
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

MODELING AND SIMULATION OF COMPLEX SYSTEMS WITH CELL-DEVS

Gabriel A. Wainer

Department of Systems and Computer Engineering
Carleton University
1125 Colonel By Dr.

Ottawa, ON K2G 6G3 CANADA

ABSTRACT

Cell-DEVS enables efficient execution of complex cellular
models. The goal of Cell-DEVS is to build discrete-event
cell spaces, improving their definition by making the timing
specification more expressive. Different models built using
Cell-DEVS were implemented in a modeling and simulation
tool (CD++, crated following the formal specifications of the
DEVS formalism). The applications range from biological
systems to complex artificial systems. In this tutorial, we
will introduce the main characteristics of Cell-DEVS, show-
ing how to model complex cell spaces in an asynchronous
environment. We will focus on the application of these tech-
niques to improve model definition, which enables reducing
development times of these models. We use a wide variety
of previously defined examples in different domains of ap-
plications to illustrate the use of the techniques.

1 INTRODUCTION

The advance of science and technology in the last centuries
has relied on models defining the properties of systems un-
der study. In most cases, models were defined using
mathematical representations, which enabled mathematical
analysis techniques. However, these methods showed to be
infeasible for studying very complex natural systems, and
the artificial systems developed in the second half of the
20th century. Computers provided alternative methods of
analysis. Models can be executed using computer simula-
tion, allowing users to experiment with “virtual” systems.
Computer simulation has enabled the analysis of natural
and artificial systems with a level of detail unknown in ear-
lier stages of scientific development.

Most of the early developments on modeling and simu-
lation in digital computers were based on the use of differen-
tial equations for modeling, and time stepped numerical in-
tegration as simulation vehicle. Even today, most of the
scientists and engineers prefer to use this approach. Simula-
tion of continuous systems on digital computers requires
discretization. Classical methods as Euler, Runge-Kutta,

Adams, etc., are based on discretization of time resulting in a
discrete time simulation model (Press et al. 1986).

In the last 20 years, a radically different technique,
called Cellular Automata (CA) gained popularity. A Cellu-
lar Automaton represents a physical system organized as n-
dimensional infinite lattice whose elements hold a state
value and a very simple computing apparatus. The
composite behavior of thousands of these cells can fully
reproduce the behavior of a real system. A global transition
function updates the state of every cell in the space through
individual updates of the discrete values in each cell by us-
ing the present value for the cell and a finite set of
neighboring cells. Conceptually, these local functions are
computed synchronously and in parallel, using the state
values of the present cell and its neighbors.

CA, originally defined by J. Von Neumann and S.
Ulam, have received much attention recently (Wolfram
2002). Despite these efforts, CA still have several prob-
lems that constrain their power, usability and feasibility to
analyze complex systems:

• The use of a discrete time base for cell updates

constrains the precision and efficiency of simu-
lated models. In order to achieve higher accuracy,
smaller time steps must be used, increasing the
demands of computing power.

• The discrete time implementation of the formal-
ism makes it very difficult to handle time-
triggered behavior in each of the cells, which is
usually required in complex applications.

• CA do not describe adequately most of existing
physical systems whose nature is asynchronous.

The Cell-DEVS formalism (Wainer and Giambiasi

2000) was defined in order to attack these problems. CA
are defined using discrete variables for time, space and sys-
tem states. Instead, Cell-DEVS is based on the DEVS
(Discrete Event systems Specification) formalism (Zeigler,
Kim and Praehofer 2000), a continuous time technique.
The goal of Cell-DEVS is to build discrete-event cell

Wainer

spaces, improving their definition by making the timing
specification more expressive.

DEVS is an increasingly accepted framework for under-
standing and supporting the activities of modeling and simu-
lation. DEVS is a sound formal framework based on generic
dynamic systems, including well defined coupling of com-
ponents, hierarchical, modular construction, support for dis-
crete event approximation of continuous systems and sup-
port for repository reuse. DEVS theory provides a rigorous
methodology for representing models, and it does present an
abstract way of thinking about the world with independence
of the simulation mechanisms, underlying hardware and
middleware (Zeigler, Kim and Praehofer 2000). Different
modeling formalisms were successfully mapped as DEVS
(Petri Nets, Queuing Networks, Finite State Machines, etc.).
Therefore, we can now build multiparadigm models, includ-
ing cellular models that can interact with others described
using different modeling techniques. DEVS and Cell-DEVS
were implemented in a modeling and simulation tool, called
CD++ (Wainer 2002). This toolkit was successfully used to
develop different types of systems: biological (ecological
models, electrical activity of the heart tissue, ant foraging
systems, fire spread, etc.), physical (diffusion, binary solidi-
fication, heat transfer, etc.), artificial (traffic problems, seek-
ing devices, etc.), and others (Ameghino and Wainer 2000;
Ameghino, Troccoli, and Wainer 2001; Ameghino, Glinsky,
and Wainer 2003; Muzy et al. 2002; Lo Tártaro, Torres, and
Wainer 2001; Troccoli et al. 2002; MacSween and Wainer
2004). The models execute through the activation of an ab-
stract simulation engine that is completely independent from
the models themselves. Consequently, we were able to de-
velop different kinds of simulators (stand-alone, parallel,
distributed and real-time), which were used to execute all the
models we will present in the following sections.

