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ABSTRACT

Most discrete-event simulation models have stochastic el-
ements that mimic the probabilistic nature of the system
under consideration. A close match between the input model
and the true underlying probabilistic mechanism associated
with the system is required for successful input modeling.
The general question considered here is how to model an
element (e.g., arrival process, service times) in a discrete-
event simulation given a data set collected on the element of
interest. For brevity, it is assumed that data is available on
the aspect of the simulation of interest. It is also assumed
that raw data is available, as opposed to censored data,
grouped data, or summary statistics. This example-driven
tutorial examines introductory techniques for input mod-
eling. Most simulation texts (e.g., Law and Kelton 2000,
Fishman 2001) have a broader treatment of input modeling
than presented here. Nelson and Yamnitsky (1998) survey
advanced techniques.

1 DATA COLLECTION

There are two approaches that arise with respect to the
collection of data. The first is the classical approach, where
a designed experiment is conducted to collect the data. The
second is the exploratory approach, where questions are
addressed by means of existing data that the modeler had
no hand in collecting. The first approach is generally better
in terms of control and the second approach is generally
better in terms of cost.

Collecting data on the appropriate elements of the sys-
tem of interest is one of the initial and pivotal steps in
successful input modeling. An inexperienced modeler, for
example, collects wait times on a single-server queue when
waiting time is the measure of performance of interest. Al-
though these wait times are valuable for model validation,
they do not contribute to the input model. The appropriate
data elements to collect for an input model for a single-
server queue are typically arrival and service times. An
analysis of sample data collected on such a queue is given
in Sections 3.1 and 3.2.

Even if the decision to sample the appropriate element
is made correctly, Bratley, Fox, and Schrage (1987) warn
that there are several things that can be “wrong” with a
data set. Vending machine sales will be used to illustrate
the difficulties.

• Wrong amount of aggregation. We desire to model
daily sales, but have only monthly sales.

• Wrong distribution in time. We have sales for this
month and want to model next month’s sales.

• Wrong distribution in space. We want to model
sales at a vending machine in location A, but only
have sales figures on a vending machine at location
B.

• Censored data. We want to model demand, but we
only have sales data. If the vending machine ever
sold out, this constitutes a right-censored obser-
vation. The reliability and biostatistics literature
contains techniques for accommodating censored
data sets (Lawless 2003).

• Insufficient distribution resolution. We want the
distribution of number the of soda cans sold at a
particular vending machine, but our data is given
in cases, effectively rounding the data up to the
next multiple of 24.

2 INPUT MODELING TAXONOMY

Figure 1 contains a taxonomy illustrating the scope of poten-
tial input models available to simulation analysts. Modelers
too often restrict their choice of input models to the top two
branches. There is certainly no uniqueness in the branching
structure chosen for the taxonomy. The branches under
stochastic processes, for example, could have been state
followed by time, rather than time followed by state, as
presented.
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Figure 1: A Taxonomy for Input Models
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Examples of specific models that could be placed on
the branches of the taxonomy appear at the far right of
the diagram. Mixed, univariate, time-independent input
models have “empirical/trace-driven” given as a possible
model. All of the branches include this particular model.
A trace-driven input model simply generates a process that
is identical to the collected data values so as not to rely
on a parametric model. A simple example is a sequence
of arrival times collected over a 24-hour time period. The
trace-driven input model for the arrival process is generated
by having arrivals occur at the same times as the observed
values.

The upper half of the taxonomy contains models that
are independent of time. These models could have been
referred to as Monte Carlo models. Models are classified
by whether there is one or several variables of interest, and
whether the distribution of these random variables is dis-
crete, continuous, or contains both continuous and discrete
elements. Examples of univariate discrete models include
the binomial distribution and a degenerate distribution with
all of its mass at one value. Examples of continuous distri-
butions include the normal distribution and an exponential
distribution with a random parameter � (see, for example,
Martz and Waller 1982). Bézier curves (Wagner and Wil-
son 1996) offer a unique combination of the parametric and
nonparametric approaches. An initial distribution is fitted to
the data set, then the modeler decides whether differences
between the empirical and fitted models represent sampling
variability or an aspect of the distribution that should be
included in the input model.

