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ABSTRACT

Bayesian methods are now used in a variety of ways in
discrete-event simulation. Applications include input mod-
eling, response surface modeling, uncertainty analysis, and
experimental designs for field data collection, selection pro-
cedures, and response surface estimation. This paper reviews
some fundamental concepts of subjective probability and
Bayesian statistics that have led to results in simulation
applications.

1 INTRODUCTION

Considerable progress in discrete-event simulation has been
made over the last 8 years using Bayesian methods. Ad-
vances in other fields can also contribute to the advancement
of Bayesian methods in simulation. Glynn (1986) noted a
role for Bayesian methods in certain applications of sim-
ulation, particularly focusing on uncertainty analysis. In
that paper, the traditional role of estimating

α = h(E[Y ])

is extended to account for statistical input parameter un-
certainty, so α(θ) = h(E[Y | θ ]) depends upon unknown
parameters with distribution p(θ) that can be updated with
data from the modeled system. Three questions he suggests
be examined are (i) how to estimate the distribution of α(�)

induced by the random variable �, (ii) how to estimate the
mean E[α(�)], and (iii) estimation of credible sets, e.g.
finding θlo, θhi so the probability p([h(θlo), h(θhi)]) equals
a prespecified value, like 0.95. Chick (1997) reviewed few
works to that date that applied Bayesian ideas to simula-
tion, then suggested a broader range of application areas
than uncertainty analysis, including ranking and selection,
response surface modeling, and experimental design.

This tutorial discusses these fundamental concepts for
Bayesian reasoning, and identifies several applications to
simulation experiments. Modeling issues that arise in the
Bayesian framework are the need to specify initial un-
certainty about unknown parameters by specifying prior
distributions for unknown quantities (including unknown
outputs, unknown input parameters and unknown meta-
model parameters); specifying likelihood models to relate
unknown parameters to observable data, if applicable; nu-
merical tools to update beliefs about unknown quantities as
data becomes available using Bayes’ rule to obtain posterior
distributions for unknown quantities. But quantifying un-
certainty is insufficient, since simulations are often intended
to aid system design decisions. Decisions under uncertainty
are guided by the principle of minimizing the expected loss
associated with a choice of design parameters for a simu-
lated system. Loss functions can also lead to experimental
design criteria for structuring simulation experiments.

Although several simulation applications of these ideas
are provided, the treatment is necessarily incomplete. Fur-
ther work that applies Bayesian ideas in simulation includes
Chen and Schmeiser (1995), Chen (1996), Scott (1996), Nel-
son et al. (1997), Chen et al. (1999), Cheng (1999), Lee
and Glynn (1999), Andradóttir and Bier (2000), Chick and
Inoue (2001a), Chick and Inoue (2001b), Chick (2001),
Zouaoui and Wilson (2001), Zouaoui and Wilson (2003),
Kurowicka and Cooke (2002), Ng and Chick (2002), Cheng
and Currie (2003), Steckley and Henderson (2003). WSC
and simulation publications with applications of Bayesian
methods to scheduling, insurance, finance, traffic modeling,
public health, waterway safety, supply chain and other areas
include Popova and Morton (1998), Herzog (2002), Muñoz
(2003), Merrick, Dinesh, Singh, van Dorp, and Mazzuchi
(2003), McCabe (2003), Chick, Soorapanth, and Koopman
(2003). Work on deterministic simulation with potentially
important implications for stochastic simulation includes
(O’Hagan et al. 1999, Craig et al. 2001, Santner et al.
2003). References for subjective probability and Bayesian
statistics in general, not just as they apply to simulation,
include Lindley (1972), Winkler (1972), Berger (1985),
with special mention for de Finetti (1990), Savage (1972),
de Groot (1970) and Bernardo and Smith (1994).
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2 MAIN CONCEPTS

We represent a stochastic simulation as a deterministic func-
tion of several types of inputs, with

Yr = g(θp, θe, θc; U r ), (1)

so that Yr is the output of the r-th replication, θp is a vector
of statistical input parameters that can be inferred with
data from the real system a model is intended to represent;
θe is a potentially unknown parameter that describes a
system’s operating environment, but that is not inferrable
from a stream of potentially available data; θc are control
parameters (or design variables) for the modeled system;
and U r represents sampling from different portions of a
uniform random number generator to provide ‘randomness’
in the simulation output.

A subjective probabilist represents all uncertain quanti-
ties with probability distributions, including θp and θe, not
only uniform variates U and nonuniform random variates
X. We add subscripts if additional specificity is needed, e.g.
to refer to the j -th variate for the i-th source of randomness
during the r-th replication, we write Xrij . See Fig. 1.

One reason a simulation experiment may be run is to
estimate the function g because it’s exact form is not known.
Because of this, it is often useful to study metamodels of
simulation models to predict the outputs of a simulation
model (or the simulated system) when a full simulation
takes a long time to run. Examples of metamodels are
linear regression models and Gaussian random fields (GRFs).
Metamodels may have parameters ψ . Sec. 3.4 describes
some Bayesian methods to describe uncertainty about ψ .

The specification of prior distributions and Bayesian in-
ference with data is discussed in Sec. 2.1 and 2.2. Asymptotic
theorems are presented in Sec. 2.3, followed by a discus-
sion of loss functions that can be used to design sampling
allocations for simulation experiments.

2.1 Exchangeability and Input Parameters

An important simulation design issue is the selection of
appropriate input distributions to characterize the stochastic
behavior of the modeled system. This section reviews basic
ideas and important theorems for inferring input parameters
with the Bayesian formalism. The presentation is in the
context of selecting a parameter θ for a specific candidate
distribution (e.g. one of the Bernoulli, exponential, or
gamma distributions) for input into a computer simulation.
Sec. 3.2 explores input selection if multiple candidate models
for a given source of randomness is proposed.

