
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

TEACHING THE CLASSICS OF SIMULATION TO BEGINNERS (PANEL)

Ingolf Ståhl (Moderator)

Stockholm School of Economics
SE-113 83 Stockholm, SWEDEN

 Henry Herper

Otto-von-Guericke University
D-39106 Magdeburg, GERMANY

Raymond R. Hill

Wright State University
Dayton, OH 45435, U.S.A.

 Catherine M. Harmonosky

Penn State University
University Park, PA 16802, U.S.A.

Joan M. Donohue

University of South Carolina
Columbia, SC 29208, U.S.A.

 W. David Kelton

 University of Cincinnati
 Cincinnati, OH 45221-0130, U.S.A.

ABSTRACT

In order to get more people to use and understand simula-
tion, improved teaching of simulation to beginners is im-
portant. The panel members share their experience in
teaching the classic systems of simulation, used for several
decades, to novice students.

1 INGOLF STÅHL

Although discrete simulation is a very powerful tool for the
analysis of many different problems in industry, the usage
of simulation is indeed surprisingly low, in comparison
with its potential. It is my main belief that the greatest
problem with the spread of simulation is that the teaching
of it is so limited. Only a small percent of business and en-
gineering students get enough schooling in simulation to be
able to appreciate the fundamental advantages and limita-
tions of this tool. I therefore think that an improvement in
the teaching of simulation to beginners is very important.
Hence, the purpose of this panel is to try to give people
who in the nearby future will be teaching simulation to
novices in the simulation field some ideas of how this can
be done by giving examples of how this has been done in
recent years.

I shall start by trying to explain the title of the panel:
Teaching the Classics of Simulation to Beginners. Let me
start with �beginners�. When I talk about beginners, I am
not referring to students of computer science, but to busi-

ness students and to engineering students who study areas
like production, logistics, supply chain management, etc.

We here mainly talk about a first, and usually only,
simulation course that they get, corresponding to 10 � 12.5
percent of a student work year. There can also be other
types of introductions to simulation. From my own experi-
ence, one possibility is a ten-hour part of another course,
e.g. focused on operations research or computer methods,
giving almost the same knowledge in a simulation system
as the full course, but not dealing with a real project. An-
other alternative is a four-hour rapid introduction to simu-
lation modeling, leading to simple service system models.

We envisage the student in the future to become
mainly an intelligent buyer of simulation services, but also
able to produce a first simulation prototype that in some
cases is developed further by a computer scientist, but in
other cases used directly in a �quick and dirty� fashion for
solving an urgent problem.

We are finally also very interested in the growing
trend of teaching simulation at the high school level, since
it is important to get students early into simulation.

The word �classics� can, as we will hear from our
panel, be interpreted in several different ways. It can refer
to simulation systems that in various forms have been
taught to beginners for two decades or more. Since we in
the Educational track, also have a sister panel, called Simu-
lation Textbooks, Old and New, and we like to have a con-
nection between these two panels, we can see the �clas-
sics� as the simulation systems that have dominated the
major text books during the last decades.

Ståhl, Herper, Hill, Harmonosky, Donohue, and Kelton

Obviously there is a plethora of alternatives as regards
software to be used for teaching beginner. For example, at
the last WSC there were over a dozen software products,
which the vendors could claim were suitable for teaching
beginners. Obviously this panel can discuss only a very
limited number of alternatives. Furthermore, having each
member of the panel represent one software product would
turn the focus of the panel in the wrong direction, making
it a panel arguing the merits of different types of software.
The task of this panel is rather to show e.g. how the same
type of software can be used in different ways for the same
purpose of getting beginners into simulation.

This focus has the effect that certain new simulation
systems are not discussed in this panel. This refers espe-
cially to systems that have a focus on animation in the
sense that animation was part of the software from the very
first beginning. Hoping that there can be also future panels
of this kind, we have, in our choice of which group of
software to start with, for this year chosen to concentrate
on the �classics�. It should also be noted that in the educa-
tional track there are full papers that discuss the use also of
other systems for the education of beginners.

At an early stage of the planning this panel, I sent a list
of questions to the panellists. Among these were the fol-
lowing:

1. What kind of students do you teach or have you
been teaching? If different groups, is there a dif-
ference in teaching approach as regards different
students?

2. What simulation system are you teaching? Have
you earlier taught other simulation systems to be-
ginners in simulation?

3. Do your students do project work? If so, how big
part of the course is this? Do they then use a lar-
ger version of the software system than the (al-
most) free student version?

4. How much general simulation theory is involved
in your course, e.g. random numbers, input analy-
sis, output analysis, verification and validation?

5. Which textbook or textbooks do you use and have
you been using?

6. How many classroom hours is the course? Do the
students spend more hours on this kind of course
than on other courses?

7. In what kind of facilities does your teaching take
place? Do you use a projector? Have the students
got access to a computer during class? Do they do
their work on their own PCs?

 Some of these questions are answered in the prepared
statements below. Others might be answered in the follow-
ing general discussion. Since these questions are focused
on helping other teachers by giving some idea of �best
practice�, I will, in order to try to also stimulate a more
�controversial� debate, hopefully also with the audience,
finally present some points of what I, based on the experi-
ence of teaching simulation to over 5000 beginners over
two decades, have come to regard to be suitable criteria
for simulation software to be used in simulation educa-
tion for beginners. Do you others think that these criteria
are reasonable? Which others should be included?

A. Ease of Learning

A1. The learning should not presuppose any pre-
knowledge of programming,

A2. The system should help the students to focus on
modeling and experimentation, and not on syntax detail.
Students should not have to learn a new concept every time
that a new and different thing shall be done.

A3. The simulation language should be fun to learn.
Students should be able to do interesting things after a very
short period of learning, e.g. after one classroom hour,
produce some non-trivial simulation programs.

A4. When students frequently make the same mistake,
one must always consider the alternative of changing the
system or language instead of forcing them to learn strange
features. The system should not be bound to compatibility
with earlier versions.

