E(s)−E∗)−E(s′), transition e′ (that was enabled
before the transitions in E∗ fired) becomes disabled and the
clock reading is discarded.

Denote by X(t) the marking of the SPN at time t .
Formal definition of the marking process { X(t) : t ≥ 0 } of
an SPN with general firing times is in terms of a general
state space Markov chain { (Sn, Cn) : n ≥ 0 } that describes
the net at successive marking changes; see Section 3.1 in
Haas (2002) for a formal definition of this chain. Heuris-
tically, Sn = (Sn,1, . . . , Sn,L) represents the marking and
Cn = (Cn,1, . . . , Cn,M) represents the clock-reading vector
just after the nth marking change. The chain takes values
in the set � = ⋃

s∈S

({ s } × C(s)
)
. Denote by µ the initial

distribution of the chain; for a subset B ⊆ �, the quantity
µ(B) represents the probability that (S0, C0) ∈ B. We
assume throughout that the initial marking s0 is selected
according to a (possibly degenerate) initial-marking dis-
tribution function ν0 and then, for each enabled transition
ei ∈ E(s0), the corresponding clock reading c0,i is generated
according to an initial clock-setting distribution function
F0(· ; ei, s0). Thus µ(A) = ν0(s0)

∏
e∈E(s0)

F0(ai; e, s0)

for all sets A = { s0 } × {
(c0,1, . . . , c0,M) ∈ C(s0) : 0 ≤

c0,i ≤ ai for 1 ≤ i ≤ M
}
. Let ζn (n ≥ 0) be the

nonnegative, real-valued time of the nth marking change:
ζn = ∑n−1

j=0 t∗(Sj , Cj). The marking process is then defined
by setting

X(t) =
{

SN(t) if N(t) < ∞;

� if N(t) = ∞,

where � �∈ G and N(t) = sup { n ≥ 0 : ζn ≤ t } is the
number of marking changes that occur in the interval (0, t].
By construction, the marking process takes values in the
set S ∪ { � } and has piecewise constant, right-continuous
sample paths. We assume throughout that

Pµ

{
sup
n≥0

ζn = ∞
}

= 1 (1)

Haas
so that only a finite number of marking changes occur in any
finite time interval. (Here as elsewhere, we use the notation
Pµ to emphasize the fact that the initial state (S0, C0) is
distributed according to µ.) Some sufficient conditions for
(1) to hold are given in Section 3.3 of Haas (2002). It
follows that Pµ { X(t) �= � for t ≥ 0 } = 1, and hence the
state space of the marking process can be taken simply as
S.

We often write E∗
n = E∗(Sn, Cn) for n ≥ 0. We also

define the embedded chain { (S+
n , C+

n) : n ≥ 0 } of the
marking process of an SPN to be the discrete-time process
that records the marking and clock-reading vector just after
each marking change at which the new marking is timed; it
can be shown that { (S+

n , C+
n) : n ≥ 0 } is indeed a Markov

chain. Denote the state space of the embedded chain by
�+.

2.3 Modelling Power

Exactly how large a class of discrete-event systems can be
modelled within the SPN framework? Although this ques-
tion cannot be answered precisely, the modelling power of
SPNs can usefully be compared with that of GSMPs. The
GSMP is the traditional model for the underlying stochastic
process of a discrete-event system, and a wide range of
computer, communication, manufacturing, and transporta-
tion systems have been modelled as GSMPs. Thus GSMPs
are a good benchmark for assessment of modelling power.
GSMPs have a more general state-transition mechanism,
event-scheduling mechanism, and form of the state space
than SPNs. It might therefore be conjectured that SPNs
have less modelling power than GSMPs.

It is shown in Chapter 4 of Haas (2002) that, on the
contrary, SPNs have the same modelling power as GSMPs.
More specifically, it is shown that for any GSMP there
exists an SPN that “strongly mimics” the GSMP in the
sense that the marking process and underlying chain of the
SPN have the same finite-dimensional distributions as those
of the GSMP and its underlying chain under an appropriate
mapping between the state spaces. The converse result is
also established. These results provide a justification for
our SPN formulation and establish SPNs as an attractive
general framework for modelling and simulation analysis.
The methodology used to obtain the modelling-power results
can also be used to assess the relative modelling power of
different SPN formulations and the contribution of individual
SPN building blocks to overall modelling power.

3 STABILITY AND SIMULATION

Engineers and systems designers are often interested in
performance characteristics such as the long-run average
operating cost for a flexible manufacturing system, the
long-run fraction of time a database is accessible, or the
long-run utilization of a communications link. When the
system of interest is modelled as an SPN, each of these
characteristics typically can be specified as a time-average
limit of the form

r(f) = lim
t→∞

1

t

∫ t

0
f

(
X(u)

)
du, (2)

where f is a real-valued function and X(t) denotes the
marking of the net at time t ≥ 0. Other performance
measures of interest can be expressed as functions of such
time-average limits or as (functions of) time-average limits
of the underlying chain used to define the marking process.

In this section we provide conditions on the building
blocks of an SPN under which the marking process is stable,
so that time-average limits are well-defined. We then provide
additional conditions under which various simulation-based
methods for estimating time-average limits are guaranteed
to produce valid results. Although omitted for brevity,
extensions of results given here can be applied to estimate
other performance measures such as cumulative rewards
(both continuous and impulse rewards) and gradients with
respect to system parameters. Our results can also be applied
in the setting of GSMPs.

