
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

MODELING AND SIMULATION IN HIGH SCHOOL
EDUCATION - TWO EUROPEAN EXAMPLES

Henry Herper

Institute for Simulation and Graphics
Otto-von-Guericke University

D-39016 Magdeburg, GERMANY

 Ingolf Ståhl

Department of Managerial Economics
Stockholm School of Economics
S-11383 Stockholm, SWEDEN

ABSTRACT

Discrete simulation is a suitable application area for sev-
eral disciplines in high schools. One such discipline is
Computer Science. Other disciplines are e.g. mathematics
and business. The main principles of modeling information
can be practiced in a suitable simulation project. For the
implementation of the model on the computer, two differ-
ent versions of Integrated Development Systems for GPSS
have been developed mainly for the purpose of use in high
schools. In Germany the version is WinGPSS, dedicated to
Windows, and in Sweden WebGPSS, first implemented on
the Web. Both systems use the same micro-GPSS simula-
tor kernel. The paper discusses the goals with, and the ex-
perience gained from, the use of these GPSS versions in
high schools. Some of the most recent developments of
WinGPSS and WebGPSS are also presented.

1 THE GERMAN EXAMPLE
(HENRY HERPER)

The goal of teaching Computer Science, in Germany called
Informatics, in high schools is to transmit basic principles,
methods, applications, ways of thinking and working
within Computer Science, as well as to give an understand-
ing of the societal importance of information systems. The
contents and the methods should have a general and all-
round educational character and precisely in this area sup-
port the independent acquirement of capabilities and skills.

Since the educational program in Germany is deter-
mined by the individual states (Bundesländer) and Computer
Science is the most recently introduced subject, there are
very different methods of teaching Computer Science in the
different German states. The following account refers
mainly to the education in the state of Sachsen-Anhalt
(south-west of Berlin and Brandenburg). Here the teaching
of Computer Science begins in grades 7 und 8, which as re-
gards age can perhaps be compared to grades 8 and 9 in the
US, since many students start at the age of seven in Ger-
many. This early teaching is focused on basic work with the

computer, involving word processors, spreadsheets and
presentation programs. For this purpose there is each week
one hour available in the curriculum. In grades 10 to 12 the
students are offered a course in Computer Science, in which
the students get the foundations of Computer Science. For
this course two class hours per week are provided.

In the last few years, the focus of the teaching of
Computer Science in Germany has shifted from program-
ming languages to modeling of information, which in-
cludes all stages of solving a problem with a computer. It is
here necessary to find problems that are suitable in the
sense that the problems can be completely worked through
to a solution in a course. In this basic education in Com-
puter Science, the students learn a programming language.
This language is usually object oriented. The coding of a
program has proved important for motivating the students,
since they can in this way test the completeness and cor-
rectness of their modeling approach.

After completing the basic education in Computer Sci-
ence, which usually takes two years, students choose be-
tween optional courses from different areas of Computer
Science. One of these courses is Introduction to Modeling
and Simulation. One goal of this course is to confirm the
knowledge and skills gained during the first two years of
courses in Computer Science and to apply them to a new
area. For this course some 32 classroom hours are avail-
able. The goal of the school authorities is that the students
in this course should

•

•

•

•

•
•

learn to use suitable abstraction techniques for the
production of the simulation models,
recognize that a model describes an excerpt from
the real world, corresponding to the chosen level
of abstraction,
learn about insights to be gained by making infer-
ences from the experiments with these models
learn to work with a simulation tool and to im-
plement simple computer models on their own,
learn basic methods for visualizing the results and
learn to interpret the results of a simulation run
and evaluate them critically.

Herper and Ståhl

In these general goals it has not been stated whether the fo-
cus should be placed on continuous or discrete simulation.
Traditionally, continuous simulation has had a strong posi-
tion in Computer Science in German high schools. The stu-
dents can implement simple continuous models using a gen-
eral programming language, learnt during the previous
years. However, with new simulation tools arriving, discrete
event simulation is growing steadily in importance.

In cooperation with the department for the education
of future teachers of Computer Science at the Otto-von-
Gueriecke University in Magdeburg, the basics of a simu-
lation course for high school students was developed and
tested in a number of schools in Sachsen-Anhalt. These fu-
ture teachers, who study the pedagogic principles of teach-
ing Computer Science during three years, have not only
learnt discrete events simulation, but have also participated
in the test program. This course is based on discrete simu-
lation with the use of a GPSS based simulation system with
an Integrated Development Environment. This software
will be discussed further below. Since the students can
model e.g. service systems with which they are well famil-
iar, there has been a high degree of motivation and accep-
tance for this kind of development of the course.