A5. The system must provide most necessary statistics
automatically. The novice does not know what kind of sta-
tistics is of interest.

A6. It should be possible to cover the system com-
pletely in a pedagogical manner, with many examples etc.,
in a small book (e. g. 400 pages) at a low price. This limi-
tation also ensures that all teachers can master the system.

A7. The simulation system should facilitate the teach-
ing in computer labs as well as self-studies in front of the
student�s own computer.

A8. To facilitate learning, in particular self-studies, the
system itself must be supplemented with a great many pro-
gram examples, tutorial lessons and help pages.

A9. When being projected on the screen by a projec-
tor, e.g. in a PC lab, it is important that all important as-
pects on the projected screen picture are readable by the
students. One must avoid having a lot of small details on
the computer screen picture.

A10. The system should make it very easy to define,
and redefine, an empirical random distribution, e.g. by a
number of pairs of value and frequency.

B. Ease of Input

B1. The main form of input should be in form of a
Graphical Users Interface, where one from a menu of sym-
bols chooses the (building) blocks of the program. The
choice of symbols should be done using either a "drag-and-
drop" or a "point-and-click" method.

B2. The number of symbols in the symbol menu
should be strictly limited.

B3. For inputting the operands of a block, one should
be able to click on an individual block in the block diagram
to open a dialog for inputting the operands of this block. In

Ståhl, Herper, Hill, Harm

order to diminish the need of a manual, this dialog should
reveal the syntax of the block operands.

B4. It should also be possible to input the program as
text, by using a simple editor. The length of the program
should be short.

C. Ease of Reading Output

C1. It must be easy to read and understand the output.
The system should not provide a lot of advanced output
that the novice would find confusing.

C2. The system should provide an easy-to-read pro-
gram listing, which is clear and compact, allowing for
short comments. This listing is essential for making it easy
for the teacher to correct and mark the student programs.

C3. One should also be able to complement the program
listing with a program logic diagram, directly obtainable
from the program in text format to make it easy for students
to study, discuss and document the logic of a program.

C4. The output should contain graphs and histograms
that are clear and easy to understand.

C5. A simple form of animation, facilitating program
verification as well as an understanding of how the pro-
gram works, is essential

D. Ease of Doing Replications and Experiments

D1. To encourage replications, it should be very easy
to make replications of the runs by just one command, eas-
ily available in the GUI.

D2. It is also desirable that the system can automati-
cally carry out a statistical analysis of these repeated runs,
e.g. of confidence levels.

D3. It is also desirable to have some form of very sim-
ple optimization.

E. Safe Programming

E1. The system should minimize the risk of the stu-
dent making logical errors. Students should not run into
surprises and unexpected errors due to not having learnt
the full system.

E2. The system should have an extensive error trap-
ping system with as clear error codes as possible

E3. The system must have some simple, very easy-to-
learn, system for debugging and program verification, e.g.
in the form of block based animation.

A system that was developed according to these crite-

ria, and which has been used in high school education of
simulation, will be discussed by our next panel member.

2 HENRY HERPER

Computer Science, in Europe often called Informatics, has
during the last few years developed into a subject taught in
Secondary Schools, both in Europe and the US. In the
process of selecting the contents of this subject as regards
onosky, Donohue, and Kelton

the general education of high school students, it has often
proved difficult to decide on which of the many areas of
Computer Science that are most suitable to include. Model-
ing and simulation are among the areas of basic, but ap-
plied, Computer Science that are then competing for a
place in the curriculum.

Traditionally, continuous simulation has played an
important role in the Computer Science curriculum in high
schools. Research has shown that discrete simulation, on
the other hand, has been very little used, mainly since no
suitable tools have been available for this kind of simula-
tion. Against this background, teachers at the Stockholm
School of Economics and the Magdeburg University have
in cooperation developed a family of discrete simulation
systems for education. The basis of this was the micro-
GPSS simulator, developed by Ingolf Ståhl in Sweden. For
this simulator, we in Germany have created a Windows
based Development and Experiment Environment. This
simulation tool has been successfully used in Germany,
both for Computer Science teacher training and for the stu-
dent education in secondary schools.
 For example, in a course called Introduction to Model-
ing and Simulation, given in some German high schools,
the students first learn to produce abstract models as ex-
cerpts from the real world. They then select a level of ab-
straction for the model that corresponds to the problem to
be studied. These models are then implemented on the
computer with a simulation language. In all phases of the
model formation process, the model must be verified and
validated. This is only possible, if the students know the
real system well. The results from the simulation run are
then prepared and visualized. A further important goal of
the course is to have the students learn how to interpret the
simulation results and to evaluate them critically. For the
total course around 30 classroom hours are available. This
puts special demands on the simulation tool to be used.

2.1 Demands on Tools for Simulation
Education in Secondary Schools

Models of server systems are especially suitable for learn-
ing simulation technology. For the implementation of these
systems, different classes of simulation tools are available.
An extensive evaluation of simulation tools that can be
used in education is presented in Herper and Ståhl (1999).

For the simulation of service systems, a discrete events
oriented simulation language is especially suitable. This
would, due to the high degree of abstraction as regards the
commands, allow for the implementation of models for
many different areas of application. The goal of the educa-
tional process is not training in a specific simulation prod-
uct or tool. Students have to learn the basic techniques for
the development of the simulation models.

For a simulation language to be used in the education in
high schools there are several demands: An Integrated De-

Ståhl, Herper, Hill, Harmonosky, Donohue, and Kelton

velopment Environment with a Graphical Users Interface
and a Help system is a prime requirement. An interface to an
animation system is necessary for the presentation of results.
The time requirement for learning the basic elements of a
simulation language should preferable be only a few hours.
In this way, more time will be available for e.g. the experi-
mentation with the model. The basic principles of the simu-
lators� work must have such transparency that the students
can understand the process. The simulation language should
be available for education free of cost.