3.1 Recurrence

Stability of the marking process typically follows from
stability of the underlying general state-space Markov chain
used to define the marking process. Perhaps the most basic
notion of stability for such a chain is “Harris recurrence.”
Recall that a measure φ on subsets of the state space �

of a Markov chain { Zn : n ≥ 0 } assigns to each subset a
nonnegative real number in a manner such that φ(∅) = 0 and
φ(

⋃
n An) = ∑

n φ(An) whenever A1, A2, . . . are disjoint.
A measure is nontrivial if φ(A) > 0 for some A ⊆ �. A
typical example of a nontrivial measure is Lebesgue measure
which, roughly speaking, maps the set of all points in a
rectangular region to the length, area, or volume of the
region, depending upon the dimensionality, and is also well
defined for sets of points having more complex structure.

Definition 1 The chain { Zn : n ≥ 0 } is Harris re-
current with recurrence measure φ if φ is nontrivial and
Pz { Zn ∈ A i.o. } = 1 for all z ∈ � and A ⊆ � with
φ(A) > 0.

A Harris recurrent chain has the property that any “dense
enough” set of states (as measured by φ) is hit infinitely
often (i.o.) with probability 1. Thus a Harris recurrent chain
is stable in that it does not systematically drift off toward
the outer reaches of the state space—fix a dense set of
states that is compact, and observe that the chain repeatedly
returns to this set. We require that each target set be dense
because an individual state typically is hit with probability 0
when the state space of the chain is uncountably infinite.

Haas
A Harris recurrent chain admits an invariant measure,
that is, a measure π0 on subsets of � that satisfies∫

P(z, A) π0(dz) = π0(A) (3)

for A ⊆ �. The measure π0 is unique to within a multiplica-
tive constant. If π0(�) < ∞, then π(·) = π0(·)/π0(�) is
an invariant probability measure, and (3) can be rewritten
as Pπ { Z1 ∈ A } = π(A) for A ⊆ �. That is, if the initial
state of the chain Z0 is distributed according to π , then Z1
is also distributed according to π . (It then follows from the
Markov property that Zk is distributed according to π for
k ≥ 0, and hence the chain is stationary.) Such a chain is
called positive Harris recurrent, and it can be shown that
the expected time between successive visits to a recurrent
set A of states is finite.

We now give conditions—encapsulated in the “positive
density assumption” PD(q) given in Definition 3 below—
under which the embedded chain of the marking process
of an SPN is positive Harris recurrent. To prepare for this
definition, we first need to define a notion of irreducibility
for SPNs. For s, s′ ∈ G, write s → s′ if either s is
immediate and p

(
s′; s, E(s) ∩ E′) > 0 or if s is timed

and p(s′; s, {e})r(s, e) > 0 for some e ∈ E(s). Next,
write s � s′ if either s → s′ or there exist markings
s(1), s(2), . . . , s(n) ∈ G (n ≥ 1) such that s → s(1) →
· · · → s(n) → s′. Clearly, the relation � is transitive.

Definition 2 An SPN with marking set G is said to
be irreducible if s � s′ for each s, s′ ∈ G.

Recall that a nonnegative function G is a component of
a distribution function F if G is not identically equal to 0
and G ≤ F . If G is a component of F and G is absolutely
continuous, so that G has a density function g, then we
say that g is a density component of F . If F is absolutely
continuous with density function f , then f is trivially a
density component of F .

Definition 3 Assumption PD(q) is said to hold for
a specified SPN if (i) the marking set G is finite, (ii) the SPN
is irreducible, (iii) all speeds are positive, and (iii) there
exists 0 < x̄ < ∞ such that each clock-setting distribution
function F(· ; s′, e′, s, e∗) and F0(· ; e′, s) with e′ ∈ E−E′
has finite qth moment and has a density component that is
positive and continuous on (0, x̄).

Observe that if Assumption PD(q) holds, then Assump-
tion PD(q ′) holds for all 0 ≤ q ′ ≤ q. Occasionally we
need a strengthened version of Assumption PD(q), which
we call Assumption PDE, in which the requirement of fi-
nite qth moment for distributions F and F0 is replaced
by the requirement that F, F0 ∈ G+, where G+ is the set
of distribution functions on [0, ∞) that have a convergent
LaPlace–Stieltjes transform in a neighborhood of the origin.
That is, F ∈ G+ if and only if there exists aF > 0 such that∫ ∞

0 eux dF (x) < ∞ for u ∈ [0, aF]. Observe that each dis-
tribution function F ∈ G+ has finite moments of all orders,
so that if Assumption PDE holds, then Assumption PD(q)

holds for all q ≥ 0. Many common distribution func-
tions belong to G+, for example, the uniform, exponential,
gamma, beta, and truncated normal distributions.