In the first part of the course, the students get ac-
quainted with the concepts used in modeling. The concept
model is already known from other subjects taught in
school, especially within science. In Figure 1 we present
some German school subjects in which models are dis-
cussed. One can systematize different model concepts and,
on the basis of these, deduce concepts that are useful also
within Computer Science.
 The teacher presents different application areas of
modeling and simulation to the students. In connection
with this, the students will analyze and classify different
models. The students learn that models are abstract pic-
tures of a real or hypothetical system with regard to a
specific goal formulation. The students also get to know
different classification criteria and to recognize the connec-
tion between system attributes and the purpose of the mod-
eling process.

Figure 1: Models in High School Education
The teaching of simulation has been carried out in dif-
ferent ways. In many cases the focus on the course has
been on an individual project of the student. This requires
first of all that the student selects a suitable system to study
and next formulates a concrete goal for the project.
 The selection of the system to be modeled will to a
large extent determine the success or failure of this course.
An example of a successful simulation of a small service
system is described in Herper (2001). There are hence
some important points to think about when selecting the
real system and the goal of the simulation study:

•
•

•
•

•

•
•

The student should know the real system well,
the description of the system must be available in
a form that is easy for the student to understand,
the project must be solvable within a limited time,
the model must be such that it can be imple-
mented with the available modeling and simula-
tion packages,
the solution of the simulation problem should im-
ply some kind of �value added� for the student, so
that the students feel motivated to do considerable
work.
learn basic methods for visualizing the results and
learn to interpret the results of a simulation run
and evaluate them critically.

 The selection of the system can be done by the teacher
and student in a dialog. Our experience from the educa-
tional efforts this far indicates that the students often sug-
gest a system that is too complex. Here it is the task of the
teacher to limit the complexity to something that can be re-
alized within the stated time limits of the course. Examples
of successful systems are school cafeterias, street crossings
and small production systems.

As a first step, the students carry out a systems analy-
sis study and do a delimitation of the problem that corre-
sponds with the formulated goal of the study. Here the
students learn a new way of working. They are from work
within the sciences accustomed to problem formulations
that contain a precise specification of all that is needed to
get the desired solution. Even in simulation classes, the
teachers have earlier often presented system descriptions in
textual form, with a high degree of abstraction and with the
necessary parameter values given.

Since in real projects, people doing simulation spend
more than one third of the total time on the collection and
analysis of input data, we have for our school projects re-
garded it as essential to allow a significant amount of time
on this input phase also in the teaching in high schools.
Project work has shown that the students have great prob-
lems in determining those attributes of a real system that
are necessary for the modeling process. The necessary ex-
perience can only be gained through independent exercises.

The students are familiar with the different phases of
systems analysis from the earlier software development
projects. They have there learnt the methods of abstraction

Herper and Ståhl

and reduction as steps in the development of an abstract
model. For the students, different sources of data for the
analysis of a system are available.

In Figure 2 below, we present some forms for the de-
scription of the real system. The direct observations, in-
cluding practical measurements, are the best methods for
developing the students� necessary understanding of the
system. If the students themselves have access to the real
system, then the modeling phase can be more complete.
First, the problem of defining the limits of the model must
be tackled. The students then also have to make an explicit
decision on when to collect the data.

Figure 2: Different Kinds of Real System Specifications

 The alternative that on the other hand leads to the least
amount of modeling is the case when the system is de-
scribed in text, with all the data given. In fact, textual de-
scriptions often just give functions as regards e.g. the arri-
val times of cars. The interesting task of how to choose a
suitable distribution based on e.g. many hundred observa-
tions is generally lost in the most common case of textual
descriptions. In this case there is not very much modeling
to be done by students, rather only coding. Intermediate
forms are provided e.g. by videos or by animations of the
system, produced by others. These forms can be used in
cases when students do not have access to a real system or
time is too short to study such a real system.

We can exemplify this by the case of a street intersec-
tion, where the problem is to find suitable times for the red
and green lights. Textual descriptions of such a system are
available in many simulation textbooks and coding can
then be done right away. In the case when a real traffic
situation is studied, students can stand in the street cross-
ing, make a drawing of it, possibly based on a map, and
then decide on how to limit the system, e.g. whether some
adjacent street has to be taken into account, since this
might affect the flow traffic at the street crossing. The stu-
dents will also have to decide when they are going to get
the data from the street crossing and for how long time.
Data is collected in the form of e.g. the inter arrival times
of the cars, the time it takes to drive a certain predefined
distance, the length of the waiting lines of cars and the total
times spent by the cars in the crossing.