Examples of k-variable multivariate input models (John-
son 1987, Wilson 1997) include a sequence of k independent
binomial random variables, a multivariate normal distribu-
tion with mean µ and variance-covariance matrix � and
a bivariate exponential distribution (Barlow and Proschan
1981).

The lower half of the taxonomy contains stochastic pro-
cess models. These models are often used to solve problems
at the system level, in addition to serving as input models
for simulations with stochastic elements. Models are clas-
sified by how time is measured (discrete/continuous), the
state space (discrete/continuous) and whether the model is
stationary in time. For Markov models, the discrete-state/
continuous-state branch typically determines whether the
model will be called a “chain” or a “process”, and the sta-
tionary/nonstationary branch typically determines whether
the model will be preceded with the term “homogeneous”
or “nonhomogeneous”. Examples of discrete-time stochas-
tic processes include homogeneous, discrete-time Markov
chains (Ross 2003) and ARIMA time series models (Box,
Jenkins, and Reinsel 1994). Since point processes are count-
ing processes, they have been placed on the continuous-time,
discrete-space branch.
In conclusion, modelers are too often limited to uni-
variate, stationary models since software is typically written
for fitting distributions to these models. Successful input
modeling requires knowledge of the full range of possible
probabilistic input models.

3 EXAMPLES

Two simple examples illustrate the types of decisions that
often arise in input modeling. The first example determines
an input model for service times and the second example
determines an input model for an arrival process.

3.1 Service Time Model

Consider a data set of n = 23 service times collected to
determine an input model in a discrete-event simulation of
a queuing system. The service times in seconds are

105.84 28.92 98.64 55.56 128.04 45.60
67.80 105.12 48.48 51.84 173.40 51.96
54.12 68.64 93.12 68.88 84.12 68.64

41.52 127.92 42.12 17.88 33.00.

[Although these service times come from the life testing
literature (Caroni 2002; Lawless 2003), the same principles
apply to both input modeling and survival analysis.]

The first step is to assess whether the observations
are independent and identically distributed (iid). The data
must be given in the order collected for independence to
be assessed. Situations where the iid assumption would not
be valid include:

• A new teller has been hired at a bank and the
23 service times represent a task that has a steep
learning curve. The expected service time is likely
to decrease as the new teller learns how to perform
the task more efficiently.

• The service times represent 23 times to completion
of a physically demanding task during an 8-hour
shift. If fatigue is a significant factor, the expected
time to complete the task is likely to increase with
time.

If a simple linear regression of the observation numbers
versus the service times shows a significant nonzero slope,
then the iid assumption is probably not appropriate.

Assume that there is a suspicion that a learning curve
is present, which makes a modeler suspect that the service
times are decreasing. One appropriate hypothesis test is

H0 : β1 = 0
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versus

H1 : β1 < 0

associated with the linear model (Kutner, Nachtsheim, Neter,
Wasserman 2003)

Y = β0 + β1X + ε,

where X is the observation number, Y is the service time, β0
is the intercept, β1 is the slope, and ε is an error term. Fig-
ure 2 shows a plot of the (xi, yi) pairs for i = 1, 2, . . . , 23,
along with the estimated regression line. The p -value asso-
ciated with the hypothesis test is 0.14, which is not enough
evidence to conclude that there is a statistically significant
learning curve present. The negative slope is likely due to
sampling variability. The p -value may, however, be small
enough to warrant further data collection.
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Figure 2: Service Time Vs. Observation Number

There are a number of other graphical and statistical
methods for assessing independence. These include analysis
of the sample autocorrelation function associated with the
observations and a scatterplot of adjacent observations (Law
and Kelton 2000). The sample autocorrelation function
(ACF) for the service times is plotted in Figure 3 for the
first ten lags. The sample ACF value at lag 1, for example,
is the sample correlation for adjacent service times. The
sample ACF value at lag 4, for example, is the sample
correlation for service times four customers apart. The
horizontal dotted lines at ±2/

√
n are 95% bounds used to

determine whether the spikes in the ACF are statistically
significant. None were statistically significant for the service
time data. For this particular example, assume that we are
satisfied that the observations are truly iid in order to perform
a classical statistical analysis.