We now give our key recurrence result. As be-
fore, denote by � and �+ the state spaces of the un-
derlying chain { (Sn, Cn) : n ≥ 0 } and embedded chain{
(S+

n , C+
n) : n ≥ 0

}
, respectively. Whenever Assump-

tion PD(q) holds, we define φ̄ to be the unique measure on
subsets of �+ such that

φ̄
({ s } × [0, x1] × [0, x2] × · · · × [0, xM])

=
∏

{i : ei∈E(s)}
min(xi, x̄) (4)

for all s ∈ S and x1, x2, . . . , xM ≥ 0. If, for example, a
set B ⊆ �+ is of the form B = { s } × A with E(s) = E,
then φ̄(B) is equal to the Lebesgue measure of the set
A ∩ [0, x̄]M .

Theorem 1 Suppose that Assumption PD(1) holds
for an SPN. Then the embedded chain of the marking process
is positive Harris recurrent with recurrence measure φ̄ given
by (4) and hence admits an invariant probability measure
π .

In some contexts it suffices to show that a state s̄ is
recurrent in the sense the P { Sn = s̄ i.o. } = 1. Theorem 1
can be specialized to establish the desired recurrence prop-
erty for the specified set. Alternatively, a geometric trials
technique can be used to establish recurrence. This tech-
nique, which is described in Section 5.2 of Haas (2002),
exploits the detailed structure of the SPN model and avoids
the somewhat restrictive positive density assumptions used
in Theorem 1.

3.2 Regenerative Simulation of SPNs

Suppose that there exists a sequence of regeneration points
for the marking process { X(t) : t ≥ 0 }, that is, an increas-
ing sequence 0 ≤ T0 < T1 < T2 < · · · of a.s. finite
random times such that, for k ≥ 1, the post-Tk process
{ X(Tk + t) : t ≥ 0; τk+l : l ≥ 1 } is distributed as the post-
T0 process { X(T0 + t) : t ≥ 0; τl : l ≥ 1 } and is indepen-
dent of the pre-Tk process { X(t) : 0 ≤ t < Tk; τ1, . . . , τk },
where τk = Tk − Tk−1. In other words, the process proba-
bilistically “starts over from scratch” at each Tk , so that the
sequence of random times { Tk : k ≥ 0 } decomposes sample
paths of the marking process into i.i.d. cycles. If |G| < ∞
and the expected cycle length Eµ[τ1] is finite, then the
time-average limit r(f) in (2) is well defined and finite for
any function f . If, moreover, the “regenerative variance
constant” σ 2(f) = Varµ

[∫ T1
T0

f
(
X(u)

)
du − r(f)τ1

]
is fi-

nite, then regenerative simulation methods can be used to
obtain strongly consistent point estimates and asymptotic

Haas
confidence intervals for r(f); see, e.g., Section 6.3 in Haas
(2002).

Using results from Section 3.1, we can obtain condi-
tions on the building blocks of an SPN under which the
regenerative method is applicable. For a marking s̄ ∈ G and
transition ē ∈ E(s̄), denote by { θ(k) : k ≥ 0 } the indices
of the successive marking changes at which the marking is
s̄ and transition ē fires: θ(−1) = 0 and

θ(k) = inf
{
n > θ(k − 1) : Sn−1 = s̄ and E∗

n−1 = {ē} }
(5)

for k ≥ 0. In accordance with our usual notation, we
denote by O(s′; s̄, ē) the set of transitions in E − {ē} that
are enabled both before and after a marking change from
s̄ to s′ triggered by the firing of transition ē.

Theorem 2 Let s̄ ∈ S and ē ∈ E(s̄). Suppose that
Assumption PD(2) holds. Also suppose that for each s′
such that p(s′; s̄, {ē}) > 0 either

(a) O(s′; s̄, ē) = ∅ or
(b) O(s′; s̄, ē) �= ∅ and the clock for each transition

ei ∈ O(s′; s̄, ē) is always set according to an
exponential distribution with fixed intensity v(ei).

Then the random times { ζθ(k) : k ≥ 0 } defined via (5) with
Ē = { ē } form a sequence of regeneration points for the
marking process { X(t) : t ≥ 0 }. Moreover, the regenerative
cycle length τ1 has finite mean and the regenerative variance
constant σ 2(f) is finite for any real-valued function f

defined on S.
The idea behind the theorem is that the conditions in

(a) and (b) ensure that the marking process probabilistically
restarts at certain marking changes, and Assumption PD(2)

ensures that such marking changes occur infinitely often
with probability 1. A marking s̄ ∈ G is said to be a single
state if E(s̄) = { ē } for some ē ∈ E. Observe that the
condition in (a) always holds for a single state. Thus, if an
SPN has a recurrent single state, then there exists a sequence
of regeneration points for both the marking process and the
underlying chain. In practice, regeneration points for SPNs
with nonexponential clock-setting distributions are almost
always defined in terms of a single state.

3.3 Standardized Time Series

This section deals with methods for estimation of time-
average limits when regenerative methods are not applicable.
This situation can occur either because there is no apparent
sequence of regeneration points or because regenerations
occur so infrequently that the method is impractical.

Our results rest on a strong law of large numbers
(SLLN) and “functional” central limit theorem (FCLT) for
the marking process. The SLLN given below provides
conditions (in the absence of regenerative structure) under
which time-average limits are well defined.

Theorem 3 Suppose that Assumption PD(1) holds.
Then limt→∞(1/t)

∫ t

0 f
(
X(u)

)
du = r(f) a.s. for any real-

valued function f defined on S, where r(f) is a finite
constant.