In the case of using videos, all this data can also be
collected, sometimes more conveniently and with greater
certainty, since the students can run the video several
times. Some videos, like those made in Magdeburg, also
have the benefit that one has made some video shots also
from above, so that it is easier to precisely measure e.g. the
times needed for different cars to travel different distances.
Thus the use of videos allows the students to practice sev-
eral, but not all, modeling decisions.

An alternative to using video clips of different lengths
is to use already made animations. There are quite a few
such animations made e.g. of traffic systems in Proof Ani-
mation. An advantage compared to videos is that it is much
easier to measure e.g. distances and times. Proof animation
has a clear clock and the lengths of different paths can be
easily established. In this way a little more modeling has
already been done than in the case of videos, but definitely
there is much more place for modeling than in the case of
textual descriptions. It should here be mentioned that all
versions of Proof can convert trace files into a format that
allows them to be viewed with the royalty-free Proof
Demo viewer of the Student Proof (Wolverine 2002). With
low-cost or free student access to this software, one can
distribute quite large animations, often at a lower total cost
than with videos.

The students are next to produce verbal, but informal,
descriptions of the system, like in pseudo-code. For some
processes it has also been possible for the students to pro-
duce a more formal description. If the student has selected
a model from the class of server systems, then the student
can use concepts such as source, sink, transaction and ser-
vice station. For the description of some processes, algo-
rithms have been used. Some German students have learnt
to use Nassi-Schneiderman diagrams and flow charts in the
earlier courses. These methods cannot, however, describe
the development of the process over time. The recognition
of time as a system attribute and the modeling of different
processes with regard to their time requirements put strong
demands on the students as regards their ability to make
abstractions. For the formal description of processes that
are dependent on time, some students have used the model-
ing language UML, which they have studied in a preceding
course. However, for small models it has been regarded as
sufficient that the students use informal descriptions.

When it comes to the next step, namely of collecting
data, the students have used some skills acquired in earlier
courses in chemistry, physics and biology as regards how
to carry out observations. In mathematics they have fur-
thermore learnt the basic methods for selecting input prob-
ability distributions.

After the model has been built up in this fashion and
data collected, the students are expected to do a first vali-
dation, i.e. to answer the question: �Does your model de-

Herper and Ståhl

scribe the system correctly and completely with regard to
the level of abstraction that you have chosen?� For cases
when the students have chosen a system that they know
from earlier experience, they have usually been able to an-
swer this question easily. The validation of model of a
server system that is well known to the student leads to
much smaller problems for the students than models in
other areas of Computer Science, e.g. continuous simula-
tion and data bases, etc., where the students do not have
access to a corresponding real system.

The next step in the modeling process is the implemen-
tation of the model on the computer. For the coding process,
it is important that the students can chose a suitable tool. It
should be mentioned that the students at this stage have al-
ready studied a general programming language, during 2
hours a week for 20 weeks. Most often this has been an ob-
ject-oriented language like Delphi, Java, Visual Basic or
C++. It is, however, not enough to know a programming
language, but it is also necessary to understand the basics of
simulation. Since only around 8 hours can now be regarded
as available for the coding work, it is impossible to do the
coding of an interesting project regarding a service system in
a general programming language. The implementation of
models from service systems with a general programming
language requires much more time.

The demands that can be put on a simulation system
that can be used in high school education have been dis-
cussed in Herper und Ståhl (1999). The conclusion here
was that the modern versions of GPSS, WebGPSS and
WinGPSS, are the most suitable systems for this kind of
high school education. A more detailed discussion of the
characteristics of these systems, as well as the reasons for
using them, will be discussed later in this paper. It here
suffices to note that in the German simulation course dis-
cussed here, the WinGPSS system has been used several
years with success for the coding of the student projects.

The next central point in this course is the planning,
execution and evaluation of experiments. It is in this case
important that the students learn to separate the test phase
clearly from this experimental phase. For the execution of
the experiments with a model, one must have a validated
and verified model.

In the first experimental phase, the students learn the
effect on the results of using different sequences of random
numbers for a stochastic model. The students also learn
about the methods of generating random numbers and their
importance. The second phase of the experimental activity
concerns the changes in the model parameters. Within the
framework of the experimental planning, for each change
of a parameter, one should establish the purpose as well as
the expected changes in the results. It is important that the
changes of the parameter are made within the area of vali-
dated values. The third phase concerns model experiments
by changes in the model. One must then investigate
whether the foreseen changes are possible as regards the
real system. A change of the model requires a new verifi-
cation and validation phase. Through this form of experi-
mentation the students learn to see simulation as an itera-
tive process.