2 THE CELL-DEVS FORMALISM

A real system modeled with DEVS is described as a com-
posite of submodels, each of them being behavioral
(atomic) or structural (coupled). A DEVS atomic model is
can be informally described as in Figure 1.

x

s ' = δ ext (s, e, x)

s s ' = δ int (s)

y

λ (s)

t a(s)

Figure 1: Informal Description of an Atomic Model

Each atomic model can be seen as having an interface

consisting of input (x) and output (y) ports to communicate
with other models. Every state (s) in the model is associ-
ated with a time advance (ta) function, which determines
the duration of the state. Once the time assigned to the state
is consumed, an internal transition is triggered. At that
moment, the model execution results are spread through
the model’s output ports by activating an output function
(λ). Then, an internal transition function (δint) is fired,
producing a local state change. Input external events (those
events received from other models) are collected in the in-
put ports. An external transition function (δext) specifies
how to react to those inputs.

A DEVS coupled model is composed by several
atomic or coupled submodels, as in Figure 2.

Figure 2: Informal Description of a Coupled Model

Coupled models are defined as a set of basic compo-

nents (atomic or coupled), which are interconnected
through the model’s interfaces. The model’s coupling de-
fines how to convert the outputs of a model into inputs for
the others, and how to handle inputs/outputs from/to exter-
nal models.

Cell-DEVS combines CA and DEVS, allowing the
implementation of cellular models with timing delays.
Cell-DEVS improves execution performance of cellular
models by using a discrete-event approach. It also en-
hances the cell’s timing definition by making it more ex-
pressive. Each cell is defined as a DEVS atomic model,
and it can be later integrated to a coupled model represent-
ing the cell space, as showed in Figure 3.

Figure 3: Informal Description of Cell-DEVS

Each cell uses N inputs to compute its next state.

These inputs, which are received through the model’s in-

Wainer

terface, activate a local computing function (τ). A delay (d)
can be associated with each cell. The state (s) changes can
be transmitted to other models, but only after the consump-
tion of this delay. Two kinds of delays can be defined:
transport delays model a variable commuting time (every
state change is transmitted), and inertial delays, which
have preemptive semantics (scheduled events can be dis-
carded). This is informally presented in Figure 4.

Figure 4: Description of a
Cell-DEVS Atomic Model

Once the cell behavior is defined, a coupled Cell-

DEVS can be created by putting together a number of cells
interconnected by the neighborhood relationship. A cou-
pled Cell-DEVS is composed of an array of atomic cells,
with given size and dimensions. Border cells can have a
different behavior due to their particular locations, which
can result in a non-uniform neighborhoods. Finally, the
model’s couplings permit connecting these models with
other external submodels.

CD++ (Wainer 2002) is a modeling tool that was de-
fined using the formal specifications of Cell-DEVS, and
the basic simulation techniques introduced in (Wainer and
Giambiasi 2000; Zeigler, Kim and Praehofer 2000). The
toolkit includes facilities to build DEVS and Cell-DEVS
models. DEVS Atomic models can be programmed and in-
corporated onto a class hierarchy programmed in C++.
Coupled and Cell-DEVS models are defined using a built-
in language. Cell-DEVS coupled model specification in-
cludes the definition of the size and dimension of the cell
space, the shape of the neighborhood and borders. The
cell’s local computing function is defined using a set of
rules with the form:

POSTCONDITION DELAY { PRECONDITION }

These indicate that when the PRECONDITION is sat-

isfied, the state of the cell will change to the designated
POSTCONDITION, whose computed value will be trans-
mitted to other components after consuming the DELAY. If
the precondition is false, the next rule in the list is evalu-
ated until a rule is satisfied or there are no more rules. Fig-
ure 5 shows the definition of a very simple example im-
plementing the “Life” game (Gardner 1970).

[life]

width : 20 height : 20

delay : transport border : wrapped

neighbors : (-1,-1) (-1,0) (-1,1)

neighbors : (0,-1) (0,0) (0,1)

neighbors : (1,-1) (1,0) (1,1)

localtransition : life-rule

[life-rule]

Rule: 1 10 { (0,0) = 1 and (truecount = 3

 or truecount = 4) }

Rule: 1 10 { (0,0) = 0 and truecount = 3 }

Rule: 0 10 { t }

Figure 5: Definition of the Life Game

The Cell-DEVS coupled model is defined by its size
(width=20, height=20), its border (wrapped, meaning that
the cells in one border communicate its results to neighbors
in the opposite border), the shape of the neighborhood, and
the type of delay (transport).

The rules define the behavior of each cell in the
model. In this case, they state that an active cell ((0,0) =1)
remains active when the number of active neighbors is 3 or
4 (truecount indicates the number of active neighbors) us-
ing a transport delay of 10 ms. If the cell is inactive ((0,0)
=0) and the neighborhood has 3 active cells, the cell be-
comes active. In every other case, the cell remains inactive
(t indicates that whenever the rule is evaluated, a True
value is returned). CD++ is able to interpret these specifi-
cations, and execute a simulation of this model. The fol-
lowing sections are devoted to show how to define and
execute different applications using this method. We will
divide the examples to be discussed in three different ar-
eas: models of physical systems, models of biosystems,
and artificial systems.

3 MODELS OF PHYSICAL SYSTEMS

Cellular models are well tailored to model a wide variety
of complex physical systems, as we can see in (Wolfram
2002). In this section, we will show how to implement
some of these systems using Cell-DEVS. Our first example
defines a model of excitable media, a phenomenon appear-
ing in magnetic fields. The model is defined in Figure 6.