Roughly speaking, an output process { f
(
X(t)

) : t ≥ 0 }
with time-average limit r(f) obeys a FCLT if the associated
cumulative (i.e., time-integrated) process, centered about the
deterministic function g(t) = r(f)t and suitably compressed
in space and time, converges in distribution to a Brownian
motion as the degree of compression increases. For a real-
valued function f defined on S and a finite constant r(f)

such that the assertion of Theorem 3 holds, set

Uν(f)(t) = 1√
ν

∫ νt

0

(
f

(
X(u)

) − r(f)
)

du

for t ≥ 0 and ν > 0. Also denote by W a standard
Brownian motion on [0, ∞) and by ⇒ weak convergence
on C[0, ∞), the space of real-valued continuous functions.
Weak convergence on C[0, ∞) generalizes to a sequence
of real-valued random functions—that is, a sequence of
real-valued stochastic processes—the usual notion of con-
vergence in distribution of a sequence of real-valued random
variables.

Theorem 4 Suppose that Assumption PD(2) holds
and let f be an arbitrary real-valued function defined on
S. Then there exists a nonnegative number σ 2(f) such that
Uν(f) ⇒ σ(f)W as ν → ∞ for any initial distribution µ.

Fix a real-valued function f and suppose that Assump-
tion PD(2) holds for the SPN of interest. By the foregoing
SLLN, the time average limit r(f) is well defined and finite.
Moreover, a strongly consistent point estimator for r(f) is
given by r̂ν = Ȳν(1), where

Ȳν(t) = 1

ν

∫ νt

0
f

(
X(u)

)
du

for 0 ≤ t ≤ 1 and ν > 0. Standardized time series
(STS) methods are concerned with obtaining asymptotic
confidence intervals for r(f). To this end, denote by
C[0, 1] the set of continuous real-valued functions defined
on [0, 1]. For a mapping ξ from C[0, 1] to �, let D(ξ)

be the set of discontinuity points for ξ . That is, x ∈ D(ξ)

if limn→∞ ξ(xn) �= ξ(x) for some sequence x1, x2, . . . ∈
C[0, 1] with limn→∞ sup0≤t≤1 |xn(t) − x(t)| = 0. Next,
denote by � the set of mappings from C[0, 1] to � such that
ξ ∈ � if and only if (i) ξ(ax) = aξ(x) for a ∈ �+ and x ∈
C[0, 1]. (ii) ξ(x − be) = ξ(x) for b ∈ � and x ∈ C[0, 1],
where e(t) = t for 0 ≤ t ≤ 1. (iii) P { ξ(W) > 0 } = 1.
(iv) P { W ∈ D(ξ) } = 0. It can be shown that the conver-
gence asserted by Theorem 4 implies that, for 0 < p < 1,
the interval

[
r̂ν − ξνzp, r̂ν + ξνzp

]
is an asymptotic 100p%

Haas
confidence interval for r(f), where ξν = ξ(Ȳν) and zp is a
constant such that P { −zp ≤ W(1)/ξ(W) ≤ zp } = p. Dif-
ferent choices of the mapping ξ lead to different estimation
procedures, such as the standard method of batch means
(with the number of batches independent of the simulation
run length) or the original versions of the STS area method
and STS maximum method.

The foregoing estimation methods can be extended to
deal with time-average limits expressed in terms of the
underlying chain, and can be combined with jackknifing
techniques to handle nonlinear functions of time-average
limits.

3.4 Consistent Estimation Methods

Consider an SPN with an underlying chain { (Sn, Cn) : n ≥
0 } having state space �, together with a real-valued function
f̃ defined on �, such that

lim
n→∞ r̄(n; f̃) = r̃(f̃) a.s. (6)

for some finite constant r̃(f̃) and

√
n
(
r̄(n; f̃) − r̃(f̃)

)
σ̃ (f̃)

⇒ N(0, 1) (7)

as n → ∞ for some constant σ̃ (f̃) ∈ (0, ∞), where
r̄(n; f̃) = (1/n)

∑n−1
j=0 f̃ (Sj , Cj). Suppose that we can

find an estimator Vn that is consistent for the variance con-
stant σ̃ 2(f̃) that appears in the central limit theorem (CLT)
in (7), that is, an estimator Vn that converges to σ̃ 2(f̃) in
probability as n → ∞ or, equivalently, Vn ⇒ σ̃ 2(f̃) as
n → ∞. Then an application of Slutsky’s theorem shows
that

√
n
(
r̄(n; f̃) − r̃(f̃)

)
V

1/2
n

⇒ N(0, 1),

so that [
r̄(n; f̃) − zp V

1/2
n√
n

, r̄(n; f̃) + zp V
1/2
n√
n

]

is an asymptotic 100p% confidence interval for r̃(f̃), where
zp is the (1+p)/2 quantile of the standard normal distribu-
tion. This section is concerned with methods for obtaining
point estimates and confidence intervals based on consistent
estimation of the variance constant. Note that the regener-
ative method is one such “consistent estimation method.”
Our emphasis in this section is on alternative methods that
do not require regenerative structure. When applicable, con-
sistent estimation methods yield confidence intervals whose
lengths are, asymptotically, both smaller in expectation and
less variable than the lengths of confidence intervals based
on “cancellation” methods such as STS.