The model formulation process, the test phase and the
simulation experiments are next to be summarized into
some form of documentation. The student is expected to
make an oral presentation of the results, using e.g. Power-
Point, in which the student should demonstrate the rela-
tionships between the input parameters and the results. It is
important that the student reveals a critical attitude to these
results and analyses possible sources of errors. The student
can here show that she has gained insights through the
modeling and simulation process and can draw conclusions
of interest to the real system from the experimental runs.

2 THE SWEDISH EXAMPLE
(INGOLF STÅHL)

The start of the activities dealing with the teaching of dis-
crete event simulation using WebGPSS started in 1993,
when a Swedish high school student, D. Kudrén, ap-
proached me to learn more about GPSS. He had heard
about GPSS from his father, who had attended a course on
simulation with micro-GPSS that I had given in the execu-
tive program at the Stockholm School of Economics, the
SSE. He wanted to use GPSS to make a simulation study
of his school cafeteria as his senior year project work. It
should here be mentioned that during the last year of high
school in Sweden, when the students are 18 � 19 years old,
they spend around one month on a project of their own
choosing. Kudrén then went on to make really impressive
project work on this school cafeteria.

Two years later the SSE was approached by a newly
established Swedish foundation, the KK-foundation, for
which one of its goal was to increase the general knowl-
edge of Information Technology among young Swedes.
One was investigating whether any Swedish university or
college had developed some software for its teaching ac-
tivities that, after some transformation, could be used in
Swedish high schools. We had at the SSE since 1979
gradually developed micro-GPSS as a streamlined version
of GPSS, basing the simplification of GPSS to a great ex-
tent on the feedback that we had received from the 300 stu-
dents, to whom we were then each year giving a ten-
classroom-hour course in GPSS. In fact, when students re-
peatedly made the same mistake in syntax, we always con-
sidered the alternative of simplifying the syntax.

With the school cafeteria work, mentioned above, in
mind, I thought that it would be in line with the KK-
foundation�s goal to make a GPSS system available to
Swedish high schools students to help them use simulation
for their senior year project. There was indeed a great set
of possible project areas for the high school students. Many
Swedish high school kids work during summer vacations

Herper and Ståhl

and could hence do projects e.g. on hospitals, shops, gas
stations, etc. Many have experience from family run small
businesses. The KK-foundation agreed that it would indeed
be suitable to entice students to do their project work on a
real system that they knew well, at the same time using
modern IT-technology.

To make micro-GPSS more suitable for this project
work, some changes had, however, to be made. Micro-
GPSS, like other earlier GPSS versions, is text-based and it
was obvious that the high school students, only used to
graphical software, would demand a GUI version. Sec-
ondly, in order to make GPSS more readily available to the
students, it should be available on the Web. This thus be-
come the starting point of WebGPSS. I shall below, in sec-
tion 3, give some further details, but I shall here mention
how WebGPSS has been used in this project work.

It should be stressed that, in contrast to the case in
Germany, there has not been any central decision on in-
cluding simulation in the curriculum. Instead, virtually all
learning of the system has to be done as self-study. In order
to make it as easy as possible for the students to learn to
use WebGPSS on their own, four things were made:

1. The system is, as far as possible, self-explanatory,
by e.g. having dialogs for the input of block oper-
ands, with understandable operand descriptions
(see e.g. Figures 4 and 7 below).

2. The Web-system also contains an extensive Help-
system.

3. The Web-system contains a number of tutorial
lessons, at present around 30, each of 10 � 20
HTML pages.

4. The Web-system contains a number of program
examples, at present 84. The programs are to
some extent built up step by step, many relying on
previous examples, with only one new feature
added at a time. By building these programs them-
selves, the students can learn the basics of
WebGPSS without access to a teacher.

It should be mentioned that these Web-based features in
some cases have not been quite sufficient. We have found
that students often prefer to have printed material to only
electronic. Hence, we have provided also the tutorial les-
sons in Swedish in printed form (Ståhl 1999). There is also
a more substantial textbook in English (Ståhl 2002). Fur-
thermore, in order to introduce the students to the availabil-
ity of the WebGPSS system and to give students a first
hands-on training on the system, which, at least as regards
some students, appears necessary to ensure that they can
use WebGPSS on their own, we have developed a four-
class-room-hours program, which we have run at a number
of Swedish schools. Four hours appeared to be the maxi-
mum that we could get of unscheduled time in these
schools. It should, however, be noted that students in four
hours can progress fairly far. For example, after four hours
students are able to write the program of "Boris vodka
shop", presented in section 3.1. We have also had a one-
day seminar with a number of teachers, in order to prepare
the teachers to run similar short introductory programs.

It should also be mentioned that, although there is no
organized teaching of modeling, we have made some text
available on the Web for the students on the whole simula-
tion process, including e.g. input/output analysis, experi-
mentation etc. We also provide some animations, including
some made by SSE students, for those students who do not
have access to real cases, but also for general inspiration.