2.2 Teaching Simulation with WinGPSS

A prerequisite for the successful introduction of discrete
simulation into the high school curriculum is the availability
of well-trained teachers. We have hence focused on getting
future teachers to learn how to get their future students inter-
ested in discrete event simulation. How can then this best be
done? For the teaching of simulation in Magdeburg in Ger-
many, GPSS has a long tradition as language for basic edu-
cation. Although the students of computer science learn
GPSS/H, we have for the education of teachers in Computer
Science in the high schools used WinGPSS, since this can
then also be used in their teaching in the high schools.

Since 1995 a Micro-GPSS-based simulator has been
used in the education in some German high schools and in
the education of teachers. WinGPSS was developed on the
basis of the experience from this use of micro-GPSS

One of the advantages of this GPSS-based simulator is
that it uses only 22 block types. Experience has shown that
out of these only 15 are really needed for the education in
high schools. Already with 3 block types the students are
able to create a simple model and with 5 block types a
simple service process can be modeled. The Integrated De-
velopment Environment allows for the simultaneous pres-
entation of the block diagram and the text based model.

One of the drawbacks with the learning of classic
GPSS, like GPSS/H, is that several blocks have many op-
erands with a great number of possible combinations and
default values. This frequently causes the beginner to make
errors. In WinGPSS, there are, besides much simpler oper-
and syntax, also dialog windows for the input of the oper-
ands with a description of each operand. The main syntax
and characteristics of the operands are presented in the dia-
logs and the correctness of the input is, at least partially,
checked. Furthermore the student has access to a Help sys-
tem with examples. In this way, the frequency of begin-
ners� errors has been substantially reduced.

A further basic problem in the education of beginners
is the difficulty of understanding parallel processes. To al-
leviate this problem, we have introduced a block animation
option, by which the movements of the transactions
through the block diagram of the model are visualized,
without the need for additional programming or model de-
scription. This animation is controlled by a trace file and is
implemented as post run animation. In this way, the simu-
lation process can be analyzed several times. In this type of
animation, the transactions will be presented with a num-
ber based on the order of generation. Furthermore, this
animation will constantly present a type of block statistics,
which presents both the number of transactions that cur-
rently occupy a certain block (both in symbols and num-
bers) and the total number of transactions that have visited
the block (in numbers).

Compared to other GPSS versions, simplifications
have been made e.g. as regards the block types dealing
with the movements of the transactions. The new blocks
GOTO, IF and WAITIF, with a simplified syntax, corre-
spond better, both in terms and functioning, to similar con-
cepts in common procedural programming languages.

It is important that the students in the validation phase,
i.e. when testing the validity of the model, learn to interpret
the produced results correctly to make comparisons with
their own experience of the real system. After the construc-
tion of a model, the students learn to make experiments
with the model. There are in WinGPSS special commands
available that facilitate the execution and interpretation of a
series of experiments.

If it is found desirable to have the simulation results
visualized by an animation model in a manner that is closer
to real system than with the block animation mentioned
above, then there is an interface to Proof Animation of
Wolverine Software. When working with the combination
of WinGPSS and Proof, the students learn about the corre-
spondence between the movements of the transactions in
the simulation model and of the objects in the Proof model.

The experience from projects carried out this far in
schools has been that students are well able to model ser-
vice systems using the tools of discrete simulation. The
simulation language GPSS has proved to be suitable as an
introductory language, when there is a corresponding Inte-
grated Development Environment available. The students
have solved smaller simulation problems individually.
Somewhat more complex problems were solved in small
groups. The teacher has played the role as a consultant for
the students, helping them e.g. to reduce the complexity of
the model to such a size that the students can handle it. The
students� intimate knowledge of the real system has proved
to be a special advantage. The fact that the students can
find a solution to a real problem as well as gain a deeper
understanding of the whole system has proved highly mo-
tivating for them. It should finally be mentioned that the
students have shown a high degree of creativity when visu-
alizing the simulation results using animation tools.

3 RAY HILL: SIMULATION AS MODELING
METHODOLOGY VERSUS SOFTWARE
TUTORIAL

I want to focus on two themes: teaching the modeling proc-
ess and conveying the need to learn the simulation �lan-
guage� in its details and complexities.

Ståhl, Herper, Hill, Harmonosky, Donohue, and Kelton

Modeling is �the representation, often mathematical,
of a process, concept or operation of a system, often im-
plemented by a computer program.� Simulation is the rep-
resentation of the behavior of one system by another sys-
tem. Simulation modeling allows one to gain insight into
complex systems or processes via the exercising of a com-
puter-based, generally stochastic computer model. The
simulation modeler efforts are enhanced by the plethora of
simulation packages now available. No longer must a
simulation modeler also be a reasonable computer pro-
grammer (an intended exaggeration). With icon-based
macro languages such as ARENA, AWESIM, EXTEND,
and Micro-Saint, to name just four, literally anyone can
create, execute, and examine a simulation model. This is
both good and bad.

Icon-based simulation software enables anyone to con-
duct modeling and simulation. The up-side of this is the in-
creased use of simulation for analytical purposes as well as
the increased number of simulators. The down-side is the
potential for �bad� analysis involving inexperienced simula-
tors employing a model that runs correctly in the simulation
environment. The easy-to-use simulation software approach
makes it easy for a novice user to teach themselves the soft-
ware with little thought regarding simulation design, analy-
sis methodology, or modeling expertise. In the class I con-
stantly re-enforce my view that simulation is applied
statistics (this also keeps those nagging �too much statistics�
comments off the course critique).