For a Bayesian, the idea of exchangeability is preferred
to the idea of independent and identically distributed (i.i.d.)
random variables. Let X = (X1, X2, . . . , XN) be a generic
vector of random variables on an outcome space �. A
probability p on � is said to be exchangeable if it is
invariant with respect to permutations of the coordinates (e.g.
p(x1, x2, . . . , xn) = p(xs1 , xs2 , . . . , xsn) for permutations
s on {1, 2, . . . , n} for arbitrary n. Exchangeability is a
weaker assumption than independence (e.g. for N = 2
coin flips, the subjective probability assessment p((0, 1)) =
p((1, 0)) = 1/2 is an exchangeable Bernoulli model, but
not independent, because X1 + X2 = 1).

Simulation is very often concerned with conceptually
infinite (lim N → ∞) exchangeable sequences of random
variables (e.g. replications r = 1, 2, . . . or service times
xrij for j = 1, 2, . . .). A key theorem (de Finetti 1990
or Bernardo and Smith 1994) for conceptually infinite ex-
changeable sequences of Bernoulli random variables says
that outcomes are conditionally independent, given the lim-
iting fraction of heads, � = limN→∞

∑N
i=1 Xi/N , with

some mixture distribution π(θ),

lim
N→∞ p(xn) =

∫ {
n∏

i=1

f (xi | θ)

}
dπ(θ), (2)

where p(xi | θ) = f (xi | θ) = θxi (1 − θ)1−xi is a condi-
tional probability when considered as a function of xi and
a likelihood when written as a function of θ . A mixture
of conceptually infinite sequences of exchangeable random
variables written in the form Eq. 2 for an arbitrary parame-
ter θ , distribution π(θ) and likelihood model f is called a
de Finetti-type representation, although judgments stronger
than exchangeability, such as invariance to sums or to an �p-
norm, may be required to justify them (Barlow and Mendel
1992, Chick and Mendel 1998). The notation anticipates
the convention of writing a prior distribution as π(·), rep-
resenting the a priori belief that the parameter takes on a
given value. That representation allows for the inference
of θ from data xn = (x1, . . . , xn) via Bayes rule,

p(θ | xn) = π(θ)p(xn | θ)

p(xn)
. (3)

The posterior probability p(θ | xn) of θ , given xn, sum-
marizes uncertainty about θ via the likelihood model and
prior distribution. The assumption of i.i.d. does not allow
beliefs about θ to be updated as data is observed.

2.2 Prior Probability Distributions

Bayesian methods require probability distributions to quan-
tify initial uncertainty before data is observed. The selec-
tion of a prior distribution is controversial. Bruno de Finetti
(1990) argues that a prior distribution is a subjective expres-
sion of uncertainty, and that You (yes, You) may justifiably
specify a different distribution than I, since we may have dif-
ferent beliefs about the likelihood of a given event. Savage
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Figure 1: Simulation Takes Multiple Types of Inputs and Meta-
models Predict Outputs for Unsimulated Input Values
(1972) suggests a process for eliciting a prior distribution
from a modeler through the evaluation of ‘fair bets’. Kahne-
man, Slovic, and Tversky (1982) illustrate potential pitfalls
with eliciting probability judgments and present techniques
to counter them. While this may seem ‘too subjective’ and
open to biases (Edwards 1984), the ability to include prior
information provides necessary flexibility and can be con-
sidered an advantage of the approach. Frequentist methods
apply only with data, and problems remain (e.g. Sec. 3.2).

To avoid the impression of subjectivity, several ‘au-
tomated’ mechanisms have nonetheless been proposed to
support the selection of a prior distribution. When a lot
of data are available, the likelihood function will be the
dominant term in Bayes’ rule, rather than the prior dis-
tribution, so these methods may be helpful. The first
approach is to obtain a prior distribution for a param-
eter of an infinite exchangeable sequence as a limiting
case of an indifference judgment for a finite exchange-
able sequences. For the finite exchangeable sequence of
{0, 1} outcomes, if each of the finite set of alternatives
θN ∈ {0/N, 1/N, . . . , (N−1)/N, 1} is judged equally likely

for each N , then limN→∞ p(θN)
D→ uniform[0, 1], the

prior probability model used by Laplace (1812) to assess
his prior probability that the sun would come up tomor-
row. That approach is coordinate dependent (e.g. in-
difference for θ versus log θ ). Jeffreys (1946) suggested
π(θ) ∝ |H(θ)|1/2dθ , where H is the expected information
in one observation,

H(θ) = EX

[
−∂2log p(X | θ)