3 WINGPSS AND WEBGPSS

We have above noted that we in Germany and Sweden
have used two GUI-based versions of a streamlined GPSS.
We shall in this section first provide some additional
comments on the reasons for this choice. We shall then
discuss two of the major features of these systems, namely
the multi-language aspect and the extensive error trap-
ping/reporting system. Finally we shall present some as-
pects of the most recent developments of these systems.

3.1 Why GPSS?

As the high schools projects generally deal with some kind
of service systems, the focus on a discrete events oriented
simulation system is natural. According to McHaney
(1996), for the implementation of such simulations, three
types of system were most frequently used: 1. Block Based
Systems (BBS), like GPSS, Arena/SIMAN and Awe-
Sim/SLAM (31 percent), 2. Animation Oriented Systems
(AOS), like Witness (22 percent) and 3. General Program-
ming Languages (GPL), like C++ (21 percent).

We have above mentioned why a GPL was not re-
garded as suitable in Germany. In Sweden, where we could
not expect any knowledge of computer programming, a
GPL was even less suitable. The reasons for not choosing
an AOS are given in Herper and Ståhl (1999). We shall
here bring only one to attention, which can be exemplified
by the Boris vodka shop problem below. This is a problem
that we usually have our students solve at the end of a 4-
hour-session.

�At a store, run by Boris and Naina, customers arrive
at rate of 7 + 3 minutes. A customer first goes to Boris and
chooses his bottle. This takes between 3 and 7 minutes.
Next he goes to Naina to pay for the bottle. This also takes
3 to 7 minutes. Finally, he returns to Boris to pick up his
bottle. This takes between 1 and 3 minutes. He then leaves
the store. There is one waiting line in front of Boris and
one in front of Naina. A customer returning to Boris to
pick up his bottle has to start at the end of this line again.
The store is closed after eight hours�.

This example has been used in an experiment, carried
out with a class of Latvian students with no prior experi-
ence of simulation. Half of them had four hours of an

Herper and Ståhl

AOS, the other half four hours of GPSS. At the end of
each of these sessions, the students were asked to model
the Boris problem. While none of the AOS students could
do this, all the GPSS students could do so. We have also
asked the vendors at the WSC during several years to solve
the problem. The BBS vendors solved it in 5 minutes; the
AOS have required more than 30 minutes. (For details see
Ståhl 2002b.)

The reason for the difference can be explained by the
simple logic of the diagram block in GPSS in Figure 3. We
here see that the customers can come twice to Boris, i.e.
Boris can be located in two different places in the program.
In an AOS, a server like Boris must be in only one place
and we must add complex logic to keep track of whether a
customer comes the first or the second time to Boris.

Figure 3: Block Diagram of Boris Vodka
Shop in GPSS

 When selecting among the Block Based Systems,
GPSS has been the natural choice. Both in Germany and
Sweden, GPSS has a long tradition of being used within
education. For example, a 1997 survey showed that GPSS
was the most used simulation system in education in Ger-
many (Reinhard 1997).

We have, however, for the education in high schools
not used the standard commercial version of GPSS, but in
both Germany and Sweden used the simplified versions
with a GUI. For the very limited time available for the
whole course or the project, only a minimum of time can
be spent on learning the software. We know from other ex-
periments that a certain amount of material that in standard
GPSS required 22 classroom hours, in WinGPSS or
WebGPSS needed only 10 such hours.

The advantage over other BBS is similar. WebGPSS
and WinGPSS appear to be the only systems that fulfill the
criteria for suitable educational software discussed in the
panel on teaching the �classics�, i.e. GPSS, Arena and
AweSim, to beginners (Ståhl et al. 2003). For example, in
the case of a reasonably large simulation project, requiring
e.g. 250 blocks and 500 simultaneously active transactions,
the GPSS versions appear to provide the only free, or very
low cost, alternative.

3.2 Multi-Language Focus

In most of Europe, one important feature, in which a simu-
lation system for high school students distinguishes itself
from a simulation system to be used only at the university
level, is the importance of using the national language. At
the university, where students are likely to run into simula-
tion first after a couple of years of university studies, they
will already be accustomed to reading literature in English.
There has hence not been any problem using a completely
English-based system e.g. for our teaching to the third-year
college students in Sweden. When we were asked by the
KK-foundation to produce a GUI and Web-based version
of micro-GPSS for Swedish high schools, it was, however,
regarded as very important to have the system in Swedish.
This implies not only that we translated all the micro-
GPSS output texts and error codes into Swedish, but we
also wrote many lessons and HELP pages in Swedish.