The next step in the analysis of this data set includes
plotting a histogram and calculating the values of some
sample statistics. A histogram of the observations is shown
Lag

A
C

F

0 1 2 3 4 5 6 7 8 9 10

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Sample Autocorrelation Function

in Figure 4. Although the data set is small, a skewed bell-
shaped pattern is apparent. The largest observation lies in
the far right-hand tail of the distribution, so care must be
taken to assure that it is representative of the population. The
sample mean, standard deviation, coefficient of variation,
and skewness are

x̄ = 72.22 s = 37.49
s

x̄
= 0.52

1

n

n∑
i=1

(
xi − x̄

s

)3

= 0.88.

Examples of the interpretations of these sample statistics
are:

• A coefficient of variation s/x̄ close to 1, along with
the appropriate histogram shape, indicates that the
exponential distribution is a potential input model.

• A sample skewness close to 0 indicates that a
symmetric distribution (e.g., a normal or uniform
distribution) is a potential input model.

The next decision that needs to be made is whether a
parametric or nonparametric input model should be used.
One simple nonparametric model would repeatedly select
one of the service times with probability 1/23. A slightly
more sophisticated nonparametric model is to use a piecewise
linear cumulative distribution function estimate between the
data values given by Law and Kelton (2000, p. 326):

F̂ (x) = i − 1

n − 1
+ x − x(i)

(n − 1)(x(i+1) − x(i))

for x(i) ≤ x < x(i+1), i = 1, 2, . . . , n − 1, where the
sorted data values x(1), x(2), . . . , x(n) are are referred to as
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Figure 4: Histogram of Service Times

“order statistics”. In addition F̂ (x) = 0 for x < x(1), and
F̂ (x) = 1 for x ≥ x(n). This estimator is undefined for tied
data values. Fortunately, this does not create problems with
the associated variate generation algorithm. This estimator
is still considered “nonparametric” because no parameters
need to be estimated in order to arrive at the estimator.

The small size of the data set, the tied value, 68.64
seconds, and the observation in the far right-hand tail of
the distribution, 173.40 seconds, tend to indicate that a
parametric analysis is more appropriate. For this particular
data set, a parametric approach is chosen.

There are dozens of choices for a univariate parametric
model for the service times. These include general fam-
ilies of scalar distributions, modified scalar distributions
and commonly-used parametric distributions (see, for ex-
ample, Schmeiser 1990). Since the data is drawn from a
continuous population and the support of the distribution is
positive, a time-independent, univariate, continuous input
model is chosen. The shape of the histogram indicates that
the gamma, inverse Gaussian, log normal, and Weibull dis-
tributions (Lawless 2003) are good candidates. Derivation
of the point and interval estimates for the Weibull distribu-
tion are given in detail here. Similar approaches apply to
the other distributions.

Parameter estimates for the Weibull distribution can
be found by least squares, the method of moments, and
maximum likelihood. Due to desirable statistical proper-
ties, maximum likelihood is emphasized here. The Weibull
distribution has probability density function

f (x) = λκκxκ−1e−(λx)κ x ≥ 0,

where λ is a positive scale parameter and κ is a positive
shape parameter. Let x1, x2, . . . , xn denote the data values.
The likelihood function is

L(λ, κ) =
n∏

i=1

f (xi) = λnκκn

[
n∏

i=1

xi

]κ−1

e− ∑n
i=1(λxi )

κ

.

Since the natural logarithm (log) is a monotone function, the
likelihood function and its logarithm achieve their maximum
at the same values of λ and κ . The mathematics are typically
more tractable for maximizing a log likelihood function,
which, for the Weibull distribution, is

log L(λ, κ) = n log κ + κn log λ + (κ − 1)

n∑
i=1

log xi − λκ
n∑

i=1

xκ
i .

The 2 × 1 score vector has elements

∂ log L(λ, κ)

∂λ
= κn

λ
− κλκ−1

n∑
i=1

xκ
i

and

∂ log L(λ, κ)

∂κ
= n

κ
+ n log λ +

n∑
i=1

log xi −
n∑

i=1

(λxi)
κ log λxi .