∂θ2

∣∣∣∣
θ

]
, (4)

because it has the attractive property of being invariant
with respect to coordinate changes in θ . It is ‘uniform’
with respect to the natural metric induced by the likelihood
function (Kass 1989). Jeffreys’ prior for Bernoulli sampling
is abeta(1/2, 1/2) distribution. For some models, Jeffreys’
prior is improper (does not integrate to one), but may be
useful if the data results in a proper posterior after Bayes’
rule is formally applied.
A third approach that is mathematically convenient
is to assume a conjugate prior distribution, meaning that
the posterior distribution has the same functional form
as the prior distribution. For Bernoulli(θ ) sampling, the
beta(α, β) distribution with probability density function
(pdf) f (θ) ∝ θα−1(1 − θ)β−1 is a conjugate prior. If
data xn is observed, with sn = ∑n

i=1 xi , then the pos-
terior pdf is f (θ | xn) ∝ θα+sn−1(1 − θ)β+n−sn−1, a
beta(α + sn, β +n− sn) distribution. Conjugate prior dis-
tributions exist for all members of the regular exponential
family (Bernardo and Smith 1994), which includes the expo-
nential, normal, gamma, lognormal, Wishart, Bernoulli, geo-
metric, and Poisson distributions, as well as linear regression
models with normally distributed error, among others. (The
uniform[0, 1] distribution is in the conjugate family for
Bernoulli sampling—it is a beta(1, 1) distribution.) Priors
selected in this way are often selected to be as noninformative
as possible, meaning that probability is spread ‘evenly’ over
the space of parameters. Although evenly is subjectively
defined, heuristics are available for members of the regular
exponential family, whose likelihood function can be written

p(x | θ) = a(x)h0(θ) exp
[∑d

j=1 cjφj (θ)hj (x)
]
for some

a(·), h0(·), cj , φj (·), hj (·). The conjugate prior distribution

is p(θ) = [K(t)]−1[h0(θ)]n0 exp
[∑d

j=1 cjφj (θ)tj

]
.The

posterior distribution given n conditionally independent
data points then has parameters n0 + n and the sum of
t = (t1, t2, . . . , td ) and the sufficient statistics (Bernardo
and Smith 1994). The parameter n0 is therefore interpreted
by some to be the ‘strength’ of the prior, measured in terms
of the number of samples. In that case, evenly spreading
probability can be taken to mean selecting n0 close to 0,
while insuring that the prior is still proper. Jaynes (1983)
suggests a fourth approach that is common in image and
signal processing: maximum entropy methods define ‘dif-
fuse’ prior with respect to a background measure, subject
to moment constraints on the parameters. Berger (1994)
and Kass and Wasserman (1996) discuss on default prior
distributions and sensitivity analysis with respect to them.
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Probability modeling is inherently subjective—even so-
called ‘objective’ methods require the subjective specifica-
tion of a likelihood model. One standard Bayesian practice
is to use a slightly informative conjugate distribution for
the unknown mean, by choosing it to be proper but diffuse
(Gilks, Richardson, and Spiegelhalter 1996). For exam-
ple, the conjugate prior for an unknown mean of a normal
distribution is also a normal distribution. A diffuse prior

would be Normal
(

0, σ 2
big

)
for some large σ 2

big . Conju-

gate prior distributions are mathematically convenient, but
care is still required with their use, as with any statistical
analysis, Bayesian or otherwise.

2.3 Asymptotic Theorems

Classical asymptotic theorems (laws of large numbers, LLN;
central limit theorem, CLT; e.g. Billingsley 1986) have
Bayesian interpretations when considered to be conditional
on the mean and standard deviation of an infinite exchange-
able sequence. A Bayesian extension of the LLN allows
for sample averages to converge to random variables rather
than to ‘true’ means.

Theorem 1 (Bayesian LLN) If X̄n and Ȳm are re-
spectively the averages of n and m exchangeable random
quantities Xi (the two averages may or may not have some
terms in common), the probability that

∣∣X̄n − Ȳm

∣∣ > ε

may be made arbitrarily small by taking n and m sufficiently
large (de Finetti 1990, p. 216 assumes a finite variance).

Even though the modes of Bayesian posterior distribu-
tions may not be the true mean, an asymptotic normality
property holds for posterior distributions of parameters.

Theorem 2 (Posterior Normality) For each n, let
pn(·) be the posterior pdf of the d-dimensional parameter
θn given xn = (x1, . . . , xn), let θ̃n be its mode, and define
the d × d Bayesian observed information matrix �−1

n by

�−1
n = −∂2log pn(θ | xn)

∂θ2

∣∣∣∣
θ̃n

. (5)

Then φn = �
−1/2
n (θn − θ̃n) converges in distribution to a

standard (multivariate) normal random variable (Bernardo
and Smith 1994, Prop 5.14 needs regularity conditions).

Theorem 2 asserts that uncertainty about the value of
the unknown parameter value can be approximated asymp-
totically with a normal distribution. The Bayesian observed
information �−1

n is a measure of precision of the poste-
rior distribution of θ , and behaves asymptotically like the
frequentist observed information (which ignores the prior
distribution) under rather general conditions, but the interpre-
tation differs somewhat. The classical analog of Theorem 2
asserts that the MLE is asymptotically normally distributed
about a ‘true’ parameter θ0 (Law and Kelton 2000), rather
than describing uncertainty about θ . The mode θ̃n is often
called a MAP (maximum a posteriori probability) estimator.

2.4 Value of Information

The fact that input uncertainty is described by probability
distributions allows the modeler to assess the expected value
of information of additional data. The expected value of
information is useful in experimental design. It measures
the value of resolving uncertainty with respect to a loss
function L(d, ω) that describes the loss when a decision
d is chosen when the state of nature is ω. The expected
improvement in the loss given by the information in an
experiment is a Bayesian experimental design criterion.

The value of information idea directly leads to the
selection procedures in Sec. 3.3. A simplified version of
that problem adapted from de Groot (1970) illustrates the
key concepts. Suppose we must decide whether or not
the unknown mean W of a normal distribution (known
sampling variance σ 2) is smaller (decision d = 1) or larger
(d = 2) than w0. Conditionally independent samples Xn =
(X1, X2, . . . , Xn), with p(Xi) ∼ Normal

(
w, σ 2

)
given

W = w, can be used to infer the value of the mean. The
decision maker designs an experiment (chooses n) to balance
the cost of sampling, cn, and the expected penalty if the
wrong answer is chosen. Here the penalty for incorrect
selection is the opportunity cost L (1, w), the difference
between the actual value of w and w0 when the wrong
answer is selected, and 0 if the right answer is selected.