The teaching of simulation can easily can fall into the
trap of teaching the software. Simulation modeling re-
quires mastery of the modeling process and then the trans-
lation of a conceptual model into the simulation language.
The trap of teaching software can be enabled by even the
best software. For example, the ARENA flowchart view
window has the look and feel of a flowcharting tool. This
is very beneficial. However, a novice user may believe
they are conceptually modeling a system or process when
in fact they are programming. These icons request specific
model data and generate underlying SIMAN code. (I, like
David Kelton, also like Catherine Harmonosky�s idea of
handing in the .mod and .exp files with Arena assign-
ments). Even textbooks fall into the trap, defining their
�modeling process� via the development of the actual ex-
ecutable model. To learn the simulation modeling process,
one must step away from the simulation software, generate
some conceptual interpretation of the system or process,
and return to the simulation software for a language trans-
lation phase.

A person�s views are influenced by their experiences; I
am influenced by experiences with my first simulation-
specific language, SLAM. SLAM featured a set of icons
used to define a conceptual model of a system or process.
Once satisfied with the paper-based conceptual model, the
SLAM icon information was translated into SLAM state-
ments. Similarly, in my early simulations, built in
FORTRAN, the simulation components were defined and
the simulation processes fully detailed before code was
created. Each case separated conceptual modeling from
the model translation step.

Teaching the �modeling process� with modern simula-
tion software requires we first �turn off� the simulation
software. This means developing some aggregate-level
process flow, refining this aggregate view to add modeling
detail, and developing some concept of a data dictionary of
resources, sets, variables, schedules, etc. It means we re-
enforce the top-down systematic modeling process. Aca-
demic or textbook problems, complete with process details
and distributional data, project a �bottom-up� approach.
The best way to confuse a novice modeler is to mire them
in details in front of a simulation software tool.

The use of the simulation language should be treated
like using a foreign language. To converse in a foreign lan-
guage, we formulate our concept in our native language, use
the foreign language structures to translate our concept, and
execute the structures to communicate the concept to the
target recipient. In simulation, our native language might be
as simple as a flowchart. The structures are the simulation
language icons (and their underlying syntax and data struc-
tures), and our target recipient is the computer (via the un-
derlying simulation language). Simulation modeling and
programming is simply a translation process from our con-
ceptual model to some computer simulation code. For ex-
ample, while covering some of the ARENA modules during
class I try to convey what the module accomplishes algo-
rithmically. Further, how does parameterization of a par-
ticular module tie back to the data structures defined in the
various spreadsheet views? Again, trying to convey the
need to be conversant in the specifics of the language.

To encourage a modeling perspective I emphasize
• aggregate system descriptions is some �native�

form;
• pre-defining model data requirements;
• understanding the syntax and semantics of the

simulation language; and
• executable model development as a translation

process,
while avoiding

• delving immediately into the simulation software;
• leading students to believe data acquisition is

easy; and
• ignoring the underlying fundamental simulation

concepts.
 Icon-based simulation languages are wonderful; their
benefits far outweigh any concerns. However, as we edu-
cate the next generation of simulation professionals we
must keep in mind an overriding need for developing mod-
eling professionals conversant in their simulation language
of choice.

Ståhl, Herper, Hill, Harmonosky, Donohue, and Kelton

4 CATHERINE HARMONOSKY

�Why model?� That is the question that provides the mo-
tivation for my approach to teaching simulation to under-
graduate industrial engineering majors. The answer, �To
gain a detailed understanding of the performance of a sys-
tem through experimentation when it is difficult (or impos-
sible) to experiment with the real thing,� spurs another
question: �How do you gain understanding?� Primarily,
we gain understanding through analyzing system perform-
ance output data generated by the modeling process. These
two questions and answers are the foundation and wood
framing on which the drywall and pretty pictures of my
course are hung.

Regarding modeling, our students learn many different
modeling approaches, and it is important that they under-
stand where simulation fits into their toolkit. The biggest
differentiator is that simulation is a heuristic technique that
specifically incorporates system variability into the analy-
sis through sampling from distributions of input parame-
ters. Since there is variability in the inputs, there is vari-
ability in the outputs. Making sure this connection
between input and output is clear early in the simulation
education process is extremely important, because the out-
put analysis techniques they must use are predicated upon
this fact. Because engineers will look at the output data
analysis and draw conclusions and make recommenda-
tions, their understanding of the variability in the process
and what those numbers really mean is crucial for their
professional survival.

So, my emphasis in an undergraduate simulation
course is to concentrate on the fundamentals of understand-
ing the logic of the real system, translating that real system
logic into a simulation model, applying proper output
analysis techniques for that system and understanding how
inputs affect outputs. At Penn State, we made a funda-
mental change in our course in 1998 from straight lectures
to a lecture and laboratory structure. This structure allows
for a complimentary division of concepts that nicely sup-
ports this emphasis. Lecture material focuses on general
simulation concepts and issues that are applicable across
languages, e.g. random numbers, random variate genera-
tion and output analysis techniques. Labs give hands-on
practice with the general concepts, sometimes through tra-
ditional practice modeling of detailed �pseudo-real-world�
scenarios and sometimes through a structured exercise fo-
cusing on one very specific concept, such as good valida-
tion and verification techniques. However, even in the
labs, we emphasize �transferable skills�, such as develop-
ing good logic flow diagrams of the system being modeled,
which could then be used to translate the real world logic
into any specific simulation language.

One hurdle with this approach is making sure the lec-
tures and labs are well connected. I really work hard to
synchronize the lecture topics with the lab experiences.
Further, I have found that clearly making references to lab
experiences that relate to lecture topics and making clear
references to specific topics/statements from lectures in the
lab sections is crucial to tie it all together so it does not ap-
pear disjoint.

Of course, you can�t accomplish hands-on simulation
practice without a simulation language. (Well, actually,
you could have them write their own code from scratch,
but why reinvent the wheel?) I hope I follow the philoso-
phy, �Language as facilitator, I as educator�. It is a deli-
cate balance to teach them enough about a particular lan-
guage�s capability to give them adequate simulation
experience, yet not allow the students to get so hung up on
the particular language that they lose sight of the general
concept being emphasized. This is where the laboratory
section has really helped.