For brevity, we deal with time-average limits of the
underlying chain { (Sn, Cn) : n ≥ 0 }. As described in Sec-
tion 7.3.5 of Haas (2002), our results can be extended to
obtain confidence intervals for time-average limits of the
marking process.

We assume throughout that Assumption PDE holds.
It follows that a SLLN and CLT as in (6) and (7) hold
for any “polynomially dominated” function f̃ , that is,
any function f̃ such that there exists q ≥ 0 for which
sup(s,c)∈� |f̃ (s, c)|/|g̃q(s, c)| < ∞, where

g̃q(s, c) =
{

1 + max1≤i≤M c
q
i if (s, c) ∈ �+;

1 if (s, c) ∈ � − �+

for s ∈ G and c = (c1, c2, . . . , cM) ∈ C(s). Heuristically,
a function f̃ is polynomially dominated if |f̃ | is bounded
above on �+ by a polynomial function of the maximum
clock reading and is bounded above on �−�+ by a constant.
For example, the holding-time function t∗ is polynomially
dominated.

We also focus on “aperiodic” SPNs, defined as follows.
A d-cycle of an SPN is a finite partition { G1, G2, . . . , Gd }
of G such that s′ ∈ Gi+1 whenever s ∈ Gi and s → s′.
(Take Gd+1 = G1.) The period of the SPN is the largest
d for which a d-cycle exists; the SPN is called aperiodic
if d = 1 and periodic (with period d) if d > 1.

We now seek conditions on the building blocks of an
SPN under which various “quadratic-form” estimators of
the variance constant σ̃ 2(f̃) are consistent. By “quadratic-
form” estimators, we mean estimators of the form

Vn = Vn(f̃) =
n∑

i=0

n∑
j=0

f̃ (Si, Ci)f̃ (Sj , Cj)q
(n)
i,j ,

where each q
(n)
i,j is a finite constant and q

(n)
i,j = q

(n)
j,i for

all i, j . We further focus on the subclass of “localized”
quadratic-form estimators. A quadratic-form estimator Vn

is said to be localized if there exist a constant a1 ∈ (0, ∞)

and sequences { a2(n) : n ≥ 0 } and { m(n) : n ≥ 0 } of non-
negative constants with a2(n) → 0 and m(n)/n → 0 such
that

|q(n)
i,j | ≤

{
a1/n if |i − j | ≤ m(n);
a2(n)/n if |i − j | > m(n).

The class of localized quadratic-form estimators includes
both variable-batch-means and spectral estimators.

Our strategy is to invoke known results that establish
the consistency of various quadratic-form estimators for
stationary processes and then apply the following result,
which is based on a “coupling” argument.

Haas
Theorem 5 Let { (Sn, Cn) : n ≥ 0 } be the underly-
ing chain of an aperiodic SPN, and let f̃ be a polynomially
dominated real-valued function defined on �. Suppose
that Assumption PDE holds, so that there exists an invari-
ant distribution π for the chain and { f̃ (Sn, Cn) : n ≥ 0 }
obeys a CLT with variance constant σ̃ 2(f̃). If a localized
quadratic-form estimator Vn(f̃) satisfies Vn(f̃) ⇒ σ̃ 2(f̃)

when the initial distribution is π , then Vn(f̃) ⇒ σ̃ 2(f̃) for
any initial distribution.

For example, we can establish sufficient conditions for
consistency of the variable batch means estimator of σ 2(f̃).
Here both the number of batches b = b(n) and the batch
length m = m(n) increase as the simulation run length n

increases. The conditions are that Assumption PDE holds,
that f̃ is polynomially dominated, and that b(n) → ∞ and
m(n) → ∞ as n → ∞.

We can similarly obtain sufficient conditions for the
validity of spectral methods. The variance estimators
have the form V

(S)
n = ∑m−1

h=−(m−1) λ(h/m)R̂h, where R̂h

is the sample estimate of the autocorrelation function of
{ f̃ (Sn, Cn) : n ≥ 0 } at lag h and λ is a “window function.”
For a large class of window functions, it can be shown that
V

(S)
n is consistent provided that Assumption PDE holds, that

f̃ is polynomially dominated, and that the spectral window
length m = m(n) satisfies m(n) → ∞ and m2(n)/n → 0.

4 DELAYS

We now consider performance measures of the form
limn→∞(1/n)

∑n−1
j=0 f (Dj), where f is a real-valued func-

tion and D0, D1, . . . is a sequence of delays determined by
the marking changes of the net.