When these equations are equated to zero, the simultaneous
equations have no closed-form solution for the maximum
likelihood estimators λ̂ and κ̂:

κn

λ
− κλκ−1

n∑
i=1

xκ
i = 0

n

κ
+ n log λ +

n∑
i=1

log xi −
n∑

i=1

(λxi)
κ log λxi = 0.

To reduce the problem to a single unknown, the first equation
can be solved for λ in terms of κ yielding

λ =
(

n∑n
i=1 xκ

i

)1/κ

.

Law and Kelton (2000, p. 305) give an initial estimate for κ

and Qiao and Tsokos (1994) present a fixed-point algorithm
for calculating the maximum likelihood estimators λ̂ and κ̂ .
Their algorithm is guaranteed to converge for any positive
initial estimate for κ for a complete data set.

The score vector has a mean of 0 and a variance-
covariance matrix I (λ, κ) given by the 2 × 2 Fisher infor-
mation matrix

I (λ, κ) =

E

[−∂2 log L(λ,κ)

∂λ2

]
E

[−∂2 log L(λ,κ)
∂λ∂κ

]
E

[−∂2 log L(λ,κ)
∂κ∂λ

]
E

[−∂2 log L(λ,κ)

∂κ2

]

 .
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The observed information matrix

O(λ̂, κ̂) =
[−∂2 log L(λ̂,κ̂)

∂λ2
−∂2 log L(λ̂,κ̂)

∂λ∂κ
−∂2 log L(λ̂,κ̂)

∂κ∂λ
−∂2 log L(λ̂,κ̂)

∂κ2

]
,

can be used to estimate I (λ, κ).
For the 23 service times, the fitted Weibull distribution

has maximum likelihood estimators λ̂ = 0.0122 and κ̂ =
2.10. The log likelihood function evaluated at the maximum
likelihood estimators is log L(λ̂, κ̂) = −113.691. Figure 5
shows the empirical cumulative distribution function (a step
function with a step of height 1/23 at each data point) along
with the Weibull fit to the data.
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Figure 5: Empirical and Fitted Cumulative Distribution
Functions for the Service Times

The observed information matrix is

O(λ̂, κ̂) =
[

681, 000 875
875 10.4

]
,

revealing a positive correlation between the elements of
the score vector. We now consider interval estimators for
λ and κ . Using the fact that the likelihood ratio statistic,
2[log L(λ̂, κ̂)−log L(λ, κ)], is asymptotically χ2 distributed
in n with 2 degrees of freedom and that χ2

2,0.05 = 5.99, a
95% confidence region for the parameters is all λ and κ

satisfying

2[−113.691 − log L(λ, κ)] < 5.99.

The maximum likelihood estimators and 95% confidence
region are shown in Figure 6. The line κ = 1 is not interior
to the region, indicating that the exponential distribution is
not an appropriate model for this particular data set.

As further proof that κ differs significantly from 1,
the standard errors of the distribution of the parameter
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Figure 6: 95% Confidence Region Based on the Likelihood
Ratio Statistic

estimators can be computed by using the inverse of the
observed information matrix

O−1(λ̂, κ̂) =
[

0.00000165 −0.000139
−0.000139 0.108

]
.

This is the asymptotic variance-covariance matrix for the
parameter estimators λ̂ and κ̂ . The standard errors of the
parameter estimators are the square roots of the diagonal
elements

σ̂
λ̂

= 0.00128 σ̂κ̂ = 0.329.

Thus an asymptotic 95% confidence interval for κ is

2.10 − (1.96)(0.329) < κ < 2.10 + (1.96)(0.329)

or

1.46 < κ < 2.74,

since z0.025 = 1.96. Since this confidence interval does not
contain 1, the inclusion of the Weibull shape parameter κ

is justified.
The model adequacy should now be assessed. Since the

chi-square goodness-of-fit test has arbitrary interval limits,
it should not be applied to small data sets (e.g., n =
23), such as the service times being considered here. The
Kolmogorov–Smirnov, Cramer–von Mises, or Anderson–
Darling goodness-of-fit tests (Lawless 2003) are appropriate
here. The Kolmogorov–Smirnov test statistic, which is the
maximum vertical difference between the empirical and
fitted cumulative distribution functions, is 0.151 for this
data set with a Weibull fit. This test statistic corresponds
to a p -value of approximately 0.15 (Law and Kelton 2000,
p. 366), so the Weibull distribution provides a reasonable
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model for these service times. The Kolmogorov–Smirnov
test statistic values for several models are shown in Table 1,
including four that are superior to the Weibull with respect
to fit.