The type of modeling assignments now covered in the
lab section used to be given as homework assignments
done completely outside of the class in the lecture-only
course structure. This meant 2 things: 1) I took time in
lecture to cover specific commands/modules of the lan-
guage to at least point them in the right direction, and (2)
because they were not working with the com-
mands/modules immediately in class, by the time they got
to their homework, they had forgotten my main points
making modeling a lengthy process and leaving them rush-
ing through the analysis, which should be the most impor-
tant part of the assignment. Both, the students and I were
frustrated. I have found the dedicated lab time provides an
appropriate structure to ensure that the most important
general concepts are being emphasized and they are not be-
ing left in the dust of developing the model. However, we
walk the line between too much handholding and just the
right amount of direction, which is a potential drawback of
the laboratory environment. So, we have taken a bit of a
�design studio� approach, where there is some instruction,
but the majority of the time students can work on the mod-
eling problem at their own pace, asking questions as
needed of the lab instructor and getting some valuable one-
on-one tutoring.

Even though we have the lab section, I still try to post-
pone using a particular language as long as possible. The
first lab assignment is primarily a class exercise with a
standard simulation done by hand of a single-server sys-
tem, complete with die rolling and coin flipping for gener-
ating samples from distributions. But, this simple example
done well in the structured lab environment effectively
demonstrates many fundamentals of simulation�random
variates, simulation clock, event calendar, time-persistent
and observation-based statistics, multiple replications and
confidence interval estimation. As the semester develops,
this lab experience can be referenced frequently to relate to
the �behind the scenes� work a simulation language does
for us. I am sometimes amazed at how much mileage I get
out of this one lab.

Ståhl, Herper, Hill, Harmonosky, Donohue, and Kelton

When a simulation language is introduced, we use
Arena. The major hurdle with any language is making the
connection between these lovely icons in the GUI and ac-
tual program code. Thankfully, Arena 5.0�s flow-chart
style icons for logic modules has made this easier com-
pared to Arena 3.0. Also, I do require them to include a
copy of the complete model code (both *.mod and *.exp
files) in their lab reports. So, at least I know that they have
seen the code and they realize it is there.

Also, I have found the hierarchical nature of Arena to
be helpful. This allows us to get up and running quickly
early in the semester with simple systems using higher-
level modules. But, when system logic becomes just a bit
more complex, they quickly learn the drawbacks of the ad-
ditional structure of the higher levels (akin to simulators)
and understand the trade-offs between increased modeling
flexibility and ease-of-use. We have also made good use
of Arena�s Input Analyzer for analyzing input data and the
Output Analyzer for various output analysis techniques,
including steady state analysis with batch means.

Of course, I see some opportunities for improvement
in Arena to better support my educational goals. The out-
put report is certainly loaded with information and graphs.
But, with the information spread out over many, many
pages, it is a bit overwhelming and frustrating for the be-
ginner to just find the data they need, such as determining
under what subtitle the work-in-process measure is re-
ported. Consequently, we spend more lab time than I
would like just reviewing the output report structure in-
stead of focusing on output analysis. Also, clearer error
messages written with the �beginner� in mind along with a
much more user-friendly interactive debugging capability
would allow the students to more independently correct
really tough logic problems.

In closing, I find teaching simulation continues to be
challenging, stimulating, rewarding and fun�despite the
heavy workload of such a course!

5 JOAN DONOHUE: TEACHING
SIMULATION TO BUSINESS
STUDENTS USING AWESIM

This part of the panel discussion focuses on the following
four issues:

1. How to attract business students into taking a
course in computer simulation.

2. Why AweSim is a suitable software package for
teaching simulation to business students.

3. Types of simulation projects undertaken by un-
dergraduate business students.

4. Ability of students to conduct meaningful simula-
tion projects at the end of a one-semester course.

A course entitled �Simulation of Business Systems� is
offered each semester in the Business School at the Uni-
versity of South Carolina. It is an elective course for stu-
dents majoring in Production and Operations Management,
Management Information Systems, or Quantitative Busi-
ness Analysis. Space permitting (up to a maximum of 35
students), non-business majors can enroll in the class and
they are typically Computer Engineering students. Since
most undergraduate business students know nothing about
computer simulation, they are not likely to enroll unless
previous students recommend it to them, or if it happens to
fit into an empty time slot in their schedule. Unfortunately,
very few business students choose to take the course be-
cause they want to learn how to solve business problems
using simulation models. Most students do not know the
purpose of computer simulation and they often fear it will
involve writing computer programs and becoming an ex-
pert with computers. So, how should professors generate
student interest in taking a computer simulation course?

The obvious answer is to promote the course in a vari-
ety of ways. For example, prerequisite courses such as
Business Statistics should inform students of the class, ex-
plain the purpose of computer simulation, and encourage
interested students to take the class. On a larger scale,
other business academic departments could allow their ma-
jors to choose simulation as one of their elective courses.
This approach would be more difficult since it requires
convincing faculty in areas such Accounting, Finance,
Marketing, Management, etc. that a computer simulation
class would be beneficial to their students.

Concerning the software used in an introductory busi-
ness simulation class, any of the block-based simulation
languages, such as AweSim, GPSS, and Arena would be
appropriate. While engineering and computer science stu-
dents might consider the use of such software to be �pro-
gramming with pictures,� it is often the closest that busi-
ness students ever get to computer programming. The
block-based software packages enable students to learn
how to logically structure a computer program without get-
ting involved with syntax, subroutines, etc. The author
uses AweSim and the associated textbook (Pritsker and
O�Reilly 1999) in the business simulation course because it
is a good general purpose software package and it has a
reasonably priced student version. Students like using the
software and few have trouble understanding it. Three
drawbacks of using the AweSim software are high cost for
the commercial version (required for large models and for
user-written inserts with C or Visual Basic), the textbook is
too advanced for an introductory class, and the software is
not widely used in the business world. Students would
prefer that the software were available as an Excel add-in
so that they could easily use it after they graduate. How-
ever, as a teaching tool, AweSim works well because it al-
lows students to gain a basic understanding of simulation
with minimal startup costs. Those students who truly un-
derstand the course material (about half of those in the au-
thor�s classes) will, in the future, be able to perform simu-
lations on any software platform that is accessible to them.