A delay in an SPN is computed as the length of a corre-
sponding “delay interval”—that is, a random time interval—
whose start (left endpoint) and termination (right endpoint)
each coincide with a marking-change epoch. Sometimes
the limiting average delay limn→∞(1/n)

∑n−1
j=0 Dj can be

estimated indirectly, that is, without measuring lengths of
individual delay intervals. For general time-average limits
of a sequence of delays, however, individual lengths must
be measured and then combined to form point and inter-
val estimates. Specification and subsequent measurement
of individual delays is a decidedly nontrivial step of the
simulation: in general, there can be more than one ongoing
delay at a time point and delays need not terminate in the
order in which they start. In the following, we describe
the method of “start vectors” for specification and mea-
surement of delays, and provide conditions on the SPN and
start-vector building blocks under which time-average limits
exist and various simulation-based estimation methods are
applicable.
4.1 Specification and Measurement of Delays

A sequence of delays in an SPN is specified in terms of starts{
Aj : j ≥ 0

}
and terminations

{
Bj : j ≥ 0

}
, i.e., Dj =

Bj−Aj for j ≥ 0. The Aj ’s and Bj ’s are defined on the same
probability space as the underlying chain { (Sn, Cn) : n ≥
0 }. We restrict attention to sequences

{
Aj : j ≥ 0

}
and{

Bj : j ≥ 0
}

such that Aj = ζα(j) and Bj = ζβ(j) for
j ≥ 0, where α(j) and β(j) are a.s. finite random indices.
That is, we restrict attention to delays that start and terminate
only at marking changes. We also focus on sequences
for which the α(j)’s are nondecreasing, so that delays
are enumerated in start order. The β(j)’s need not be
nondecreasing, however, reflecting the fact that there can
be more than one ongoing delay at a time point and delays
need not terminate in the order in which they start.

One approach to specification and measurement of de-
lays “tags” various entities (such as jobs or customers) as
they move through the system. The disadvantage of this ap-
proach is that it often requires either distinguishable tokens
or a large number of additional places and transitions.

We now give an alternative method for specifying and
measuring delays that avoids the need for tagging. The
idea is to use a sequence of real-valued random vectors,
called start vectors, to construct the sequences

{
Aj : j ≥ 0

}
and

{
Bj : j ≥ 0

}
. The sequence { Vn : n ≥ 0 } of start

vectors is determined by the sample paths of the chain
{ (Sn, Cn) : n ≥ 0 } and provides the link between the starts
and terminations of the individual delay intervals. The nth
start vector Vn records the starts of delay intervals for all
ongoing delays and newly started delays at time ζn, that is,
all starts Aj = ζα(j) such that α(j) ≤ n < β(j). Usually
(but not necessarily) the positions of the starts in the start
vector correspond to the locations in the system of entities
for whom a delay is underway. In general, the values of
the starts and the order of the starts in the start vector
together summarize the history of the net and comprise
sufficient information to measure individual delays. Some
components of Vn may be equal to −1. As discussed
below, lengths are never computed for delay intervals with
negative starts. The negative components typically serve
as placeholders and correspond to entities in the system at
time 0 for whom no delay is underway.

Whenever the transitions in the set E∗ fire simultane-
ously and trigger a marking change from s to s′, a new start
vector is obtained from the current start vector by (i) insert-
ing the current time at zero or more positions specified by an
index vector iα(s′; s, E∗), (ii) deleting components at zero
or more positions specified by an index vector iβ(s′; s, E∗),
and (iii) permuting the components according to an index
vector iπ (s′; s, E∗). If the index value j (≥ 0) appears as
an element of iα , then the current time is inserted to the
right of position j in the start vector V ; insertion to the
right of position 0 means insertion to the left of the leftmost

Haas
element of V . If iπ = (i1, i2, . . . , ik), then the permuted
start vector is (vi1 , vi2 , . . . , vik). Components are deleted
one at a time in the order in which the indices appear in
the vector iβ(s′; s, E∗). For each nonnegative component
that is deleted, the length of a delay interval is computed by
subtracting the deleted component from the current time.
These deleted components are the left endpoints of delay
intervals for the delays that terminate at the current time.
Deleted components equal to −1 are not used to compute
lengths of delay intervals and are simply discarded. We
assume that the current marking determines the length of
the start vector and denote this length by ψ(s) when the
current marking is s. The initial start vector is a specified
vector, denoted v0(S0), that is determined by the initial
marking S0 and has components that are equal to 0 or −1.
See Section 8.1.2 in Haas (2002) for further details of the
start-vector mechanism.

Denote by nα(s′; s, E∗) and nβ(s′; s, E∗) the lengths of
the vectors iα(s′; s, E∗) and iβ(s′; s, E∗), respectively, for
each s′, s, and E∗. The number of delays that start at time
ζn is equal to nα(Sn; Sn−1, E

∗
n−1) for n ≥ 1. Denote by

Vn,i the ith component of the vector Vn for 1 ≤ i ≤ ψ(Sn),
and set

K = inf
{
n ≥ 0 : Vn,i �= −1 for 0 ≤ i ≤ ψ(Sn)

}
. (8)

The number of delays that terminate at time ζn is less than
or equal to nβ(Sn; Sn−1, E

∗
n−1) for 1 ≤ n ≤ K and equal to

nβ(Sn; Sn−1, E
∗
n−1) for n > K . Similarly, the total number

of newly started delays (of positive duration) and ongoing
delays at the nth marking change is less than or equal to
ψ(Sn) for 0 ≤ n < K and equal to ψ(Sn) for n ≥ K .

Example 2 (Cyclic queues with feedback) Consider
the delay intervals from whenever a job completes service at
center 2 to when the job next completes service at center 2,
and suppose that we wish to estimate time-average limits
of the sequence of delays for all N jobs. The method of
start vectors can be used to specify and measure individual
delays in the SPN of Figure 4.