[ExMedia]
dim: (9,9) delay: transport border: wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)
neighbors : (0,1) (1,-1) (1,0) (1,1) (0,0)
localtransition : Ex-rules

[Ex-rules]
rule : 0 100 {(0,0)=0 and statecount(2)=0 }
rule : 2 100 {(0,0)=0 and statecount(2)>0 }
rule : 1 100 { (0,0) = 2 }
rule : 0 100 { (0,0) = 1 }
rule : { (0,0) } 100 { t }
Figure 6: Definition of an Excitable Media Model

Wainer

The model, originally presented in (Ameghino and
Wainer 2000), we can recognize three states: resting, ex-
cited or recovering. Following our discussion in Section 2,
the Cell-DEVS coupled model here defined has 9x9 cells,
and 9 adjacent neighbors. The model is wrapped, and it
uses transport delays. The Ex-rules section represents the
local computing function. If the cell and its neighbors are
not excited (value 0), the cell remains resting. Resting
cells with excited neighbors (value 2) become excited. The
third and fourth rules represent the cell transitioning to-
wards the recovery state. In every other case, the cell keeps
its present state. Figure 7 shows the execution results for
this model using different neighborhoods. In Figure 7a, we
use all the 9 adjacent neighbors (Moore neighborhood). In
Figure 7b, we only use four adjacent cells (N-S-E-W), and
Figure 7c shows the execution on an a hexagonal lattice
(illustrated on a square grid).

Figure 7: Results of ExMedia with Different Neigh-
borhoods: (a) Moore; (b) Von Neumann; (c) Hexago-
nal Grid

The example in Figure 8 represents a model of sur-

face tension, can be found in (Toffoli 1994), and it was
previously defined as a Cell-DEVS in (Ameghino and
Wainer 2000).

[Tension]

dim : (40,40)

delay : transport border : wrapped

neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)

neighbors : (1,-1) (1,0) (1,1) (0,0) (0,1)

localtransition : Ten-rules

[Ten-rules]

rule : 0 100 { statecount(0) >= 5 }

rule : 1 100 { t }
Figure 8: Surface Tension Model Specification

This Cell-DEVS uses a grid of 40x40, Moore

neighborhood, transport delays and wrapped borders. We
have two states: presence (value 1) or absence (value 0) of
particles. This model represents a “majority vote” system.
In each step, the new state depends of most neighbors. It
remains in the cell if at least 5 of the 9 are occupied; oth-
erwise, it becomes empty. Figure 9 shows how particles
concentrate where there is more tension. The resulting be-
havior of the surface is a high level representation of the
majority vote rules.

Figure 9: Execution Results of the Surface Tension
Model

Flow-injection methods are analytical methods used

for automated analysis of liquid samples. In a flow injec-
tion analyzer, a small, fixed volume of a sample is injected
as a discrete zone using an injection device into a liquid
carrier, which flows through a narrow tube. Because of
convection at the beginning, and axial and radial diffusion
later, the sample is progressively dispersed into the carrier
as it is transported along the tube, producing reactive spe-
cies that can be sensed (Troccoli et al. 2002).

We built a Cell-DEVS model describing the integrated
conductivity in a flow-injection system. The system con-
sists of a 0.025 cm radius tube, a 10.75 cm loop and a 9.25
reactor coil. A cell space of 25x 200 columns was defined,
each cell representing a 0.001 x 0.1cm of a half tube sec-
tion. Row 0 represents the center of the tube and row 24
the section of the tube walls. The value in each cell repre-
sents concentration of nitric acid.

To deal with convective transport and radial diffusion,
the model reacts in two phases: transport and diffusion.
Cell-DEVS models can be coupled with standard DEVS
models. The coupling is done by linking a DEVS output
port to a new cell’s input port and defining a rule to be
evaluated when a message is received through this new
port. Here, the local computing function simulates the
transport phase, and an external generator triggers the dif-
fusion phase, as showed in Figure 10.

[Top]
components : fia generator@ConstGenerator

link : out@generator diffuse@fia

[generator]

frequency : 00:00:00:014

[fia]

in : diffuse width : 200 height : 25

delay : inertial border : nowrapped

neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)

neighbors : (0,0) (0,1) (1,-1) (1,0) (1,1)

localtransition : transport

Figure 10: Definition of the FIA Coupled Model

Wainer

The model is built as a coupled DEVS model with two
components: a Cell-DEVS (named fia) representing the
tube, and an atomic model (named generator). The genera-
tor has one output port (out) to send the diffusion-
triggering event. This port is mapped to the diffuse input
port of the fia model. This means all output events sent
through the out port will be received as external events by
the fia model through the diffuse port.

This model uses inertial delays. Thus, a cell with
scheduled future value f will preempt this value if upon re-
ceiving an external event and evaluating the local transition
rules, a new future value f1 ≠ f is obtained. In this case, f1
will be scheduled as the future value with a given delay d.
The behavior of each cell is defined by this function, de-
fined in Figure 11.

[transport]

rule : { (0,-1) } { 0.1 / (22.57878 * (1 -

 power(cellPos(0) * 0.001 + 0.0005 , 2)

 /0.000625))*1000 } { cellPos(1) != 0 }

rule : { 0.8 } { 0.1 / (22.57878 * (1 –

 power(cellPos(0) * 0.001 + 0.0005 , 2)

 /0.000625))*1000 } { cellPos(1) = 0 }

Figure 11: Definition of the Border Cells

The convective transport has been arbitrarily chosen

from left to right. Thus, the local transition rule for the
transport phase should set a cell’s value to the current
value of its (0,-1) neighbor cell. The rate at which this is
done depends on the velocity of the flow (maximum at the
center of the tube and decreasing towards its walls). This is
stated in the first transport.

The delay is calculated using transport equations (Troc-
coli et al. 2002): for a pump with a constant flow of
1,33ml/min, the average speed is 11,29 cm/s. This value
yields the number 22.57878 shown in the delay expression.
In addition, cellPos(0) * 0.001 + 0.0005 is the dis-
tance of the center of the cell to the center of the tube
(cellPos(0) returns the cell’s row).

The generic rule we have just given is only valid for all
cells that have a valid (0,-1) neighbor. The left border cells
(those in column 0) do not satisfy this prerequisite, stated
in the condition component cellPos(1) != 0, and should
therefore have a different rule.