Table 1: Kolmogorov–Smirnov Test Statistics for Models
Fitted to Service Time Data

Model Test statistic
Exponential 0.307

Weibull 0.151
Gamma 0.123

Arctangent 0.094
Log normal 0.090

Inverse Gaussian 0.088

Many of the discrete-event simulation packages exhib-
ited at the Winter Simulation Conference have the capability
of determining maximum likelihood estimators for several
popular parametric distributions. Most packages also per-
form goodness-of-fit tests, such as the Kolmogorov–Smirnov
or chi-square test, so that the distribution that best fits the
data set can quickly be determined.

P–P (probability–probability) and Q–Q (quantile–
quantile) plots can also be used to assess model adequacy.
A P–P plot, for example, is a plot of the fitted cumulative
distribution function at the ith order statistic x(i), F̂ (x(i)),
versus the adjusted empirical cumulative distribution func-
tion, F̃ (x(i)) = i−0.5

n
, for i = 1, 2, . . . , n. A plot where

the points fall close to the line passing through the origin
and (1, 1) indicates a good fit. For the 23 service times,
a P–P plot for the Weibull fit is shown in Figure 7, along
with a line connecting (0, 0) and (1, 1). P–P plots should
be constructed for all competing models.

•
•

•
• •

• •
• • • •

• • • •

•

•
•

• •

• •
•

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

F
~

F
^

Figure 7: A P–P Plot for the Service Times Using the Weibull
Model
3.2 Arrival Time Model

Accurate input modeling requires a careful evaluation of
whether a stationary (no time dependence) or nonstationary
model is appropriate. Modeling arrivals to a lunch wagon
is used to illustrate the decision-making process.

Customer arrival times to a lunch wagon between 10:00
AM and 2:30 PM are collected on three days. The real-
izations were generated from a hypothetical arrival process
given by Klein and Roberts (1984). A total of n = 150
arrival times were observed, including n1 = 56, n2 = 42
and n3 = 52 on the k = 3 days. Defining (0, 4.5] to be the
time interval of interest (in hours) the three realizations are

0.2152 0.3494 0.3943 . . . 4.175 4.248,

0.3927 0.6211 0.7504 . . . 4.044 4.374,

and

0.4499 0.5495 0.6921 . . . 3.643 4.357.

One preliminary statistical issue concerning this data is
whether the three days represent processes drawn from the
same population. External factors such as the weather, day
of the week, advertisement, and workload should be fixed.
For this particular example, we assume that these factors
have been fixed and the three processes are representative
of the population of arrival processes to the lunch wagon.

The input model for the process comes from the lower
branch (stochastic processes) of the taxonomy in Figure 1.
Furthermore, the arrival times constitute realizations of a
continuous-time, discrete-state stochastic process, so the
remaining question concerns whether or not the process is
stationary.

If the process proves to be stationary, the techniques
from the previous example, such as drawing a histogram,
and choosing a parametric or nonparametric model for the
interarrival times, are appropriate. This results in a Poisson
or renewal process model. On the other hand, if the process is
nonstationary, a nonhomogeneous Poisson process might be
an appropriate input model. A nonhomogeneous Poisson
process is governed by an intensity function λ(t) which
gives an arrival rate [e.g., λ(2) = 10 means that the arrival
rate is 10 customers per hour at time 2] that can vary
with time. The next paragraph describes a nonparametric
procedure for estimating the cumulative intensity function
�(t) = ∫ t