The start vector Vn records for each of the N jobs in
the network the most recent time during the interval [0, ζn]
at which there was a completion of service at center 2
and the job moved to center 1. If a job has never moved
from center 2 to center 1 during the interval [0, ζn], then
the corresponding component of Vn is equal to −1. The
components of the start vector are ordered from left to
right according to increasing positions—see Figure 2—of
the corresponding jobs in the network.

Formally, set ψ(s) = N for s ∈ G. Also set
iα(s′; s, E∗) equal to (0) if E∗ = { e2 } and equal to ∅ other-
wise, and set iβ(s′; s, E∗) equal to (N+1) if E∗ = { e2 } and
equal to ∅ otherwise. Thus, whenever there is a completion
of service at center 2 and a job moves to the tail of the
queue at center 1, the new start vector is obtained from the
current start vector by inserting the current time to the left
of the first component, deleting the rightmost component,
and then subtracting the latter component from the current
time to compute a delay if the component is nonnegative.
Next, for s = (s1, s2), s

′ = (s′
1, s

′
2) ∈ G and E∗ ⊆ E(s), set

iπ (s′; s, E∗) = (s1, 1, 2, . . . , s1 − 1, s1 + 1, s1 + 2, . . . , N)

if E∗ = { e1 } and s′
1 = s1 > 1. Otherwise, set

iπ (s′; s, E∗) = ∅, so that no permutation is performed.
Thus, whenever there are s1 (> 1) jobs at center 1 and a job
completes service at center 1 and joins the tail of the queue
at center 1, the new start vector is obtained from the current
start vector by cyclically permuting the first s1 components.
Otherwise, the components are unchanged—in particular,
no permutation is needed when E∗ = { e2 }.

Suppose that at time 0 there is a completion of service
at center 2 with all jobs at center 2, so that the initial
marking is s0 = (1, N − 1) and a delay starts at time
0. We then set v0(s0) = (0, −1, −1, . . . ,−1), where the
vector on the right side is of length N . Because N − 1
components of v0(s0) are equal to −1, there are N − 1
marking changes at which there is a completion of service
at center 2 and no delay is computed. At the time ζ of
each such marking change, the job completing service at
center 2 has not previously completed service at center 2
during the interval [0, ζ] and ζ is not an element of the
sequence

{
Bj : j ≥ 0

}
of terminations. �

4.2 Regenerative Methods for Delays

In this section we provide methods for estimating general
time-average limits of the form limn→∞(1/n)

∑n−1
j=0 f (Dj),

where the sequence of delays
{
Dj : j ≥ 0

}
is deter-

mined from the marking changes of an SPN by means
of start vectors. We also provide specialized estimation
methods in this setting for the limiting average delay
limn→∞(1/n)

∑n−1
j=0 Dj .

Our key assumption is that there exists a se-
quence of regeneration points for the marking pro-
cess { X(t) : t ≥ 0 } and for the underlying chain
{ (Sn, Cn) : n ≥ 0 }. In particular, we suppose throughout
that there exists a recurrent single state s̄, so that E(s̄) = { ē }
for some ē ∈ E and Pµ { Sn = s̄ i.o. } = 1. The regenera-
tion points then correspond to the successive times at which
the marking is s̄ and transition ē fires. That is, if we
define { θ(k) : k ≥ 0 } as in (5), then the random indices
{ θ(k) : k ≥ 0 } form a sequence of regeneration points for
{ (Sn, Cn) : n ≥ 0 } and the random times { ζθ(k) : k ≥ 0 }
form a sequence of regeneration points for { X(t) : t ≥ 0 }.
Implicit in this definition is the assumption—made for
convenience—that the net behaves as if at time 0 the mark-
ing is s̄ and transition ē fires. We also suppose that the starts{
Aj : j ≥ 0

}
, the terminations

{
Bj : j ≥ 0

}
, and the ran-

dom index K that is defined by (8) satisfy Pµ { K < ∞ } = 1,

Haas
Pµ

{
Aj < ∞ } = Pµ

{
Bj < ∞ } = 1 for j ≥ 0, and

Pµ{ limj→∞ Aj = ∞ } = 1.
When there are no ongoing delays at any regenera-

tion point for the marking process—see Figure 5—it is
intuitively clear that the regeneration points decompose the
delays into i.i.d. blocks. The sequence of delays therefore is
a regenerative process in discrete time, and we can estimate
time-average limits using methods as in Section 3.2. This
scenario holds, for example, whenever ψ(s̄) = 0 or when-
ever all delays are of positive length and nβ(s; s̄, {ē}) = ψ(s̄)

for all s such that p(s; s̄, {ē}) > 0.

Figure 5: Regenerative Cycles for Delays

The situation is not so simple, however, when there are
ongoing delays at each regeneration point. Our approach is
to first select a random subsequence { ζ

θ̌(k)
: k ≥ 0 } of the

original regeneration points { ζθ(k) : k ≥ 0 } for the marking
process, as shown in Figure 6. In the figure, vertical
solid lines indicate regeneration points corresponding to
this subsequence, whereas vertical dashed lines indicate
regeneration points that are in the original sequence but
are not in the subsequence. The regeneration points in
the subsequence { ζ

θ̌(k)
: k ≥ 0 } also form a sequence of

regeneration points, but with longer cycles. The subsequence
is chosen such that all delays that start during one of these
longer cycles terminate by the end of the next such cycle.
Denote by γ̌ (k) the index of the first delay to start after time
ζ
θ̌(k)

. It can be shown that the random indices { γ̌ (k) : k ≥ 0 }
decompose sample paths of the process { Dn : n ≥ 0 } into
identically distributed, one-dependent cycles.