The following rule is used for the left border cells. It
simply states that for these cells the new value should be
0.8, which corresponds to the concentration of the carrier
solution being pumped into the tube.

The model was run for 10s and the state of the whole
cell space was logged every 100ms. Figure 12 shows a
graphical representation of five different stages the FIA
model (only half of the tube: the other half is symmetrical;
the upper cells represent the center of the tube). The ex-
periment starts at time 0, where the sample (white), is in-
jected. At this moment, half of the tube contains the carrier
solution (dark gray). The convective transport makes the
sample disperse faster at the middle of the tube than near
the walls. The experiment finishes when the whole tube
contains the carrier solution only.

Figure 12: Different Execution Stages of the FIA
Model

4 MODELS OF BIOSYSTEMS

In this section, we introduce a number of models with ap-
plication to biological systems. Our first model, presented
in Figure 13, defines the behavior of a flock of birds, pre-
viously presented in (Ameghino and Wainer 2004). The
motion of a flock resembles a fluid, as an emerging behav-
ior, which is the result of the individual interaction be-
tween birds in the flock.

[boids]

dim:(20,20) delay: transport border: wrapped

neighbors : (-2,-2) (-2,-1) (-2,0) (-2,1) (-
2,2) (-1,-2) (-1,-1) (-1,0) (-1,1) (-1,2) (0,-
2) (0,-1) (0,0) (0,1) (0,2) (1,-2) (1,-1)
(1,0) (1,1) (1,2) (2,-2) (2,-1) (2,0) (2,1)

...

[fly-rule]

rule: { 1+if(((-2,-2)>100000),1,0)+if(((-2,-
1)>100000),1,0)+ if(((-2,0)>100000),1,0)+

if(((-2,1)>100000),1,0)+if(((-2,2)>100000)

,1,0) +if(((-1,-2)>100000),1,0)+if(((-1,-1)

>100000),1,0)+if(((1,0)>100000),1,0)+

if(((-1,1)>100000),1,0)+if(((-1,2)>100000)

,1,0)+ if(((0,-2)>100000),1,0)+if(((0,-1)

>100000),1,0)+ if(((0,1)>100000),1,0)+

if(((0,2)>100000),1,0)+if(((1,-2)>100000)

,1,0)+if(((1,-1)>100000),1,0)+

if(((1,0)>100000),1,0)+if(((1,1)>100000),1,0)+
if(((1,2)>100000),1,0)+if(((2,-
2)>100000),1,0)+if(((2,-1)>100000),1,0)+

if(((2,0)>100000),1,0)+if(((2,1)>100000),1,0)+
if(((2,2)>100000),1,0)}{90+trunc((0,0)/10-
10000)*10}

...

Figure 13: Specification of the Flock of Birds Model

Wainer

We modeled the behavior of an individual bird, based
on the following behavior rules (Reynolds Craig 1987):

• Collision avoidance with nearby flock mates.
• Attempt to match velocity with nearby mates.
• Attempt to stay close to nearby flock mates

The birds fly in certain direction at a certain speed.

Their field of vision is 300°, but they only have good for-
ward sight. Based on these rules we built a Cell-DEVS
model to simulate the birds’ fly. Each cell of the model
represents a space of 4 m2. The cell state codification
represents the direction of the bird (1:NW; 2:N; 3:NE;
4:W; 6:E; 7:SW; 8:S; 9:SE) and its speed. For example, the
cell value 10004 represents a bird flying west (unit value
equal to 4) at 1 second/cell. In order to avoid collision,
when two or more birds want to move to the same place,
they change their direction at random.

Figure 14 shows the execution of the model us-
ing CD++: when one bird sees the other, they start flying
together.

Figure 14: Joining Behavior (a) Four
Birds Flying Isolated; (b) Birds Fly-
ing Together

In (Ameghino, Glinsky, and Wainer 2003) we presented

a model of the reproduction of the Vibrio Parahaemolyticus
bacterium, a marine germ that lives in the coast and estuar-
ies. Its reproduction takes place at 15ºC either in the skin or
the intestine of a fish. To survive, the bacteria need tempera-
tures ranging from 15ºC to 43ºC. They need between 20 and
30 minutes to reproduce, however they cannot do it below
8ºC. If the temperature is close to 8ºC, reproduction takes
longer. Bacteria are destroyed when exposed to temperatures
higher than 60ºC over 10 minutes.

We couple a DEVS component to introduce tempera-
ture changes between -10ºC and 0ºC. Figure 15 shows the
specification of the model in CD++. We first declare
Coldgenerator, a DEVS model that generates cold tem-
peratures using an exponential distribution function with
the specified parameters. The Cell-DEVS model contam is
defined including size, neighborhood shape, type of delay,
and borders. In this case, we also define the input ports and
connections with Coldgenerator.

The temperature in a cell is calculated as the average of
its neighbors, and the diffusion time is 1000ms. We have
two surfaces, the first representing the concentration of
bacteria, and the second showing the variation of tempera-
ture. The rules that govern the reproduction of bacteria are
the following:

1. If the temperature is below 8ºC for 10s, bacterium

does not reproduce.
2. If the temperature is within 8ºC and 60ºC during

30s, then bacteria reproduce.
3. If the temperature is above 60ºC during of 10s, the

bacteria die.

We use inertial cell delay and define that a cell reach-

ing the concentration of 100 germs begins infecting the
neighboring cells. The Temperature section represents the
local computing function for the behavioral temperature
model. The Evolution rules describe the bacterium behav-
ior. The setCold section states the range of temperatures
generated by the DEVS component.