0 λ(τ)dτ from k realizations.
The cumulative intensity function is to be estimated

on (0, S], where S is a known constant which equals 4.5
in this case. The interval (0, S] may represent the time a
system allows arrivals (e.g., 9 AM to 5 PM at a bank) or
one period of a cycle (e.g., one day at an emergency room).
Let ni , i = 1, 2, . . . , k be the number of observations in the
ith realization, n = ∑k

i=1 ni , and let t(1), t(2), . . . , t(n) be
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the order statistics of the superposition of the k realizations,
t(0) = 0 and t(n+1) = S. The piecewise-linear estimator of
the cumulative intensity function between the time values
in the superposition is

�̂(t) = in

(n + 1)k
+

[
n(t − t(i))

(n + 1)k(t(i+1) − t(i))

]

for t(i) < t ≤ t(i+1); i = 0, 1, 2, . . . , n, which is given in
Leemis (1991) and extended to nonoverlapping intervals in
Arkin and Leemis (2000). Asymptotic confidence intervals
and variate generation via inversion are also contained in
these references. This estimator (solid line), along with
95% confidence bounds (dashed lines), for the customer
arrival times to the lunch wagon are given in Figure 8.
The cumulative intensity function estimator at time 4.5 is
150/3 = 50,
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Figure 8: Point and 95% Confidence Interval Estimators for
the Cumulative Intensity Function

the point estimator for the expected number of arriving
customers per day. If �̂(t) is linear, a stationary model is
appropriate. Since customers are more likely to arrive to
the lunch wagon between 12:00 (t = 2) and 1:00 (t = 3)
than at other times and the cumulative intensity function
estimator has an S-shape, a nonstationary model is indicated.
More specifically, a nonhomogeneous Poisson process is a
reasonable model for the arrival process.

The next question to be answered is whether a paramet-
ric or nonparametric model should be chosen for the process.
Figure 8 indicates that the intensity function increases ini-
tially, remains fairly constant during the noon hour, then
decreases. This may be difficult to model parametrically, so
a nonparametric approach, possibly using �̂(t) in Figure 8
might be appropriate. Process generation for simulation is
straightforward (Leemis 1991).
There are many potential parametric models for non-
stationary arrival processes. The next paragraph describes
the procedure for fitting a power law process, where the
intensity function has the same parametric form as the haz-
ard function for the Weibull distribution. Other models can
be fit in a similar fashion.

The likelihood function for estimating the vector of
unknown parameters θ = (θ1, θ2, . . . , θp)′ from a single
realization on (0, S] is

L(θ) =
[

n∏
i=1

λ(ti)

]
exp

[
−

∫ S

0
λ(t)dt

]
.

Maximum likelihood estimators can be determined by max-
imizing L(θ) or its logarithm with respect to all unknown
parameters. Confidence intervals for the unknown param-
eters can be found in a similar manner to the service time
example. Owing to the additive property of the intensity
function for multiple realizations, the likelihood function
for the case of k realizations is

L(θ) =
[

n∏
i=1

kλ(ti)

]
exp

[
−

∫ S

0
kλ(t)dt

]
,

where t1, t2, . . . , tn are the arrival times that occurred during
the k realizations. The power law process has intensity
function

λ(t) = λκκtκ−1 t > 0,

for λ > 0 and κ > 0. Thus the likelihood function for k

realizations is

L(λ, κ) = knλnκκne−k(λS)κ
n∏

i=1

tκ−1
i .

The log likelihood function is

log L(λ, κ) = n log(kκ) + nκ log λ − k(λS)κ + (κ − 1)

n∑
i=1

log ti .

The 2 × 1 score vector has elements

∂ log L(λ, κ)

∂λ
= κn

λ
− kSκκλκ−1

and

∂ log L(λ, κ)

∂κ
= n log λ + n

κ
+

n∑
i=1

log ti − k(λS)κ log λS.

When the score is equated to zero, the analytic expressions
for λ and κ are

κ̂ = n

n log S − ∑n
i=1 log ti

λ̂ = 1

S

(n

k

)1/κ

.