One of two methods can then be used to estimate
time-average limits. The extended regenerative method is
almost identical to the standard regenerative method, but
replaces the usual variance constant σ̌ 2(f) by a modified
constant that takes into account the dependence between
adjacent cycles. The multiple runs method simulates the

first cycle to compute Y̌1(f) = ∑γ̌ (1)−1
j=γ̌ (0)

f (Dj) and the

cycle length δ̌1 = γ̌ (1) − γ̌ (0). The simulation is then
restarted (with different random number seeds), and the
procedure repeated. Multiple iterations result in a sequence
Figure 6: Definition of One-Dependent Cycles

(
Y̌1,1(f), δ̌1,1

)
,
(
Y̌1,2(f), δ̌1,2

)
, . . . of i.i.d. pairs, and the

standard regenerative method is applied to these pairs. Nei-
ther of these two methods dominates the other in terms of
simulation efficiency; see Section 8.2.3 in Haas (2002).

For the special case of the limiting average delay, it is
shown in Section 8.2.4 of Haas (2002) that, under appropriate
regularity conditions,

lim
n→∞

1

n

n−1∑
j=0

Dj = Eµ[Z1]
Eµ[δ1] a.s.,

where δk = ∑θ(k)−1
n=θ(k−1) nα(Sn; Sn−1, E

∗
n−1) and Zk =∫ ζθ(k)

ζθ(k−1)
ψ

(
X(t)

)
dt for k ≥ 1. It follows that the standard

regenerative method can be used to obtain strongly con-
sistent point estimates and asymptotic confidence intervals
for the limiting average delay. Measurement of individual
delays is not required, and there may be ongoing delays at
each regeneration point of the marking process.

4.3 STS Methods for Delays

We conclude by giving conditions under which STS meth-
ods can be used to obtain point estimates and confidence
intervals for time-average limits of a sequence of delays;
see Haas (2002, 2003) for details. We require that the
start-vector mechanism be regular in that (i) there exists
s ∈ S and e∗ ∈ E(s) such that nα(s′; s, {e∗}) > 0 for all s′
with p(s′; s, {e∗}) > 0, and (ii) there exists a potential finite
sequence of marking changes such that (a) each marking
change is triggered by the firing of a single transition, and
(b) all the components of the start vector at the beginning
of the sequence are deleted by the end of the sequence. In
analogy to our earlier definition, we define f : �+ �→ � to

Haas
be polynomially dominated if supx |f (x)|/(xb + 1) < ∞
for some b ≥ 0.

Theorem 6 Let
{
Dj : j ≥ 0

}
be a sequence of de-

lays determined from the underlying chain of a marking
process by means of a regular start-vector mechanism, and
let f be a polynomially dominated function. Suppose that
Assumption PDE holds. Then (i) there exists a finite real
constant r(f) such that limn→∞(1/n)

∑n−1
j=0 f (Dj) = r(f)

a.s., and (ii) there exists a nonnegative number σ 2(f)

such that Un(f) ⇒ σ(f)W as n → ∞ for any ini-
tial distribution µ, where ⇒ denotes weak convergence
on C[0, ∞], W is a standard Brownian motion, and
Un(f)(t) = (1/

√
n)

∫ nt

0

(
f (D�u�)− r(f)

)
du for 0 ≤ t ≤ 1

and n ≥ 0.
Under the conditions of Theorem 6, time-average limits

are well defined. Just as in Section 3.3, it follows directly
from Theorem 6 that STS methods can be used to obtain
asymptotic confidence intervals for such limits.

REFERENCES

Glynn, P. W., and P. J. Haas. 2004. On functional central limit
theorems for semi-Markov and related processes. Com-
munications in Statistics – Theory and Methods 33:487–
506.

Glynn, P. W., and P. J. Haas. 2005. A law of large numbers
and functional central limit theorem for generalized
semi-Markov processes. Communications in Statistics
– Stochastic Models. To appear.

Haas, P. J. 2002. Stochastic Petri nets: Modelling, stability,
simulation. New York: Springer-Verlag.

Haas, P. J. 2003. Estimation methods for delays in non-
regenerative discrete-event systems. Communications
in Statistics – Stochastic Models 19:1–35.

AUTHOR BIOGRAPHY

PETER J. HAAS has been a Research Staff Member at
the IBM Almaden Research Center since 1987 and is also a
Consulting Associate Professor in the Department of Man-
agement Science and Engineering at Stanford University.
He is an Associate Editor (Simulation Area) for Operations
Research and has recently joined the editorial board of ACM
TOMACS. In 2003, his monograph, Stochastic Petri Nets:
Modelling, Stability, Simulation won the Outstanding Sim-
ulation Publication Award from the INFORMS College on
Simulation. He is a member of INFORMS.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 101
	02: 102
	03: 103
	04: 104
	05: 105
	06: 106
	07: 107
	08: 108
	09: 109
	10: 110
	11: 111
	12: 112