With old micro-GPSS completely in English, we
started in 1998 to reconstruct the micro-GPSS source code.
Since we did not want to have two separate versions of the
source code, one with English text and one with Swedish
text, we broke out all commands that dealt with output text
or error codes and put them into special files, which were
then included first at compile time. These text files contain
either ordinary text, like table headings, or error codes.
We have one set of such text files for each language.

Although this separation of code and text took time to
do, it soon paid off when we afterwards put micro-GPSS
into German to be used with WinGPSS. The extra time for
another language was not very large. We have now also
contacted people to start working on French and Spanish
versions of GPSS, since we believe that this translation ef-
fort is necessary in order to have any spread of GPSS into
high schools in French and Spanish speaking countries.

As regards the two GUI systems, incl. the HELP sys-
tems, WinGPSS is still only in German, although we have
heard a demand for an English version. WebGPSS, re-
leased in 1999, was originally only in Swedish, due to the
requirement of the KK-foundation, but we started a transla-
tion into English in 1999, finished in the year 2000. There
are tutorials, on WinGPSS in German, on WebGPSS in
both English and Swedish, in all cases both in electronic
and paper form (Ståhl and Herper 2003; Ståhl 1999; 2002).

3.3 Error Trapping and Reporting

We here want to bring the extensive error trapping and er-
ror code system of WebGPSS and WinGPSS to attention.

Herper and Ståhl

For an educational system, used mainly by novices, very
prone to make errors, it is important that errors are trapped.
In particular, it is critical that logical errors are avoided. In
the construction of micro-GPSS, there was a focus on the
"lead us not into temptation" principle, implying that con-
structions that by novices often lead to logical errors are
not allowed and hence caught already as syntax errors.
Many nasty logical errors that we have found students do
in commercial versions of GPSS, like GPSS/H, are impos-
sible to do in WinGPSS/WebGPSS. Furthermore, there is a
very extensive system of error codes, containing over 500
different such codes. This has been accomplished largely
with the help of our 6000+ GPSS students, who have been
asked to report on all errors for which they have not found
the error code understandable and helpful.

3.4 Development of WinGPSS Since 1999

The WinGPSS/WebGPSS systems are being continuously
developed further. The feedback obtained in the education
of the high school students, but also of the teachers, is be-
ing incorporated into the new versions. The WinGPSS and
WebGPSS systems, as they were in their early form in
1999, are reported on in Herper and Ståhl (1999). Since
this WSC paper is available on the web, we shall here
mainly report on things that have been introduced or im-
proved after 1999.

In WinGPSS, there has first of all been a substantial
updating of all block dialogs, making the syntax very clear
to the high school students. Figure 4 gives an example.

Figure 4: WinGPSS Dialog of the
GENERATE Block

 Furthermore, there has been continued work on the
Help system. In all parts of Computer Science education,
work with Help systems is demanded, since this constitutes
a prerequisite for independent work on solving problems,
not only with known tools, but also for learning to use new
tools. For this reason, we have spent great efforts on a sub-
stantial Help system for WinGPSS. This should give sup-
port to the students when building the models, since in the
Help system not only the syntax, but also examples of use,
are presented for the different block types. The interpreta-
tion of the error codes and the correction of errors are in
WinGPSS also supported by the Help system. The Help
system of WinGPSS is, in fact, gradually being developed
into a complete learning system.

Another important area of development of WinGPSS
concerns so-called block animation. This development ad-
dresses the fact that students during the teaching of GPSS
have experienced problems understanding how the simula-
tion process works and how the transactions move through
the system. In procedural programming languages, the
commands are in general carried out sequentially, depending
on the exact position in the program. The German students
know about process control, e.g. from their earlier work with
the debugger of the DELPHI IDE, but this kind of process
control has little relevance for the GPSS programs. The
critical factor is rather system time. Transactions move
through the model, sometimes several at the same time,
sometimes independent of each other, sometimes dependent
on each other. It is also difficult for the students to under-
stand how these parallel processes are carried out.

In order to visualize these movements of several trans-
actions through the system, but also to support the valida-
tion of the models, we have for WinGPSS developed a
simple block animation system integrated into the block
diagram of WinGPSS, as illustrated by Figure 5.

