
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

SIMULATIONS ON .NET USING HIGHPOINT’S HIGHMAST™ SIMULATION TOOLKIT

Peter C. Bosch

Highpoint Software Systems, LLC
S42 W27451 Oak Grove Lane

Waukesha, WI 53189, U.S.A.

ABSTRACT

This paper describes the philosophy, architectures and key
features of a new .Net-based simulation object model and
toolkit called HighMAST™ (Highpoint Modeling and
Simulation Toolkit). HighMAST™ is a set of class libraries
built on top of Microsoft’s .Net platform. It was built to take
advantage of the object-oriented flavor and extensive inte-
gration plumbing ingrained in the .Net framework. It sup-
ports “active entity”, “block-based”, “workflow-oriented”
and several other types of simulation architectures in both
the discrete-time and continuous domains. And it enables
developers to approach their simulation frameworks or ap-
plications in a wide range of languages including such inex-
pensive and available languages as C# and VB.Net.

1 INTRODUCTION

A number of criteria apply when selecting a simulation
platform. Depending on the type of project, the type of or-
ganization executing the project, and the type of staffing
model being applied to the project, each criterion may have
different weighting in the final selection process.

The platform must provide a good foundation for the
simulation to be developed. This means that the basic en-
gine must be sufficiently fast, comprehensible and accessi-
ble. As well, the engine should be supplemented with a
well-designed and feature-rich set of libraries that provide
substantially all of the primitive constructs that the simula-
tion designers need. Finally, the libraries should be readily
extensible, to enable those constructs that are more unique
to the specific domain to be modeled.

The platform should support rapid, modern application
development. Larger-scale simulations require esoteric core
simulation programming, but also entails programming in
less specialized domains such as database access, animation
and application-integration code. In order to inexpensively
support this range of needs, its language should be general-
purpose, development tools should be broadly available and
robust across all of the uses to which it will be placed, and

the non-simulation skills needed to construct the desired ap-
plications should be reasonably available.

The platform should support a range of simulation ar-
chitectures and approaches. Simulations’ characteristics vary
widely from one application to the next, and often for multi-
ple applications within the same enterprise suite. A simula-
tion framework that supports only the “live-entity” mecha-
nism in which, for example, a customer is modeled with a
thread, will break down when faced with a system of thou-
sands of customers. A mechanism in which entity flow is
modeled by objects passing through “blocks” will break
down when faced with a large number of entities, and is
sometimes better modeled using a continuous flow meta-
phor. The platform should support all of these approaches.

This paper describes a simulation platform called
HighMAST™, which was undertaken with a design phi-
losophy intended to address the three preceding needs –
foundation solidity, modern development methods, and ar-
chitectural freedom. It’s core engine is written in C# using
high performance algorithms and focused multithreading
capability for performance, and an object oriented architec-
ture for comprehensibility and accessibility. Full-featured
libraries include queues and events, resources and resource
pools, collection classes of many types, PERT and CPM
analysis modules, executives, and a base-level model class
with a highly customizable application state machine.
Simulations already built on HighMAST™ have extended
existing classes into specific simulation domains such as
batch manufacturing.

The remainder of this paper describes specifics of the
points made above. Sections 2 and 3 describe the founda-
tion provided by HighMAST™, sections 4 through 7 dis-
cuss the strengths with which HighMAST™ supports large
scale application development, and sections 8 through 13
describe the technologies and architectural choices enabled
through the HighMAST™ platform. Finally, section 14
provides the reader with a summary of the strengths of this
powerful newcomer to the field of modeling and simula-
tion, and suggests some sources of further information.

Bosch

2 BASE ENGINE

The base engine behind HighMAST™ consists of two or-
thogonal pieces, the executive and the model. The executive
is a C# class with several supporting classes, that performs
event (callback) registration and sequencing. In essence,
through the executive, a model entity may request to receive
a callback at a specific time, with a specific priority, on a
specified method, and with a specified object provided to
that method on the callback. The entity may rescind that re-
quest at any point before the call, and the method need not
be located on the entity requesting the callback. Further, the
entity requesting the callback may select how the callback is
to be handled, currently among three choices:

1. Synchronous – the callback is called on the dis-
patch thread, and upon completion, the next call-
back is selected based upon scheduled time and
priority. This is similar to the “event queue” im-
plementations in Garrido (1993) and Law and
Kelton (2000).