L (1, w) =
{

0 if w ≤ w0
w − w0 if w > w0,

L (2, w) =
{

w0 − w if w ≤ w0
0 if w > w0.

Since the mean is not known exactly, there is a potential
penalty for incorrectly specifying whether W is smaller or
larger than w0. We model uncertainty about W with a
Normal (µ, 1/τ) prior distribution, which is conjugate for
normal sampling with an unknown mean and known variance
(Bernardo and Smith 1994). Here, τ is the precision in our
uncertainty about W . Observing Xn = xn would reduce
the uncertainty and result in the posterior distribution

p(w | xn) ∼ Normal
(
z, τ−1

n

)
,

where

z = posterior mean of W = E[W | xn] = τµ + n
σ 2 x̄n

τ + n
σ 2

,
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and τn = posterior precision of W = τ + n/σ 2.

The variance τ−1
n equals the posterior variance approx-

imation �n in Eq. 5 because �n is based on a normal
distribution approximation.

The posterior mean z influences the decision, but it
depends upon n, which must be selected before Xn is
observed. We need the predictive distribution p(z) of the
posterior mean Z = E[W | Xn] = (τµ + nX̄n)/τn to see
how n samples influences the decision d . The conditional
distribution of X̄n given w is Normal

(
w, σ 2/n

)
. Mixing

over the prior distribution of W implies that the predictive
distribution for Z is Normal

(
µ, τ−1

z

)
, where

τz = τ(τ + n/σ 2)/(n/σ 2). (6)

The variance τ−1
z of Z is 0 when n → 0 (no new infor-

mation). If n → ∞ (perfect information about w), then
Var[Z] → prior variance for W , or σ 2.

The experimental design that minimizes risk (the cost of
sampling plus expected losses due to a potentially incorrect
decision) is the n that minimizes a nested expectation, an
inner expectation corresponds to the expected loss after Xn

is observed, an outer expectation averages over Xn,

ρ(n) = cn + EXn
[EW [L(d(Xn), W) | Xn]]. (7)

One technique to analyze EW [L(d(Xn), W) | Xn] is to
obtain an auxiliary loss function L∗ that has the same
optimal decision, but simplifies the loss function by making
the loss of one of the decisions equal to 0. Adding a function
of w does not change the optimal decision (de Groot 1970).
Set L∗(d, w) = L(d, w) − L(1, w), which is 0 if d = 1
and is w0 − w if d = 2. Then

EW [L∗(d(Xn), W) | Xn] =
{

0 if d = 1
w0 − Z if d = 2.

(8)

The decision that minimizes the loss in Eq. 8 is to assert
d(Xn) = 2 (‘bigger’) if the posterior mean exceeds the
threshold, Z > w0, and to assert d(Xn) = 1 (‘smaller’) if
Z ≤ w0.

The expectation over the outcomes Xn can be deter-
mined with well-known tables because the decision depends
upon Xn only through Z, and Z has a normal distribution.
The expected loss can be determined by the standard nor-
mal loss �[s] = ∫

s
(t − s)φ(t)dt = φ(s) − s(1 − �(s)) for

expected lost sales in the newsvendor problem if demand
is normally distributed (e.g. Porteus 2002).

E[L∗(d(Xn), W)] = EXn
[EW [L∗(d(Xn), W) | Xn]]

= −
∫ ∞

w0

(z − w0)p(z | Xn)dz

= −τ
−1
2

z �[τ
1
2
z (w0 − µ)]
The expected loss of the original loss function is recovered
by adding back E[L(1, W)], using the prior distribution of
W for the expectation.

E[L(d(Xn), W)] = τ
−1
2 �[τ 1

2 (w0 − µ)] (9)

−τ
−1
2

z �[τ
1
2
z (w0 − µ)]

The expected value of information for m samples is the
difference between Eq. 9 when n = 0 and when n = m

(τz depends on n). Combine Eq. 9 with Eq. 6-7, note that
d�/ds = �(s) − 1 and dτz/dn = −τ 2σ 2/n, and take the
derivative with respect to n (relaxing the integer assumption)
to obtain an optimality condition for the sample size.

∂ρ

∂n
= 1

2
τ

− 3
2

z φ[τ
1
2
z (w0 − µ)] · −τ 2σ 2

n
+ c = 0

For diminishing costs c → 0, the sample size is large.
Since τz → τ as n → ∞, the optimal sample size n is
(asymptotically) approximately

n∗ =
(

τ
1
2 σ 2φ[τ

1
2
z (w0 − µ)]/(2c)

)1/2

. (10)

This argument illustrates the basic ideas of loss functions,
and the use of predictive distributions for future samples
to infer the expected value of information of sampling.
The technique of adding functions of the unknowns can be
useful to simplify the derivation of the optimal solution.
Asymptotic approximations are a further tool to identify
criteria-based sampling plans. Extensions of this basic
argument justify the value of information based selection
procedures summarized in Sec. 3.3 (Chick and Inoue 2001a).