Substituting the arrival times into these formulas yields
maximum likelihood estimators λ̂ = 4.86 and κ̂ = 1.27.
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The cumulative intensity function for the power law process

�(t) = (λt)κ t > 0,

is plotted along with the nonparametric estimator in Figure 9.
Note that due to the peak in customer arrivals around the
noon hour, the power law process is not an appropriate
model since it is not able to adequately approximate the
intensity function.
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Figure 9: Empirical and Fitted Power Law Estimators for
the Cumulative Intensity Function

Since the intensity function is analogous to the hazard
function for time-independent models, an appropriate 2-
parameter distribution to consider would be one with a
hazard function that increases initially, then decreases. A
log-logistic process, for example, with intensity function
(Lawless 2003)

λ(t) = λκ(λt)κ−1

1 + (λt)κ
t > 0,

for λ > 0 and κ > 0, would certainly be more appropri-
ate. More generally, the EPTMP (exponential-polynomial-
trigonometric function with multiple periodicities) model,
originally given by Lee, Wilson and Crawford (1991) and
generalized by Kuhl, Damerdji and Wilson (1998) with
intensity function

λ(t) = exp

[
m∑

i=0

αit
i +

p∑
k=1

γk sin(ωkt + φk)

]
t > 0

can model a nonmonotonic intensity function. Goodness-
of-fit tests are given in Rigdon and Basu (2000).
4 DISCRETE-EVENT SIMULATION MODELING
FRAMEWORK

This section contains a description of a diagram that has
been developed for describing the process of constructing a
discrete-event simulation model. The purpose of providing
the description of the diagram here is to: (i) show where
input modeling fits into the simulation modeling process,
and (ii) isolate various sources of error involved in simula-
tion modeling. The diagram depicting a high-level, abstract
framework of a discrete-event simulation modeling process
for analyzing an existing or proposed system (labeled “Sys-
tem” in the diagram) given in Figure 10 is adapted from
Schmeiser (2001) and Nelson (1987).

X0 U V Y θ̂

System

IGr L S

D

θ

Cr

A

P

Figure 10: A Framework for Discrete-Event Simulation

The upper-case letters X0, U , V , Y , θ̂ , θ , and D

denote ordered sets containing one or more numbers. To
avoid writing “one or more numbers” in our descriptions
of these sets, we assume that there are multiple numbers in
the sets. The descriptions of these ordered sets follows.

• X0 is a set of seeds for a random number generator,
one for each stream used in the implementation of
the discrete-event simulation model.

• U is a set of random numbers created by using the
random number generator Gr to transform the seeds
in the set X0 to random numbers. The random
numbers in U are partitioned by the associated
stream when multiple streams are employed.

• V is a set of input data (“variates”) created by
applying the input model I to the set of random
numbers U .

• Y is a set of output data generated by applying
the logic model L to the set of input data V . The
output data are typically dependent, although the
probability model for each individual observation
is often identical for a steady-state analysis once
the simulation model warms up.

• θ̂ is a set of point estimators for the unknown
system measures of performance θ , calculated as
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a function of the output data Y . In general, there
is some error present, i.e., θ̂ �= θ .

• θ is the corresponding set of measures of perfor-
mance associated with the system of interest.

• D is a set of system data values collected on
appropriate elements of the system of interest in
order to build an input model I.

Although Figure 10 conceptually lumps the thousands
or millions of random numbers into a set U , the next-event
approach to simulation allows us to generate them one at a
time in order to save memory and CPU time.

The calligraphic letters Gr , I, L, S, Cr , P and A in
Figure 10 are all associated with arrows. These are the seven
sources of error associated with the discrete-event simulation
modeling process. These letters denote transformations,
probability models, data collection methods, assumptions,
etc., as described below.

• Gr is a random number generator used to transform
the seeds in the set X0 to random numbers in the
set U .

• I is the input model used to transform the set of
random numbers U to the set of input data V . The
process of transforming U to V is known as ran-
dom variate generation. The input model is often
determined by analyzing a set of data D, although
in rare cases an input model is determined in the
absence of data using expert opinion, bypassing
the set D entirely.

• L is the logic model that captures assumptions
made about the system into transformations (often
formulated as algorithms) that are used to transform
the set of input data V to the set of output data Y .

• S is a statistical estimation procedure. The S con-
necting the set of output data Y and the set of
point estimates of the measures of performance θ̂

involves computing statistics, which are functions
of the set of output data Y (e.g., sample mean,
sample median, or sample variance). Confidence
intervals for measures of performance are often-
times computed to give a sense of the accuracy of
the point estimates.