Ståhl, Herper, Hill, Harmonosky, Donohue, and Kelton

In the course taught by the author, the first half of the
semester is devoted to learning how to develop models of
real-world systems and translate them into AweSim net-
works. Another important aspect of this first part of the
course is learning what output statistics are provided, how
they are computed, and how to interpret them. The second
half of the course is devoted to two projects, a midterm
project and a final project. The midterm project is com-
pleted individually by each student. The instructor chooses
the real-world system and develops the simulation model.
The students collect their own input data for random proc-
esses such as arrival times, service times, probabilities of
taking particular paths through the system, etc. Students
are required to organize their data on an Excel worksheet
and to find the best-fitting probability distributions using
the Stat::Fit software. Students enter their input data into
the AweSim model and perform ten runs of four different
scenarios (the real world system and three alternatives).
Output statistics from AweSim are imported into Minitab
and appropriate statistical analyses are performed. Results
vary considerably from one student to the next due to the
varying times over which they collected data. Lastly, stu-
dents write a report that explains, in detail, the entire simu-
lation project and the implications for the real-world sys-
tem. Examples of midterm projects that have been used in
the past include traffic stoplights, fast food restaurants,
laundromats, and gas stations. After completing the mid-
term project, students begin working on a final project.
The final project is carried out in groups of three students
and the system to be simulated is selected by the students.
The instructor works closely with each group to help them
carry out a meaningful simulation project. The require-
ments for the final project are similar to the midterm pro-
ject but, in addition, a PowerPoint presentation is required.
Examples of final projects that students have completed
include a UPS package sorting facility, a John Deere
chainsaw chain manufacturing plant, and a model of parti-
cle coagulation and granulation.

One might wonder if business students are capable of
conducting meaningful projects at the end of a one-
semester course. Over the years, through trial and error,
the author has found that students can conduct meaningful
simulation projects provided the following things are done:

• Prior to the selection of the final project, each stu-
dent individually prepares a midterm project of
similar difficulty. The instructor points out errors
and explains how to correct them so that similar
errors are not made in the final project.

• Final projects are prepared in groups of three stu-
dents. Having the diverse skills three students
greatly improves the chances of the project being
correct and meaningful.

• Groups must develop an idea for the project and
the instructor works closely with each group to
develop a model, specify inputs and outputs, etc.
This is the most important way of ensuring that
the projects will be correct and at least somewhat
meaningful. Some groups need very little help
while others need the instructor to guide them
through almost every step of the project.

• An oral presentation of the group�s project using
PowerPoint is required. Most students want to
make a good impression in front of their peers.
Therefore, the quality of these presentations is very
good and this improves the chances of the accom-
panying written report being of high quality.

In summary, many business students enjoy taking a
course in computer simulation and feel it may be a useful
tool in their careers. AweSim provides a user-friendly
platform for teaching simulation to business students who
have no computer programming background. Incorpor-
ating projects into the class is an important aspect of teach-
ing students how to solve business problems using com-
puter simulation.

6 W. DAVID KELTON

I�ve been teaching simulation (or trying to) for
20something years now, with university audiences coming
from engineering schools, business schools, computer sci-
ence, and a host of other departments (predictable ones like
math and forestry, less-predictable ones like medicine and
economics, and unpredictable ones like Spanish literature).
I�ve also taught in non-academic settings such as corporate
seminars, industry conferences, and military training. The
experience/age profile has included the usual 20something
college students, Marine colonels, as well as both retiring
high-school math teachers and their 15-year-old pupils.

With that seemingly wide range of settings and audi-
ences, it has surprised me how little variation, both over
time and settings, there has been in the interests and under-
lying topics (maybe the latter is my fault), other than the
obvious progression of software. So this panel on �teach-
ing the classics� was intriguing to me as a possible vehicle
for discovering why things seem to be so much the same,
and whether that�s good or not.

One of the (many) great things about being late in sup-
plying this paper is that I had the unfair advantage of reading
the papers of my colleagues on this panel, and I am largely in
agreement with the points they make, so I won�t repeat their
convincing arguments. What I�ll try to do here is conduct a
debate against myself on the degree to which the �classics�
should be taught, and to whom. So, first things first.

6.1 What Are the Classics and
Should They Be Taught?

Of course, what�s a �classic� is in the eye (and age) of the
beholder. I�m still trying to get used to text-entered simu-
lation software and always try to map it back onto
FORTRAN 66 no matter what. (One of the co-editors of

Ståhl, Herper, Hill, Harmonosky, Donohue, and Kelton

these Proceedings once gently told me, when I asked him
to review some of my programs as I was trying to teach
myself C, that I�d done a nice job of writing FORTRAN in
C, sort of like the way I speak English in German.)

In this context, a �classic� to me is a general-purpose
programming language that is not a simulation language at
all � like C, C++, Java, Pascal (if anyone still speaks it),
and, yes, any variety of FORTRAN. Spreadsheets don�t
count; it has to be a real programming language. At some
point (but not at the beginning) of such instruction I�d ad-
mit utility routines (best if they�re home-brewed) for com-
mon simulation chores such as list processing, generation
of random numbers and random variates and random proc-
esses, and statistical accumulation and reporting.

Now, for my intradebate.

6.2 Dump the Classics

In order to build good simulation models, exercise them
well, and conduct effective simulation projects, nobody
needs to know this stuff any more, so we should not teach it.
In just a few hours (or maybe minutes) with what Ray Hill
calls an icon-based simulation language, it�s pretty true that
�anybody� can learn to simulate at least simple things (a
state of affairs that is, as Ray points out, both good and bad).
And some additional exposure, perhaps self-taught, brings
not-so-simple things to within reach. Further, high-level
simulation software is almost immediately applicable to real
problems, as legions of project-hunting students (many of
mine are on co-op so they have inside access to solid rustbelt
companies) discover, sometimes with measurable impact.