An alternate mechanism to approximate the effect of
information on parameter uncertainty is based on a thought
experiment for the posterior probabilities of parameters. For
members of the regular exponential family, the asymptotic
variance approximation �n in Eq. 5 simplifies to the form
H−1(θ)/(n0 + n), where H is the expected information
from one observation (Eq. 4), when a canonical conjugate
prior distribution is used (Bernardo and Smith 1994). To
approximate the effect of collecting m additional samples
on the parameter uncertainty, one could presume that the

posterior distribution changes from Normal
(
θ̃n, �n

)
to

Normal

(
θ̃n, �n

n0 + n

n0 + n + m

)
. (11)

This transformation reflects an appropriate scaling of the
posterior precision, and the idea is used in a frequentist
context for estimating how many replications are required
to achieve a confidence interval of a given size (Law and
Kelton 2000). Chen (1996) uses this type of approximation
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for the Bayesian posterior distribution of the unknown means
of several simulated systems in order to motivate a class
of ranking and selection procedures called the OCBA. Ng
and Chick (2001), Chick and Ng (2004) use the idea to
plan experiments to reduce input uncertainty in a way that
reduces output uncertainty.

2.5 Entropy and Kullback-Leibler Discrepancy

Kullback-Leibler discrepancy is a useful measure of the dif-
ference between two distributions. For discrete distributions
p̃ and p, the discrepancy is δ(p || p̃) = ∑

p̃i log(p̃i/qi).
Two continuous distributions for a random variable X with
densities f̃ and fθ = f (x | θ) have discrepancy

δ(fθ || f̃ ) =
∫

f̃ (x) log
f̃ (x)

f (x | θ)
dx. (12)

One application for discrepancy is as a loss function for
a decision maker that must specify a probability distribution.
If the decision-maker believes that the distribution is f̃ , and
loses δ(f || f̃ ) if he/she provides a distribution f , then the
decision-maker should honestly report f̃ to minimize the
expected loss (Bernardo and Smith 1994).

A second application of discrepancy is as a design
criterion for experiments designed to assist with parameter
estimation (Bernardo 1979, Smith and Verdinelli 1980, Ng
and Chick 2002). In the simulation context, this could
mean selecting a design matrix d� of r vectors of inputs
(θpi, θei , θci) for i = 1, 2, . . . , r with output Y in order to
best differentiate the posterior distribution of the response
parameters ψ from the prior distribution for ψ . In other
words, the goal is to select the d� from a set of possible
design matrices to maximize the expected divergence of
posterior and prior distributions for ψ , the expectation over
the predictive distribution of the output Y.

∫
p(Y | d�)

(∫
p(ψ | Y) log

p(ψ | Y)

p(ψ)
dψ

)
dY (13)

The predictive distribution p(Y | d�) of future outputs
depends upon the current uncertainty about ψ and the design
matrix d�. This approach is essentially an expected value
of information design criterion, as in Sec. 2.4, except now
the loss function is the Kullback-Leibler discrepancy rather
than the opportunity cost.

Other applications of discrepancy include the maximum
entropy prior distribution mentioned above (Jaynes 1983),
and for input distribution selection, as in Sec. 3.2 below.
3 APPLICATIONS

3.1 Uncertainty Analysis

A sensitivity analysis tests how the mean simulation output
depends upon one or more input parameters as that parameter
is varied (estimating E[g(θ) | E] as a function of θ , given
all information E). Uncertainty analysis entails propogating
input parameter uncertainty about � through to uncertainty
about outputs Y . Even if a simulation has no random number
stream, a distribution on unknown inputs means that the
output is random.

An unbiased estimator of the mean output E[Y | E]
with both stochastic (from u) and systemic (or parameter)
uncertainty accounted for is obtained from the Bayesian
model average (BMA) in Fig. 2, which averages over ran-
dom inputs sampling according to the distribution p(θ | E)

(Draper 1995, Chick 2001). Zouaoui and Wilson (2003)
explore the relative magnitude of stochastic and systemic
uncertainty with variations on the BMA, and discuss how to
update the estimate should new data become available (so
the algorithm need not be rerun from scratch). Importance
sampling techniques can reweight estimates accordingly
(with likelihood ratio determined as the ratio of the ‘new’
posterior divided by the ‘old’ distribution). Andradóttir and
Glynn (2004) examine the estimation of E[Y (�) | E] when
there may be bias in the estimates of Y given θ , when quasi-
random sequences are used in place of the pseudo-random
sequences assumed by Fig. 2, or when numerical techniques
like Simpson’s rule are employed to select values of θ .

Other issues for sensitivity analysis include estima-
tion of the distribution of the conditional expectation
E[Y | �, E]. When Y is a deterministic function of �, then
naive Monte Carlo simulation can be used with traditional
kernel estimation techniques to assess the distribution of
Y (�). When the simulation is stochastic (depends on the
random number stream u), then E[Y | θ, E] is imperfectly
estimated for any given θ . Given several technical condi-
tions (e.g. univariate continuous-valued θ , monotonic mean
response), Steckley and Henderson (2003) derive asymp-
totically optimal ways of selecting by cleverly selecting r

and m in Fig. 2 to produce a kernel density estimator based
on the output. Their work builds upon earlier work by Lee

for r = 1, . . . , R replications
sample parameter θr from p(θ | E)

for i = 1, 2, . . . , n

generate simulation output yri given input θr

end loop
end loop
Estimate EY [Y | E] with ȳ = ∑R

r=1
1
R

∑n
i=1 yri/n.

Figure 2: Bayesian Model Average (BMA)
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and Glynn (1999) to estimate the distribution function of
E[Y | �, E] for the case of discrete-valued θ .