The animation is produced from a trace file and the ani-
mation is hence a Post-Run-Animation system. A specific
simulation run can be analyzed several times from different
aspects. In the animation, every transaction is shown with its
number, based on the order in which it was generated. In this
way it is possible to follow the movement of a specific trans-
action during the run. We see the block statistics of both the
current count of transactions present in a specific block, as
well as the total number of transactions that have up to this
time gone through the block. We also see the time of the
simulation clock. Figure 5 provides a snapshot of the block
diagram at time 259.9. We see e.g. next to the GENERATE
block that 15 customers have arrived, and that customer

Figure 5: Block Animation of Joe�s Barbershop

nd Ståhl
Herper a

nr. 15 is waiting at Joe and, both from the figures and the
symbols, that a total of 5 customers are waiting. We also see
that the active transaction, customer nr. 10, is just going
through the RELEASE block.

3.5 Development of WebGPSS Since 1999

One important change is that, while WebGPSS earlier was
only available on the Web, in 2001 we also made a stand-
alone version. The reason for this was that students en-
countered different technical problems running WebGPSS
over the web. First of all, with a fairly large Java-based
WebGPSS Applet (500 Kbytes), students with slow mo-
dems found it time-consuming running WebGPSS. Sec-
ondly, the WebGPSS Applet required that the SUN Java
plug-in was installed the first time WebGPSS was run. In
several schools, there was on the part of the system admin-
istrator a great reluctance to have this plug-in installed on
the central server. The production of the stand-alone sys-
tem was a fairly straightforward task and many students
now run this version on their own computers.

The other important change in WebGPSS has taken
place this year and deals with the number of block types.
While micro-GPSS has a total of 22 block types, and
WinGPSS also allows for all of these block types, we de-
cided, when starting with WebGPSS in 1997, to include
only 16 of these block types, shown to the left in Figure 6.

There were several reasons for this. Since WebGPSS
was mainly intended for high school users, not getting very
much classroom teaching, it was regarded as important not
to overwhelm the high school students with details. We
also wanted to limit the number of symbols in the symbol
menu to make it readable, both on small screens (e.g. 12
inch) and with regard to what can be seen from the back
row of the classroom when presenting the WebGPSS GUI
in an introductory class with a computer projector. We also
wanted to include Run and Start buttons in the symbol
menu to make WebGPSS really user friendly and we
wanted the students to be able to read the names of the
blocks. Finally, we thought that the six block types left out
would not be of interest to our high school students.

We have, however, found out that the functionality of
some of these left out block types are of interest, not only to
college students, but also to high school students in their
project work. For example, the SPLIT block is of interest in
many student projects. One interesting example, provided by
R. Born, now put on our Swedish high school web, concerns
the optimal stocking on a supermarket shelf of rapidly per-
ishable foodstuff, like cottage cheese. Should the new cot-
tage cheese be put in front, or in the back, leaving the old
ones in front to be picked first by the customers? This is an
example of a problem that many high school kids, working
part-time in supermarkets, have personally encountered. The
interesting program, which requires the use of the SPLIT
block, shows that under realistic conditions the optimum is
to place the new ones in front.

We have also found that the functionality of the
PREEMPT and RETURN block types are of interest in
student projects, like e.g. in emergency wards in hospitals,
where less critical treatment is interrupted by the arrival of
a critically damaged patience. Several high schools stu-
dents have experience from summer work as hospital assis-
tants, often in emergency wards.

Against this background, and not knowing what future
demand could come from high school students, we have
now decided to make the full functionality of micro-GPSS
available in WebGPSS. We still wanted to keep the num-
ber of block symbols low, adding only a couple of block
symbols to get a total of 18 symbols, namely the ones in
the right hand column in Figure 6.

Figure 6: The Old and New Block Symbol Menus

 Comparing the two symbol menus in Figure 6, we first
notice that one block type in the old menu is missing in the
new one, namely PRIORITY. We have now changed mi-
cro-GPSS so that we can use the LET block, e.g. with LET
PRIORITY=1, to replace PRIORITY 1. Furthermore, there
are three new block symbols in the new menu,
TABULATE, SPLIT and ASSEMBLE. The question is
then what happened to PREEMPT and RETURN. We have
now allowed these to be handled by the ordinary SEIZE
and RELEASE blocks. This can be seen by the revised op-
erand dialog of the SEIZE block in WebGPSS in Figure 7.
By clicking in the Preempt box, the SEIZE block turns into
a PREEMPT block.

Herper and Ståhl

Figure 7: The New SEIZE Dialog

 It should finally be mentioned that the SELECT block
is now also handled by the LET block with a MIN (or
MAX) expression. LET P$BESTQ=MIN(Q,1,6) can now
replace the less understandable SELECT MIN 1,1,6,,Q of
standard GPSS. Thus, we can now in WebGPSS with 18
block types handle all the 22 block types of micro-GPSS.
More details on these changes are given in Ståhl (2003).