[top]

components : contam Coldgenerator@Generator

link : out@Coldgenerator inputCold@contam

[Coldgenerator]

distribution : exponential

mean : 3 initial : 1 increment : 0

[contam]

dim : (10, 10, 2) border : nowrapped

delay : inertial localtransition: Evolution

neighbors : (-1,-1,0) (-1,0,0) (-1,1,0)

(0,-1,0) (0,0,0) (0,1,0) (1,-1,0) (1,0,0) (1,1,0)
(0,1,1) (-1,-1,1) (-1,0,1) (-1,1,1) (0,-1,1)
(0,0,1) (1,-1,1) (1,0,1) (1,1,1)

link: inputCold in@contam(0,0,1)

portInTransition : in@contam(0,0,1) setCold

zone : Temperatures { (0,0,1)..(9,9,1) }

[Temperatures]

rule: { (if((-1,-1,0)!= ?,(-1,-1,0),0) + if((-
1,0,0)!=?,(-1,0,0),0)+if((-1,1,0)!= ?,(-1,1,0),0)
+ … } 1000 { t }

[Evolution]

rule: 0 10000 {cellpos(2)=0 and (0,0,1)>60 }

rule: {round(if((0,0,0)*2 > 99,0.7,1)*(0,0,0)

*2)+if((-1,-1,1)!=? and …} 30000 { cellpos(2)=0
and (0,0,1)>8 and statecount(?)=10 }

…

rule: {(0,0,0)} 10000 { cellpos(2) = 0 }

Figure 15: Specification of the Bacteria Model

Wainer

Figure 16 illustrates the results obtained when this model
is executed, showing the evolution over the surface of a fish
for 4 hours. The left side represents the bacteria concentra-
tion (white areas represent absence of bacteria; darker
shades represent higher concentrations). The right side
represents the temperatures of the surface (darker is colder).

(a)

(b)

(c)

Figure 16: Results of Bacteria Propagation: (a) Initial
Concentration; (b) After 1.5 hours; (c) After 4 hours

The following example, also introduced in (Ameghino,

Glinsky, and Wainer 2003), represents the behavior of ants
following a specific path from an anthill to a source of
nourishment. When an ant finds food, it returns to the ant-
hill leaving a hormone (pheromone) on its path; the others
use this as a signal leading to the source of food. To avoid
collisions, if two or more ants want to move to the same
place, they all stay in their positions and change the direc-
tion at random until one of them actually moves. When an
ant finds food, it changes its course and follows the
pheromone path to return to the anthill. In the case that
there is no pheromone, the ant moves at random, seeking
the anthill or another pheromone path. The example here
presented assumes that each cell in the Cell-DEVS space
represents a section of soil, whose state can be one of the
following: pheromone; ant seeking; ant following phero-
mone; food; or ant returning to the anthill with food.

Figure 17 describes the model specification. We define
the dimensions of the cell space, neighborhood and the
rules that define the behavior of an ant. We use different
macro definitions to avoid long statements in the specifica-
tion. In this case, macros provide an easy mechanism for
frequent statements such as checking the existence of an
ant, food or pheromone in the neighboring cells. Hence, the
rules specify the behavior of an ant based on its direction,
current location, and the value of the adjacent cells. Figure
18 shows the simulation results.

[ant]

dim: (20,20) delay: transport

neighbors:(0,-2)(-1,-1)(0,-1)(1,-1)(-2,0)

(-1,0)(0,0)(1,0)(2,0)(-1,1)(0,1)(1,1)(0,2)
...

[rules]

rule: { (0,0)+2 } 1000 { #isAnt00 and #dir00 =0
and (#isAnt19 and #dir19=3) or (#isAnt99 and
#dir99=1) or (#isAnt08 and #dir08=2))}

rule : { (0,0)+2 } 1000 { #isAnt00 and #dir00
=1 and (#isAnt19 and #dir19=2) or (#isAnt20 and
#dir20=3) or (#isAnt11 and #dir11 = 0)) }
...

rule : { 21003 } 1000 { #isAntB00 and #dir00= 2
and #isAntB91 and #dir91=1 }

rule : { 0 }1000 { #isAntB00 and #dir00=2 and
#isNothingAnt01 }
...

Figure 17: Specification of the Ants Model

a) b)

c) d)
Figure 18: Two Ants: a) Returning; b) Seeking
Food; c) Found Pheromone; d) Get to the Anthill

The figure shows the execution of the model using

CD++. The black cells represent two ants seeking food and
the gray cells leading the paths in the upper left area of the
graph represent two ants carrying food. The source of food

Wainer

is located in the lower right section of the figure, and dif-
ferent gray colors represent the concentration of phero-
mone showing the way to the food.

Our last ecological model, originally presented in
(Ameghino, Troccoli, and Wainer 2001), represents the be-
havior of forest fires under different environmental condi-
tions. This Cell-DEVS model has been built using a well-
known model for fire propagation in forests is due to
Rothermel (Rothermel 1972), which computes the ratio of
spread and intensity of fire based on environmental and
vegetation conditions. Three parameter groups determine the
fire spread ratio: a) vegetation type (caloric content, mineral
content and density); b) fuel properties (the vegetation is
classified according to its size); and c) environmental pa-
rameters (wind speed, fuel humidity and field slope).

Our first step was to use a fuel model, the speed and
direction of the wind, the terrain topology and the dimen-
sions of a region to obtain the spread ratio in every direc-
tion (fuel model group number 9, a SE wind of 24.135
km/h and a cell size of 15.24 x 15.24 m).

Figure 19 shows a 20x20 Cell-DEVS representing the
terrain and vegetation. In this case, the state variables use a
value 0 to indicate the absence of fire and a value different
to 0 to indicate the time when fire has started.