3.2 Selecting from Multiple Candidate Distributions

Input selection in simulation practice may consider q > 1
candidate distributions for potential input to a model. The
usual approach Law and Kelton (2000) is to find the MLE
for each candidate distribution, assess the goodness of fit for
each model, then select a model that ‘fits well’. While this
is practically appealing, there are known problems with the
approach (Lindley 1957, Berger and Pericchi 1996, Chick
2001). In the simulation context, input uncertainty can make
standard confidence intervals for the mean output almost
meaningless if the classical approach is used (Chick 2001,
Barton and Schruben 2001), because an excellent simulation
estimate based on point estimates for inputs misses the boat
if there is uncertainty about input values, which is typical
for simulations of real systems.

A Bayesian approach with model uncertainty is basically
the same as for parameter uncertainty alone, as in Sec. 2.1
above, except now that a prior probability distribution needs
to be placed on the model/parameter combination, π(m, θm),
a mixed discrete-continuous model, where m ∈ {1, 2, . . . , q}
indexes the set of candidate distributions, and θm is the
parameter for the m-th candidate distribution. As data xn

becomes available, the BMA then requires sampling from the
joint posterior p(m, θm | xn). This can be accomplished by
composition, sampling the input model then the parameter
with p(m | xn)p(θm | m, xn).

Chick (2001) first illustrated Bayesian input modeling
in a stochastic simulation context, and suggested a method-
of-moments approach for assessing prior distributions for
the unknown parameters of each candidate model. Zouaoui
and Wilson (2001) noted a decoupling of stochastic uncer-
tainty from two types of structural uncertainty (that due
to uncertainty about the candidate model, plus that due to
uncertainty about the parameters of the candidate models)
under special conditions, provided a variance reduction for
the BMA and numerical analysis.

Selecting models according to p(m, θm | E) is consistent
in that if one of the entertained models is actually the true
model, then the true model is selected if enough data is
observed and some regularity conditions hold. When the
true model is not among those being considered, Bayesian
model selection chooses the model that is closest to the true
model in terms of Kullback-Leibler divergence (Berk 1966,
Bernardo and Smith 1994, Dmochowski 1999).

3.3 Ranking and Selection

Simulation procedures to select the best system using
Bayesian approaches come in two different flavors.
Chick and Inoue (2001a) used expected value of in-
formation ideas that extend Eq. 9-10 to obtain two-stage
value of information procedures (VIPs) with independent
replications that identify the best of a finite set of simulated
systems. Eq. 9 was generalized to allow for unknown and
potentially different variances for multiple simulated sys-
tems. The loss for k > 2 systems was approximated by the
sum of losses for k − 1 pairwise comparisons between the
system selected in the absence of additional replications and
each of the other systems. Additional replications for the
second stage are allocated so minimize that loss function
using an asymptotic (in the number of replications) approx-
imation like that used for Eq. 10. A variation improves the
(Bayesian posterior) probability of correct selection with the
0-1 loss function (loss of 1 if the wrong system is selected,
0 if the best is selected), and sequential variations exist
(Chick and Inoue 2001a, Chick and Inoue 2002). The pro-
cedures, named LL(B), LL(S), 0-1(B), 0-1(S) depending
upon whether an opportunity cost (aka linear loss) or 0-1
loss function is used, and whether a budget constraint or
sequential sampling apply, are empirically quite effective
for identifying the best system with respect to several figures
of merit and relative to several other procedures (Chick and
Inoue 2001a, Inoue et al. 1999). The idea has also been
extended to handle common random numbers with screen-
ing to improve efficiency. The analysis to justify them also
requires missing data techniques (Chick and Inoue 2001b).

Chen (1996) and Chen et al. (1999) use a different
tack—the thought experiment in Eq. 11 that supposes that
additional replications won’t change the estimate of the
means of each system, but can reduce the variance associ-
ated with the estimate. They provide empirically effective
procedures (called OCBA) with only a few parameters to
tune for identifying the best system with high probability.
A variation to reduce the expected opportunity cost remains
future work for this approach.

3.4 Metamodels

Metamodels are a model of how simulated responses are
believed to behave as a function of input parameters, even
for values of parameters not yet input to the simulation.
This is particularly useful when the simulation model re-
quires extensive computation. In addition to describing the
response, metamodels can be used to predict how reduc-
tions in input parameter uncertainty can reduce uncertainty
about the mean system performance. Since the metamodel
is unknown, uncertainty about it can be modeled from a
Bayesian perspective. Here we discuss the normal linear
model and Gaussian random function (GRF) metamodels.

The normal linear model is

Y =
p∑

�=1

g�(θ)β� + Z(θ; U) = gT (θ)β + Z(θ; U), (14)
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for known regression functions g1, . . . , gp, potentially un-
known regression coefficients β, and a zero-mean random
noise Z(·). The conjugate prior is an inverted gamma dis-
tribution for the unknown variance σ 2 and a conditionally
normal distribution for β given σ 2, if all factors are active
(Bernardo and Smith 1994). The metamodel parameters are
then ψ = (β, σ 2). Raftery, Madigan, and Hoeting (1997)
describe a relatively ‘uninformative’ prior distribution for
ψ for this normal linear model. A vector of simulation
output Y = y obtained with design matrix d� with inputs
(θpi, θei , θci) for runs i = 1, . . . , r can be used to update
the posterior distribution of unknown response parameters,
p(ψ | y, d�), using Bayes’ rule.

Identifying important factors (factors with nonzero βi)
can be formulated as a Bayesian model selection prob-
lem, selecting from 2p different response models that are
distinguished by the presence or absence of each factor.
George and McCulloch (1996) and Cheng (1999) discuss
techniques for estimating which factors are active with what
probability. Ng and Chick (2002) describe an entropy-based
experimental design criterion (cf. Sec. 2.5) to identify both
which factors are active and reduce parameter uncertainty
simultaneously.