• Cr denotes the data collection procedures from
the system of interest. It is crucial to collect
the appropriate data elements from the system.
Also, the data should be collected in an appropriate
and representative fashion using standard sampling
techniques.

• P involves the process of formulating a proba-
bilistic input model that adequately describes the
set of data collected in D. The P connecting the
set of system data values D and the input model
I involves either resampling the data (i.e., the
trace-driven or nonparametric approach) or fitting
a parametric model to the data set. The process
of formulating I is the focus of this tutorial.

• A denotes assumptions made on the system of
interest. These assumptions are used to create
the logic model L describing the operation of the
system. Incorrect or simplifying assumptions lead
to modeling error.

What part of Figure 10 describes the discrete-event
simulation model? The simulation model consists of the
combination of the probabilistic input model I and the
logical model L. Once the simulation model, I and L,
has been determined, the sequence of four arrows leading
from X0 to θ̂ is a sequence of four deterministic functions
for a particular random number generator Gr and choice of
sample statistics collected S. All that is needed to arrive at
θ̂ are the random number seeds in the set X0.

Error can occur in any of the arrows labeled by a
calligraphic letter. There is no letter on the arrow attaching
the system of interest to the measures of performance θ

because there is no error associated with this transition. The
values of the measures of performance are unknown, which
typically necessitates the use of a discrete-event simulation
analysis for a complex system. If the model could be
simulated for an infinite length of time and an infinitely large
data set could be collected on the system of interest, then
the error between θ and θ̂ would be a constant value induced
only by “logic-modeling error”. “Sampling error”, on the
other hand, stems from the random sampling variability
inherent in Gr and Cr . Thus the mean square error:

E[(θ̂ − θ)2] = E[θ̂2 − 2θ̂ θ + θ2]
= E[θ̂2] − E[2θ̂ θ ] + E[θ2]
= E[θ̂2] − 2θE[θ̂ ] + θ2

= E[θ̂2] − E[θ̂ ]2 + E[θ̂ ]2 − 2θE[θ̂ ] + θ2

= V [θ̂ ] + (E[θ̂ ] − θ)2,

captures the sampling error in the first term V [θ̂ ] and the
modeling error in the second term (E[θ̂ ] − θ)2. The mean
square error can only be computed on simple “toy” systems
where the values in θ are known.

The discussion here assumes an ideal system that does
not change with time. Most real-world systems are changing
with time, however, so an infinite sample drawn from the
system is about how the system performed in the past, not
how it will perform in the future.

The r subscript denotes a step in the discrete-event
modeling process where error from random sampling vari-
ability is present. Both the random number generator Gr and
the data collection procedures Cr involve random sampling
variability. An “unlucky” single random number seed on a
good generator Gr could, for example, produce a sequence
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of unusually small random numbers U whose average is
significantly less than 1/2. Likewise, an “unlucky” ran-
dom sample on a legitimate data collection procedure Cr

could, for example, produce a sequence of unusually large
data values in D. The error induced by random sampling
variability can be minimized by making numerous long
simulation replications (in the case of Gr ) and by collecting
large system data sets (in the case of Cr ). Almost universally,
the former is cheaper than the latter.

The other sources of error are associated with the cal-
ligraphic letters in the diagram are:

• using a poor random number generator Gr ,
• making poor modeling decisions in P resulting in

a poor probabilistic input model I,
• using incorrect system data sampling procedures

Cr ,
• making incorrect or simplifying assumptions about

the system in A resulting in a poor logic model L,
• making poor choices in S when analyzing the set

of output data Y .

Why do we simulate? An “analytic” model is ap-
propriate when mathematics can be used to find the ex-
act values of the measures of performance in θ . For
many real-world systems, however, the transformation from
U −→ V −→ Y −→ θ̂ is so mathematically complex that
the axiomatic approach to probability results in mathemat-
ically intractable expressions for the elements in the set θ .
Equivalently, the numbers in the set Y are drawn from an
unknown or mathematically intractable probability model.
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