[ForestFire]

dim: (20,20) localtransition : FireBehavior

border: nowrapped delay : inertial

neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)
(0,0) (0,1) (1,-1) (1,0) (1,1)

[FireBehavior]

rule:{(1,-1)+(21.5526/17.9671)} {(21.5526/
17.9671)*60000} {(0,0)=0 and 0<(1,-1)}

rule:{(1,0)+(15.24/5.1069)} {(15.24/

5.1069)*60000} {(0,0)=0 and 0<(1,0)}

rule: {(0,-1)+(15.24/5.1069)} {(15.24 /
5.1069)*60000} {(0,0)=0 and 0<(0,-1)}

rule:{(-1,-1)+(21.5526/1.8720)} {(21.5526 /
1.8720)*60000} {(0,0)=0 and 0<(-1,-1)}

rule:{(1,1)+(21.5526/1.8720)} {(21.5526
/1.8720)*60000} {(0,0)=0 and 0<(1,1)}

rule: {(-1,0)+(15.24/1.1460)} {(15.24/1.1460)

*60000} {(0,0)=0 and 0<(-1,0)}

rule:{(0,1)+(15.24/1.1460)} {(15.24 / 1.1460)
*60000} {(0,0)=0 and 0<(0,1)}

rule:{(-1,1)+(21.5526/0.9874)} {(21.5526 /
0.9874)*60000} {(0,0)=0 and 0<(-1,1)}

rule : {(0,0)} 0 { t }

Figure 19: Definition of a Fire Forest model

The rules defining the behavior of the local computing

function are devoted to detect the presence of fire in the
eight neighboring cells. If there is fire in one, the cell will
burn. For instance, the first rule checks if the current cell is
not burning ((0,0)=0) and if the SW neighbor has started to
burn (0<(1,-1)). If this condition holds, the value will be
(1,-1)+(21.5526/17.9671), which is the time to spread the
fire in the cell. As the spread ratio is 17.9671 mpm and a
cell has a diagonal of 21.5526 m, it will take
(21.5526/17.9671) minutes for the fire to reach the a cell
once it has started in its SW neighbor. Therefore, we use a
delay of (21.5526/17.9671)*60000 ms after which the pre-
sent cell state will spread to the neighbors.

The results of the execution of this model are pre-
sented in Figure 20. As we can see, the burning time of a
cell depends on the spread ratio in the direction of the
burning cell. This value is used as the delay component for
the rules. It is important to notice that the cells are updated
at different times, as set by a rule’s delay component. This
is a clear departure from the classical approach of CA,
where all active cells are updated at the same time. A non-
burning cell in the direction of the fire spread will be up-
dated in a shorter period than a non-burning cell in the op-
posite direction. Another advantage is that expressing a
timing delay is done naturally.

(a)

(b)

Figure 20: (a) Fire Propagation Results; (b) A
Two-Hour Period (each Zone Represents 20
Minutes)

5 MODELS OF ARTIFICIAL SYSTEMS

We have defined a number of models of artificial systems,
some of which will be introduced in this section. The first
example presented previously in (Lam and Wainer 2003),
is used to solve path planning on a maze. The algorithm
effectively blocks off every dead-end path in the maze,
making every free cell that is accessible from only one di-
rection (i.e. three wall cells around it) a dead end and
therefore not part of the solution. These cells become new
wall cells, and this procedures is repeated until the system
remains in a steady state. In this state, the only remaining

Wainer

free cells represent the solution(s) to the maze. If there is
no solution, the entire array of cells will be wall cells.
These rules were translated into the coupled model defini-
tion presented in Figure 21.

[maze]

dim : (20, 20) delay : transport

border : nowrapped

neighbors : (-1,0) (0,-1) (0,0) (0,1) (1,0)

localtransition : maze-rule

[maze-rule]

rule : 1 100 { (0,0)=0 and (truecount=3 or

 truecount=4) }

rule : 0 100 { (0,0)=0 and truecount<3 }

rule : 1 100 { t }

Figure 21: Maze-Solving Specification in CD++

The results are showed in Figure 22, which include the

graphical displays of a maze with a given initial state.

a)

b)
Figure 22: a) Original Maze; b) After
Processing

Our next example presents the movement of robots us-

ing predefined paths in an industrial plant. Robots are used
to carry a load from the source point where it is produced,
to a destination point where it is consumed. The robots can
move N-S-E-W, following predefined routes at different
speeds. There may be more than one robot on each route.
A robot stops when it detects a nearby robot on the same
route. In addition, routes can have crossing points, so there
is a potential risk for collisions. The plant is represented by
a 20x20 Cell-DEVS. This cellular model is linked to four
different DEVS models, each devoted to generate a load at
the source points (12, 19), (0,10), (9,0) and (19,6).

This coupled model, presented in Figure 23 contains 5
components: Floor (a Cell-DEVS) and Source1-Source4
(DEVS random generators). Then, the model’s coupling is
defined (generators’ output ports are connected to Floor
input ports). Finally, we define the Cell-DEVS Floor cou-
pled model parameters (size, borders, delay, etc.). In this
example we show how to react to the external events re-
ceived: the input ports in1 to in3 are coupled to the cell
space; events arriving on port in1 should be sent to the in
port of cell (12,19).