When the gi represent the individual dimensions of
the unknown parameters (θp, θe), the β� are gradients with
respect to the inputs. If the model has only statistical
input parameters θp for which data can be collected (but
not parameters θe for which no data is available), Ng and
Chick (2001) and Zouaoui and Wilson (2003) indicate that
output uncertainty can be decoupled asymptotically or under
special conditions.

Var[Ȳ | E] ≈ stochastic + parameter uncertainty

≈ σ̂ 2
0

m
+

βĤ−1
θp

β

n
,

where σ̂ 2
0 is the estimate of the variance from m replications,

the MLE ˆθp and estimate Ĥ−1
θp

of the information in one

observation are based on n data points, and some technical
conditions hold. This adapts a frequentist result of Cheng
and Holland (1997).

Ng and Chick (2001) use that decoupling, applied to
uncertainty due to multiple input parameters,

np∑
i=1

βi Ĥ
−1
θpi

βi/ni,

to provide sampling plans to collect further data to reduce
input parameter uncertainty to optimally reduce output un-
certainty in some sense, assuming that different numbers
of data points can be collected to infer the parameters of
different sources of randomness (e.g. arrival rates versus
service time distributions). Chick and Ng (2004) extend that
analysis by accounting for uncertainty about β; suggest allo-
cations of resources for either running more replications or
collecting more data points to reduce the asymptotic output
variance approximation; and give a numerical analysis.

To date, much simulation research seeks analytical re-
sults for stochastic models, or mechanisms to reduce the
variance of estimators due to stochastic noise. Those re-
sults need to be complemented with an understanding of
how performance depends on input uncertainty, and meth-
ods to reduce input uncertainty to effectively reduce output
uncertainty. The Bayesian approach is a tool that can help.

Gaussian random functions (GRFs) are well-known
response models in deterministic simulations, particularly
in geostatistics (Cressie 1993, Santner et al. 2003), but are
less well known in stochastic simulation. GRFs provide
flexibility that the linear model does not, and are useful
when g takes a long time to compute. The GRF for an
unknown nonstochastic g (no random numbers u) is

Y (θ) =
p∑

�=1

g�(θ)β� + Z(θ) = gT (θ)β + Z(θ) (15)

for known regression functions g1, . . . , gp of R
d , un-

known regression coefficients β, and the zero-mean ran-
dom second-order process such that for any distinct inputs
θ1, . . . , θm, the vector (Y1, . . . , Ym) has multivariate normal
distribution, conditional on the value β. GRFs are deter-
mined by their mean gT (θ)β and (auto)covariance function
C∗(θ1, θ2) = Cov(Y (θ1), Y (θ2)) It is common to assume
strong stationarity ((Y1, . . . , Ym) and (Y1 + h, . . . , Ym + h)

have the same distribution), so that C∗(θ1, θ2) = C(θ1−θ2).
Inference for g(θ) at values of θ r+1 not yet input to

a simulation model is enabled via the correlation function
R(h) = C(h)/C(0) for h ∈ R

d . An example is the power
exponential function R(h) = ∏

exp[−|hi/γi |pi ] for pi ∈
[0, 2]. Kriging, a geostatistics term, is a best linear unbiased
prediction (BLUP) for g(θ r+1). An assessment of the
uncertainty in g(θ r+1) can be used as an experimental design
technique to choose inputs to reduce response uncertainty
(Santner et al. 2003).

The advanced tutorial by van Beers and Kleijnen (2004)
in this year’s WSC more fully expands upon kriging . See
also Sacks et al. (1989), O’Hagan et al. (1999), Kennedy
and O’Hagan (2001), Santner et al. (2003), van Beers
and Kleijnen (2003). GRFs facilitate experimental designs
to reduce the computational effort needed to get a good
response estimate by selecting simulation inputs on areas
where the mean response has the greatest uncertainty. Most
work for GRFs has been in a nonstochastic simulation
context. More work is needed for GRFs in the stochastic
simulation context.
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4 IMPLEMENTATION

Three basic computational issues for implementing a
Bayesian analysis are maximization (e.g. to find the MLE θ̂

or MAP θ̃ estimators for a posterior distribution); integration,
either to find a marginal distribution (e.g., find p(θ1 | xn)

from p(θ1, θ2 | xn)) or constant of proportionality for a
posterior distribution (e.g. find c−1 = ∫

f (xn | θ)dπ(θ),
or p(m | xn) for Sec. 3.2); and simulation (e.g., sample
from p(θ | xn) in order to estimate E[g(θ) | xn]). These
techniques are described in a variety of sources (e.g. Evans
and Swartz 1995, Tanner 1996, Gilks, Richardson, and
Spiegelhalter 1996, Devroye 2004).

For maximization, a number of methods are available
including gradient-based methods (e.g. Newton-Raphson),
gradient-free methods (e.g. Nelder-Mead), and simulation-
based methods. The expectation-maximization (EM) algo-
rithm is a technique for finding the MAP or MLE when there
is missing data or nuisance parameters are to be integrated
out (e.g. the MAP of p(θ1 | xn) when it is ‘messy’ but
p(θ1, θ2 | xn) is easier to manipulate).