REFERENCES

Herper, H. and I. Ståhl. 1999. Micro-GPSS on the Web
and for Windows - A Tool for Introduction to Simu-
lation in High Schools. In P.A. Farrington, H.B.
Nembhard, D.T. Sturrock and G.W. Evans (eds.)
Proceedings of the 1999 Winter Simulation Confer-
ence, 298-306. SCS, Phoenix. Also available at the
site <www.informs-cs.org/wsc99papers/
042.PDF>.

Herper, H. 2001. Modellierung von Systemen - ein
Applikationsgebiet im Informatikunterricht. In R.
Keil-Slawik and J. Magenheim (eds.) GI-Edition Lec-
ture Notes in Informatics - Volume P-8, 207-221.

McHaney, R. 1996. Simulation Project Success and Failure:
Some Survey Findings. Working paper. Dept. of Man-
agement, Kansas State University, Manhattan, KA.

Reinhard, A. 1997. ASIM Umfrage: Simulation in der Lehre.
At <www.fps.maschinenbau.uni-kassel.de
/Forschung/Fabriksimulation/Sim_i_d_
lehre>.

Ståhl, I. 1999. Lektionstexterna i WebbGPSS. Högskolan i
Karlskrona/Ronneby.

Ståhl, I. 2002. Simulation Made Simple with WebGPSS � A
Tutorial. SSE, Stockholm.

Ståhl, I. 2002b. Simulation Prototyping. In E. Yücesan, C.
Chen, J. Snowdon and J. Charnes (eds.) Proceedings
of the 2002 Winter Simulation Conference, 572-579.
SCS, San Diego.

Ståhl, I. 2003. From 44 to 31 to 28 to 22 and now to 18 �
Less becomes more in GPSS. In T. Schulze, S.
Schlechtweg and V. Hinz. Simulation und
Visualisierung 2003. SCS, Magdeburg.

Ståhl, I. and H. Herper. 2003. Einführung in die Simulation
mit Micro-GPSS. Otto-von-Guericke-Universität,
Magdeburg.

Ståhl, I., H. Herper, R. Hill, C. Harmonosky, J. Donohue
and D. Kelton. 2003. Teaching the Classics of
Simulation to Beginners. In S. Chick, P. J. Sánchez, D.
Ferrin, and D. J. Morrice, (eds.) Proceedings of the
2003 Winter Simulation Conference. SCS, New Or-
leans.

Wolverine. 2003. Using Proof Animation. 3rd ed. Wolve-
rine Software Corp. Alexandria, VA.

AUTHOR BIOGRAPHIES

HENRY HERPER is in the Institute for Simulation and
Graphics at the Otto-von-Guericke University, Magdeburg.
His research interests include the modeling of logistical
and manufacturing systems and the development of simu-
lation tools for introduction to simulation. He is a member
of ASIM and the GPSS-Users' Group Europe. You can
reach him by e-mail at <henry@isg.cs.uni-magde
burg.de
magdebu

> and his web address is <wwwisg.cs.uni-
rg.de/isg/henry.html>.

INGOLF STÅHL is a Professor at the Stockholm School of
Economics, Stockholm, and has a chair in Computer Based
Applications of Economic Theory. He was visiting Profes-
sor, Hofstra University, N.Y., 1983-1985 and leader of a re-
search project on inter-active simulation at the International
Institute for Applied Systems Analysis, Vienna, 1979-1982.
He has taught GPSS for twenty-five years at universities and
colleges in Sweden and the USA. Based on this experience,
he has led the development of the micro-GPSS and
WebGPSS systems. He is also consultant in simulation to
Swedish banks and industry. His email address is mailto:
<ingolf.stahl@hhs.se>and the web address for his
WebGPSS is <http://www.webgpss.com/>.

http://www.informs-cs.org/wsc99papers/�042.PDF
http://www.informs-cs.org/wsc99papers/�042.PDF
mailto:henry@isg.cs.uni-magde�burg.de
mailto:henry@isg.cs.uni-magde�burg.de
mailto:henry@isg.cs.uni-magde�burg.de
http://wwwisg.cs.uni-magdeburg.de/isg/henry.html
mailto:mailto: <ingolf.stahl@hhs.se>
http://www.informs-cs.org/wsc99papers/042.PDF
http://www.informs-cs.org/wsc99papers/042.PDF
mailto:henry@isg.cs.uni-magdeburg.de
mailto:henry@isg.cs.uni-magdeburg.de
mailto:henry@isg.cs.uni-magdeburg.de
http://wwwisg.cs.uni-magdeburg.de/isg/henry.html
mailto:ingolf.stahl@hhs.se

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1973
	02: 1974
	03: 1975
	04: 1976
	05: 1977
	06: 1978
	07: 1979
	08: 1980
	09: 1981