[top]

components: Floor Source1@Generator
Source2@Generator Source3@Generator

link : out@Source1 in1@Floor

link : out@Source2 in2@Floor

link : out@Source3 in3@Floor

[Floor]

dim : (20,20) localtransition : RobotsMov

delay : inertial border : nowrapped

neighbors : (-1,0) (0,-1) (0,0) (0,1) (1,0)

in : in1 in2 in3 in4

link : in1 in@Floor(12,19)

link : in2 in@Floor(0,10)

link : in3 in@Floor(9,0)

[RobotsMov]

% ------ Robot 1 ----------------------------

rule : 10 1000 {(0,1)=1 and (0,0)=0 and

 cellpos(1)!=4}

rule : 11 1000 {(0,1)=1 and (0,0)=0 and

 cellpos(1)=4}

rule : 0 0 {(0,-1)=10 and (0,0)=1}

rule : 0 0 {(0,-1)=11 and (0,0)=1}

rule : 2 0 {(0,0)=11}

rule : 1 0 {(0,0)=10}

rule : 20 2000 {(-1,0)=2 and (0,0)=0 and

 cellpos(0)!=17}

rule : 21 2000 {(-1,0)=2 and (0,0)=0 and

 cellpos(0)=17}

rule : 0 0 {(1,0)=20 and (0,0)=2}

rule : 0 0 {(1,0)=21 and (0,0)=2}

rule : 2 0 { (0,0)=20 }

rule : 1 0 { (0,0)=21 }

% ------ Robot 2 ----------------------------

...

Figure 23: Model Definition for Robot Routes

We also included a part of the cell behavior for the

Cell-DEVS model. In this case, a zero value is used if the
cell is empty. A value different from zero will indicate the
presence of a robot. A cell containing a route 1 robot can

Wainer

have the values 1, 10 or 11 if the robot is moving horizon-
tally and 2, 20 or 21 if the robot is moving vertically. The
cellpos() function is used to see if the robot is on the path,
defining the predefined movement on the floor. The same
applies for cell containing robots belonging to other routes.

A robot movement is done in three steps. For example,
a route 1 robot at the source is indicated by a 1 in cell
(12,19). This value says the robot is ready to move hori-
zontally. The next cell on the route will receive a neighbor
change event indicating that cell (12,19) has just changed
to 1. Then, cell will get ready to receive the robot by ac-
quiring a value of 10 or 11 after a delay of 1000 ms (step
1). The value 10 will be used if the robot continues hori-
zontally and 11 if the robot must turn. Once this change is
produced, the original cell that had a value of 1 will now
change to 0 (step 2) indicating the robot is not longer pre-
sent and the cell that had the value 10 or 11 will change to
1 or 2, respectively (step 3). The value of 1 will again indi-
cate the presence of a robot that is about to move horizon-
tally and the value 2 a robot that is about to move verti-
cally. The collisions are avoided by only allowing step 1 to
take place if the destination cell is empty, as expressed a
condition statement.

Figure 24 shows different robots running at different
speeds (according with their delays). The figure also shows
the collision avoidance between two robots.

Figure 24: Executing the Robots Model (Two Robots
Reaching an Intersection Point)

Our last set of models, presented in (Ameghino,

Glinsky, and Wainer 2003; Ameghino and Wainer 2004) is
devoted to simulate evacuation processes. The model
represents people moving through a room or group of
rooms, trying to gather their belongings or related persons
and to get out through an exit door. The goal is to under-
stand where the bottlenecks can occur, and which solutions
are effective to prevent congestion.

The basic idea was to simulate the behavior and
movement of every single person involved in the evacua-
tion process. A Cell-DEVS model was chosen with a
minimum set of rules to characterize a person’s behavior:

• A person, in normal state, goes to the most

nearby exit.
• A person in panic goes in opposite direction.
• People move at different speeds.
• If the way is blocked, the person can decide to

move away and look for another path.

Figure 25 shows the simulation results of this model.

The gray cells represent people who want to escape using
the exit doors. The black cells represent walls. Note that
the leftmost part in the figure shows people waiting in the
exit door.

(a)

 (b)

Figure 25: (a) People Seeking an
Exit. (b) After 15 seconds, People
Found the Exit

We used two planes, one for the floor plan of the

structure and people moving, and the other for orientation.
Each cell in the grid is 0.4 m2 (one person/cell). The orien-
tation layer (Figure 26) contains information that serves to

Wainer

guide persons towards emergency exits. We assigned a po-
tential distance to an exit to every cell of this layer.

Figure 26: Cell-DEVS Layer
used for Orientation

Figure 27 (Ameghino, Glinsky, and Wainer 2003)

shows the execution of the same model in the context of
the movement of persons waiting for subways in a subway
station. The following figure resembles people arriving to
the train station. Two light gray cells located on the right
side of each slide represent the platform entrance. The gray
cells represent people who want to get in the train using the
door A, placed in the upper part of the Cell-DEVS grid.
The dark gray cells represent people who want to get in the
train using the door B, placed in the lower part of the grid.
The rightmost slide in the figure shows two groups of peo-
ple standing in the border of the platform waiting for the
doors to open.

Figure 27: Execution Results of Metro Station Model

Figure 28 shows in detail the conflict of people trying

to get in the railroad, represented by gray cells, that find
people trying to get out from it using the same door, repre-
sented by dark gray cells. The light gray cell located in the
left side of each slide denotes door A.

Figure 28: People Getting In and Out Using Door A
CONCLUSION

Cell–DEVS allows describing physical systems using an n-
dimensional cell-based formalism. Input/output port defini-
tions allow defining multiple interconnection between
Cell-DEVS and DEVS models. Complex timing behavior
for the cells in the space can be defined using very simple
constructions. The CD++ tool, based on the formalism
permits defining complex cell-shaped models using a high-
level specification language.

We showed that different kinds of applications can be
easily developed, allowing the study of complex problems
through simulation, which, otherwise, could not be at-
tacked. Finally, the use of a formal base improves the de-
velopment, checking and maintaining phases, facilitating
the testing and reuse of their components.

The discrete event nature of the formalism provides
better precision and performance, due to the independent
timing for each cell. If a cell state does not change, it is de-
activated up to the arrival of a new external event, thus, im-
proving CPU use without needing small time slots.