For integration, five general techniques apply when
analytical results are not available: asymptotic methods,
Markov chain methods, importance sampling, adaptive im-
portance sampling, and multiple quadrature. Quadrature is
useful when the number of dimensions is not too large. The
Laplace method is an interesting approximation for inte-
grals

∫
g(θ)f (θ | xn)dπ(θ) based on asymptotic normality

results (like Eq. 5), and it applies even if f (θ | xn) is only
proportional to the posterior distribution. It also applies
for integrating out nuisance parameters if regularity condi-
tions hold. Another effective technique for approximating
p(θ1 | xn) (not just the MLE or MAP) when it is ‘messy’
but p(θ1 | θ2, xn) and p(θ2 | θ1, xn) are easy to manipulate
is data augmentation, often called the IP algorithm (for
imputation, posterior algorithm). Importance sampling (IS)
remains a powerful methods for efficient integration.

For simulation of variates, classical methods for gener-
ating independent variates from posterior distributions may
apply. Posterior distributions are often known only up to a
constant of proportionality (the denominator in Bayes rule
may be hard to compute). It is therefore important to have
a method to simulate variates for arbitrary functions pro-
portional to posterior distributions. Markov Chain Monte
Carlo (MCMC) is the most important of those methods at
present. MCMC constructs a Markov chain whose station-
ary distribution is the desired posterior distribution p(θ | E).
The state θt of the Markov chain can then be sampled to
obtain (somewhat correlated) samples from p(θ | E).

A generic MCMC algorithm is the Metropolis-Hastings
algorithm in Fig. 3. Potential state transitions to θt from
θt−1 are proposed by sampling from a candidate distribution
q(· | θt−1). Candidates are accepted with a probability α

chosen to insure the transition kernel results in p(θ | E) being
Initialize t = 0, θ0
for t = 1, 2, . . .

sample a candidate θ ∼ q(· | θt−1)

compute acceptance probability

α(θt−1, θ) = min
{

1,
p(θ |E)·q(θt−1|θ)

p(θt−1|E)·q(θ |θt−1)

}
.

generate an independent u ∼ uniform[0, 1]
if u ≤ α(θt−1, θ) then set θt ← θ

otherwise set θt ← θt−1
set t ← t + 1

end loop

Figure 3: Metropolis-Hastings: An MCMC Algorithm

a stationary distribution. The choice of q(· | ·) can make �t

more or less correlated with �t−1, or can make the algorithm
more or less computationally intensive. The Gibbs sampler
updates one randomly selected coordinate of a multidimen-
sional θ = (ϑ1, . . . , ϑd) at a time, using a ‘full conditional’
distribution: updating ϑi with q(· | θ) = p(· | θ·−i , E),
where θ·−i = (ϑ1, . . . , ϑi−1, ϑi+1, . . . , ϑd) is all of θ ex-
cept the i-th coordinate. Such a sampler has an acceptance
probability of α = 1 (Gilks et al. 1996). Sampling in-
termittently from the chain (e.g. t = 1, 11, 21, . . .) is one
way to generate random inputs for the BMA in Fig. 2.
More sophisticated methods exist. Samples and estima-
tors based on MCMC need evaluation to assure reasonable
convergence for estimators and faithfulness to the posterior
distribution. This is a rich area of study, and calls for results
from steady-state simulation.

A number of tools implement Bayesian inference. The
BUGS and WinBUGS packages implement Gibbs sampling
and some Metropolis sampling, and is available on the
WWW (Spiegelhalter et al. 1996). BOA, for Bayesian
output analysis (Smith 2004), is a set of MCMC diagnostic
tools for convergence and data analysis that functions with
the R or S-PLUS statistical packages. Gauss and Matlab
are also used to implement MCMC methods.

At present, it is possible to input randomized input
parameters to some commercial discrete-event simulation
packages to implement the BMA algorithm of Fig. 2, but
interfaces are not yet fully user friendly. A user-friendly
tool to implement the BMA and other uncertainty analysis
needs in commercial discrete-event simulation packages
would be helpful. Uncertainty analysis for other Monte
Carlo applications have been available as a spreadsheet tool
for some time (e.g. Winston 2000).

5 CONCLUSIONS

A variety of applications of Bayesian methods apply to sim-
ulation experiments, including uncertainty analysis, ranking
and selection, input distribution modeling, response surface
modeling, and experimental designs. One main theme is
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to represent all uncertainty with probability distributions,
to update probability using Bayes’ rule, and to use the ex-
pected value of information as a technique to make sampling
decisions (e.g., the opportunity cost and 0-1 loss functions
for selection procedures, or the Kullback-Leibler divergence
for parameter estimation for linear response models). The
other main theme is to use simulation to efficiently estimate
quantities of interest for a Bayesian analysis. Asymptotic
approximations are often helpful when exact optimal solu-
tions are difficult to obtain. Research opportunities include:

• Input modeling and uncertainty analysis (kernel
estimation of outputs as a result of input uncertainty;
the effect of different candidate distributions on
uncertainty; tools to help elicit prior distributions
for simulation inputs, e.g. queueing parameters that
do not lead a priori to the absence of posterior
moments metrics like the average queue length,
even conditioning on stability).

• Response modeling (further extending the Gaussian
random field work in the world of stochastic simula-
tion; sampling plans for input parameter inference
to optimally reduce output uncertainty, including
nonasymptotic results, to help understand what data
is most important to collect to infer the value of
inputs for simulations; theory and improved im-
plementation for the calibration/inverse problem,
i.e. how to ‘invert’ probability distributions for
output results backwards to obtain a reasonable
probability distribution on unknown ‘inputs’).

• Bayesian methods for experimental designs (esti-
mating quantiles or other non-expected value goals;
CRN for unknown input parameters for ranking and
selection; non-Gaussian output for ranking and se-
lection and GRFs).

• Improved computational tools (in MCMC and other
sampling methods for posterior distributions).
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