True, all high-level software is going to have short-
comings and irritations (as well as �anomalous features�),
but this situation is getting better all the time. And the
prices are falling as well, making just-post-graduation im-
plementation in a hiring organization ever more feasible.
Moreover, students seem to like icon-based simulation lan-
guages and the classes fill up (a practical issue for faculty,
if nothing else). And, speaking of practicalities in univer-
sities (if that�s not oxymoronic), there�s an increasing trend
to compress OR-type topics, sometimes to oblivion, espe-
cially in business schools, and going straight to high-level
software makes it possible to do something of value in,
say, three weeks with, say, MBA students; I do it all the
time and it works.

Teaching old-fashioned programming is simply no
longer needed, any more than is teaching how to carve cu-
neiform into clay tablets now that we have LaTeX (though
Word wouldn�t be enough to surrender the clay tablets). It�s
a waste of time and we should get over it, grow up, and
move on.

6.3 The Classics are Essential

If all we ever teach, and thus if all anybody will know in a
generation or so, is high-level point-and-click software,
there will be a general dumbing down of the simulating
population that could have serious long-term impact. For
one thing, who will write future simulation software if no-
body understands anything of what�s going on under the
hood? I own and drive a car yet know nothing of how it
works, but I do know that Tater down the street at Tater�s
Blue Ash Auto Repair knows my car inside out and I�m
glad he does.

So we still need at least a few Taters in simulation
who know how it all works inside, and can fix it when it�s
broke. And so we still need to teach at least a little low-
level simulation to at least a few people, if nothing else just
to make sure students know that it�s there, and know that
there will always be some Taters around who can help if
needed. I liked Catherine Harmonosky�s idea of forcing
students to hand in the Arena .mod and .exp files, and not
just the flowchart view, simply to make sure they know
they�re there and at least vaguely what they can do.

Even to nonplussed MBA students, I still force-feed a
simulation by hand, as does Catherine to her students in
their lab exercises. This gives them a feel for how to struc-
ture the data in a model (which I think is the most impor-
tant aspect, even more so than the network topology),
which promotes sound modeling once we start pointing
and clicking.

In a recent class, I returned to teaching quite a lot of
low-level simulation programming (using C by popular
vote of the class), and it did not go well. One problem is
that, even among engineering students, the facility with
programming is getting pretty rough around the edges.
Another problem is that they knew that a high-level soft-
ware package was coming up and they were anxious to get
to it. So maybe the upstream education and short attention
spans now argue against such a classics-heavy course, but
at least I know that that particular group of students went
out knowing how simulations really work (and they could
point and click too).

There�s a reason that Columbia hangs on steadfastly to
The Core of Homer, Herodotus, and friends for all under-
graduates. If we succumb to the siren call of teaching
icon-based simulation software only, we�re short-changing
not only our current students� fundamental understanding
of simulation, but also the ability of future generations of
simulators to progress.

6.4 The Answer

The problem is, I actually believe both sides of the argu-
ment, though they�re pretty much incompatible. And to
some extent, I am still trying to work both sides of the
street in my teaching. Perhaps my inability to let go of the
classics completely (for good reason, I believe) is one of
the underlying currents that have anchored the topics over
quite a few years; another underlying current is the need to
introduce statistical design and analysis early and often.

sky, Donohue, and Kelton
Ståhl, Herper, Hill, Harmono

As in most issues, The Answer probably depends, in
this case on the audience, their needs, and the intended
take-aways.

6.5 Different Audiences, Different Approaches

This is purely opinion, though based on some experiences,
some successful and others less so. And this assumes that
we�re talking about a first course in simulation modeling,
not a second course in simulation analysis:

•

•

•

•

For university students, either advanced under-
graduate or beginning graduate, in a first �model-
ing� course, try to do a mixture, though not a
whole lot of time (20% max) on the classic pro-
gramming approach. This will show them that
there is something underneath the hood, and indi-
cate how they might get themselves out of a jam
in an emergency. A problem here is the afore-
mentioned programming near-illiteracy.
For computer-science and some engineering stu-
dents, devote more time to the classics but still
cover simulation software in some depth. If they
don�t know a programming language upon arrival
to the course, they need to teach one to them-
selves in the first week.
For a brief (and thus shallow) introduction, e.g. as
a three-week module in some kind of an O.R.-
survey course, devote about one sentence to the
classics and just rush to the point and click and try
to get as far as you can. It�s better than nothing (I
think), which is probably the only alternative in
most academic-political environments.
For an industry/military audience, put the heavy
emphasis on the simulation software, but probably
step through at least one programming exercise.

Let me close by describing how this can map onto an
unorthodox audience, high-school juniors. I taught a one-
semester course on simulation modeling to such a group at
Cincinnati Country Day School (to the great embarrass-
ment of my daughters, both of whom were in school there),
on a strictly pro bono basis, and the math teacher sat in on
it as well. Now I must admit that this group might not
have been typical, as one went to Harvard on a full Intel
scholarship, one went to Cal Tech, one went to Case on a
full scholarship, and one went to Pomona (to major in Eng-
lish, though I still think he�s smart). But I found that, even
with so young a group, the classic principles were easy to
get across, and they programmed simple examples in Java
(I think ... I don�t speak that language). We then moved on
to a high-level simulation package, which they absorbed
easily. They all did projects that were of reasonable com-
plexity (even if on sophomoric topics like the effect the
cafeteria operations of putting pop in the drinking foun-
tains). Now I don�t pretend to have the reach into high
schools that Henry Herper has had, in his program of train-
ing the trainers, but this was still, in my view, a very suc-
cessful experiment.

So I believe that it�s possible (and desirable) to get
most people up to speed on a high-level simulation pack-
age, yet not ignore �the classics� that are essential, in vary-
ing degrees, to understanding simulation mechanics, not to
mention making sure that we have a steady supply of peo-
ple who really understand The Core.