The tool and the examples are the public domain
and they can be obtained in: <http://www.sce.
carleton.ca/faculty/wainer/>

ACKNOWLEDGMENTS

This work was partially funded by the Natural Sciences
and Engineering Research Council of Canada (NSERC)
and the Canadian Foundation for Innovation (CFI).

REFERENCES

Ameghino, J., Glinsky, E., and Wainer, G. 2003. Applying
Cell-DEVS in Models of Complex Systems. In Pro-
ceedings of Summer Simulation Multiconference.
Montreal, Quebec. Canada.

Ameghino, J., Troccoli, A., and Wainer, G. 2001. Model-
ing and simulation of complex physical systems using
Cell-DEVS. In Proceedings of the 33rd SCS Summer
Computer Simulation Conference. Seattle, Washing-
ton. USA.

Ameghino, J., and Wainer, G. 2000. Application of the
Cell-DEVS paradigm using CD++. In Proceedings of
the 32nd SCS Summer Computer Simulation Confer-
ence. Vancouver, Canada.

Ameghino, J., and Wainer, G. 2004. Using Cell-DEVS for
modeling complex cell spaces. Internal Report; De-
partment of Systems and Computer Engineering.
Carleton University. Submitted for publication.

Gardner, M. 1970. The fantastic combinations of John
Conway’s New Solitaire Game ‘Life’. Scientific
American. 23 (4). pp. 120-123.

Lam, K., and Wainer, G. 2003. Modeling of maze-solving
problems using Cell-DEVS. In Proceedings of the

iner
Wa

2003 SCS Summer Computer Simulation Conference.
Montreal, Quebec. Canada.

Lo Tártaro, M., Torres, C., and Wainer, G. 2001. Defining
models of urban traffic using the TSC tool. In Pro-
ceedings of 2001 Winter Simulation Conference. B. A.
Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.
pp. 1056-1063. Arlington, Virginia. USA.

MacSween, P., and Wainer, G. 2004. On the Construction
of Complex Models Using Reusable Components. In
Proceedings of SISO Spring Simulation Interoperabil-
ity Workshop. Arlington, Virginia. USA.

Muzy, A., Wainer, G., Innocenti, E., Aiello, A., and San-
tucci, J.F. 2002. Cell-DEVS quantization techniques in
a Fire Spreading application. In Proceedings of 2002
Winter Simulation Conference. E. Yücesan, C.-H.
Chen, J. L. Snowdon, and J. M. Charnes, eds. pp. 542-
549. San Diego, CA. USA.

Press, W.H., Flannery B.P., Teukolsky, S.A., and Vetter-
ling, W.T. 1986. Numerical Recipes. Cambridge Uni-
versity Press, Cambridge.

Reynolds Craig, W. 1987. Flocks, Herds, and Schools: A
Distributed Behavioral Model. Computer Graphics.
21(4), pp. 25-34.

Rothermel, R. 1972. A mathematical model for predicting
fire spread in wildland fuels. Research Paper INT-
115. Ogden, UT: U.S. Department of Agriculture,
Forest Service, Intermountain Forest and Range Ex-
periment Station.

Toffoli, T. 1994. Occam, Turing, von Neumann, Jaynes:
How much can you get for how little? (A conceptual
introduction to cellular automata). In Proceedings of
the International conference on Cellular Automata for
Research and Industry ‘94. Rende, Italy.

Troccoli, A., Ameghino, J., Iñón, F., and Wainer, G. 2002.
A flow injection model using Cell-DEVS. In Proceed-
ings of the 35th IEEE/SCS Annual Simulation Sympo-
sium. San Diego, CA. U.S.A.

Wainer, G. 2002. CD++: a toolkit to develop DEVS mod-
els. Software - Practice and Experience. 32, pp.
1261-1306.

Wainer, G., and Giambiasi, N. 2000. Timed Cell-DEVS:
modelling and simulation of cell spaces. In Discrete
Event Modeling & Simulation: Enabling Future Tech-
nologies. Springer-Verlag.

Wolfram, S. 2002. A new kind of science. Wolfram Me-
dia, Inc.

Zeigler, B., Kim T., and Praehofer, H. 2000. Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. Aca-
demic Press.

AUTHOR BIOGRAPHY

GABRIEL A. WAINER received a M. Sc. (1993) and
Ph.D. degree (1998, highest honors) of the Universidad
de Buenos Aires (UBA), Argentina, and Université
d’Aix-Marseille III, France. He is Assistant Professor at
the SCE Dept., Carleton University (2000-). He was As-
sistant Professor at the Computer Sciences Dept. (UBA,
1997-2000), and a Visiting Research Scholar at ACIMS
(University of Arizona) and LSIS (CNRS, France). He
published over 80 articles on simulation and real-time
systems. He is author of a book on real-time systems, and
one on discrete-event simulation. He is Associate Editor
of the Transactions of the Society for Computer Simula-
tion (SCS). He was PI of several research projects
(NSERC, Precarn IRIS, IBM Scholars, Usenix, CFI,
CONICET, ANPCYT). He was member of the IPC of
more than 30 conferences, and a reviewer for different
journals and research agencies. Prof. Wainer is a member
of the Board of Directors and Chair of the Standards
Committee of the SCS, and a chair of the SISO DEVS
standardization Study Group. He is also a Associate Di-
rector of the Ottawa McLeod Institute of Simulation Sci-
ences, and chair of the Ottawa M&SNet. His current re-
search interests are related with modeling methodologies
and tools, parallel/distributed simulation and real-time
systems. His e-mail address is <gwainer@sce.
carleton.ca>, and his web address is <www.sce.
carleton.ca/faculty/wainer>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 49
	02: 50
	03: 51
	04: 52
	05: 53
	06: 54
	07: 55
	08: 56
	09: 57
	10: 58
	11: 59
	12: 60