REFERENCES

Herper, H. and I. Ståhl. 1999. Micro-GPSS on the Web
and for Windows - A Tool for Introduction to Simula-
tion in High Schools. In P.A. Farrington, H.B. Nemb-
hard, D.T. Sturrock and G.W. Evans (eds.) Proceed-
ings of the 1999 Winter Simulation Conference, 298-
306. SCS, Phoenix.

Pritsker, A. A. and J. J. O�Reilly. 1999. Simulation with
Visual SLAM and AweSim. 2d ed. New York: John
Wiley and Sons.

AUTHOR BIOGRAPHIES

INGOLF STÅHL is a Professor at the Stockholm School
of Economics, Stockholm, and has a chair in Computer
Based Applications of Economic Theory. He was visiting
Professor, Hofstra University, N.Y., 1983-1985 and leader
of a research project on inter-active simulation at the Inter-
national Institute for Applied Systems Analysis, Vienna,
1979-1982. He has taught GPSS for twenty-five years at
universities and colleges in Sweden and the USA. Based on
this experience, he has led the development of the micro-
GPSS and WebGPSS systems. He is also consultant in
simulation to Swedish banks and industry. His email ad-
dress is <ingolf.stahl@hhs.se> and the web address
for his WebGPSS system is <www.webgpss.com/>.

HENRY HERPER is in the Institute for Simulation and
Graphics at the Otto-von-Guericke University, Magdeburg.
His research interests include the modeling of logistical and
manufacturing systems and the development of simulation
tools for introduction to simulation. He is a member of
ASIM and the GPSS-Users' Group Europe. His e-mail and
web addresses are <henry@isg.cs.uni-magdeburg.
de> and <wwwisg.cs.uni-magdeburg.de/isg/
henry.html>.

RAYMOND HILL is an Associate Professor of Industrial
and Human Factors Engineering with the Department of
Biomedical, Industrial, & Human Factors Engineering of
Wright State University where he runs the Advanced Mod-
eling, Optimization, & Systems Laboratory. His Ph.D. is
from The Ohio State University. His research interests in-
clude agent-based modeling, applied simulation modeling,

mailto:ingolf.stahl@hhs.se
http://www.webgpss.com/
mailto:henry@isg.cs.uni-magdeburg.�de
mailto:henry@isg.cs.uni-magdeburg.�de
http://wwwisg.cs.uni-magdeburg.de/isg/henry.html
http://wwwisg.cs.uni-magdeburg.de/isg/henry.html
mailto:ingolf.stahl@hhs.se
http://www.webgpss.com/
mailto:henry@isg.cs.uni-magdeburg.de
mailto:henry@isg.cs.uni-magdeburg.de
http://wwwisg.cs.uni-magdeburg.de/isg/henry.html
http://wwwisg.cs.uni-magdeburg.de/isg/henry.html

Ståhl, Herper, Hill, Harmonosky, Donohue, and Kelton

and applied optimization modeling. His email address is
<ray.hill@wright.edu>.

CATHERINE M. HARMONOSKY is an Associate Pro-
fessor in the Harold and Inge Marcus Department of Indus-
trial and Manufacturing Engineering at Penn State Univer-
sity. She received her B.S.I.E. from Penn State University
and her M.S. and Ph.D. in Industrial Engineering from
Purdue University. Her research and teaching interests are
in simulation and production planning and control, and she
has been teaching simulation since 1987. She is a member
of IIE, SME and SWE. Her email address is <cmhie@
engr.psu.edu>.

JOAN M. DONOHUE is an Associate Professor of Man-
agement Science in the Moore School of Business at the
University of South Carolina. She has a B.S. degree in
Chemical Engineering from the University of Delaware
and an M.B.A. and Ph.D. degree in Management Science
from Virginia Tech. Her research interests include the de-
sign and statistical analysis of simulation experiments and
the application of these methods to manufacturing systems.
Her email address is <donohue@moore.sc.edu>.

W. DAVID KELTON is a Professor in the Department of
Quantitative Analysis and Operations Management at the
University of Cincinnati. He received a B.A. in mathemat-
ics from the University of Wisconsin-Madison, an M.S. in
mathematics from Ohio University, and M.S. and Ph.D.
degrees in industrial engineering from Wisconsin. His re-
search interests and publications are in the probabilistic
and statistical aspects of simulation, applications of simula-
tion, and stochastic models. He is co-author of Simulation
Modeling and Analysis (3d ed., 2000, with Averill M.
Law), and Simulation With Arena (2nd ed., 2002, with
Randall P. Sadowski and Deborah A. Sadowski), both pub-
lished by McGraw-Hill. Currently, he serves as Editor-in-
Chief of the INFORMS Journal on Computing, and has
been Simulation Area Editor for Operations Research, the
INFORMS Journal on Computing, and IIE Transactions,
as well as Associate Editor for Operations Research, the
Journal of Manufacturing Systems, and Simulation. From
1991 to 1999 he was the INFORMS co-representative to
the Winter Simulation Conference Board of Directors and
was Board Chair for 1998. In 1987 he was Program Chair
for the WSC, and in 1991 was General Chair. His email
and web addresses are <david.kelton@uc.edu> and
<www.cba.uc.edu/faculty/keltonwd>.

mailto:ray.hill@wright.edu
mailto:cmhie@�engr.psu.edu
mailto:cmhie@�engr.psu.edu
mailto:david.kelton@uc.edu
http://www.cba.uc.edu/faculty/keltonwd
mailto:ray.hill@wright.edu
mailto:cmhie@engr.psu.edu
mailto:cmhie@engr.psu.edu
mailto:david.kelton@uc.edu
http://www.cba.uc.edu/faculty/keltonwd

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1941
	02: 1942
	03: 1943
	04: 1944
	05: 1945
	06: 1946
	07: 1947
	08: 1948
	09: 1949
	10: 1950
	11: 1951