2. Detachable – the callback is called on a thread
from the .Net thread pool, and the dispatch thread
then suspends awaiting the completion or suspen-
sion of that thread. If the event thread is suspended,
an event controller is made available to other enti-
ties which can be used to resume or abort that
thread. This is useful for modeling “intelligent enti-
ties” and situations where the developer wants to
easily represent a delay or interruption of a process.

3. Batched – all events at the current time and prior-
ity are called, each on separate threads, and the
executive, except for servicing any new events
registered for that time and priority, awaits com-
pletion of all running events. This may bring
about higher performance in cases such as battle-
field and transportation simulations where multi-
ple entities may sense current conditions, plan and
execute against that plan.

The code below describes the API through which
event requests are registered.

// public member of Executive class.
public long RequestEvent(
 ExecEventReceiver eer, // user callback
 DateTime when,
 double priority,
 object userData,
 ExecEventType execEventType){ … }

The Model class provided with HighMAST™ performs

containment and coordination between the executive, the
model state machine and model entities such as queues, cus-
tomers, manufacturing stages, transport hubs, etc.

The model’s state machine is used to control and indi-
cate the state of the model – for example, a model that has
states such as design, initialization, warmup, run, cool-
down, data analysis, and perhaps pause, would represent
each of those states in the state machine. Additionally, the
application designer may attach a handler to any specified
transition into or out of any given state, or between two
specific states. Handlers may be given a sequence number
to describe the order in which they are to be executed.
Each transition is performed through a two-phase-commit
protocol, with a prepare phase permitting registrants to in-
dicate approval or denial of the transition, and a commit or
rollback phase completing or canceling the attempted tran-
sition. The following code describes the interface that is
implemented by a transition handler. User code may im-
plement any of the three delegates (API signatures) at the
top of the listing, and add the callback to the handlers for
transition out of, into, or between specified stages.

public delegate ITransitionFailureReason
 PrepareTransitionEvent(Model model);
public delegate void
 CommitTransitionEvent(Model model);
public delegate void RollbackTransitionEvent(
 Model model, IList reasons);

public interface ITransitionHandler {
 event PrepareTransitionEvent Prepare;
 event CommitTransitionEvent Commit;
 event RollbackTransitionEvent Rollback;
 bool IsValidTransition { get; }

 void AddPrepareEvent(
 PrepareTransitionEvent pte,
 double sequence);
 void RemovePrepareEvent(
 PrepareTransitionEvent pte);
 void AddCommitEvent(
 CommitTransitionEvent cte,
 double sequence);
 void RemoveCommitEvent(
 CommitTransitionEvent cte);
 void AddRollbackEvent(
 RollbackTransitionEvent rte,
 double sequence);
 void RemoveRollbackEvent(
 RollbackTransitionEvent rte);
}

3 LIBRARIES

The HighMAST™ core includes foundation libraries that
provide a conceptual base for those familiar with software
model building. In addition to the executive and model
classes, these libraries include distributions of various
types, a pulse source, an item generator, many simulation-
item-specific queue, list, and collection-related classes, a
resource management mini-framework and a wide range of
other simulation primitives.

These primitives are designed with common patterns
and good object-oriented architecture and development in
mind. They make wide but appropriate use of inheritance
for ease-of-implementation, interfaces for architectural or-
thogonality, and events for easy integration of disparate
types of objects.

Bosch

There are a number of higher-level capabilities, some
described in sections 9, 10 and 0, that are built on these
primitives – this construction has served as a proving
ground for the design and development work done on the
basic constructs. Furthermore, we have now constructed an
entire batch manufacturing simulation framework on top of
even these higher-level constructs, further demonstrating
the extensibility and adaptability of this architecture.

4 DEVELOPMENT TOOLS

HighMAST™ is built on Microsoft’s .Net libraries and
Common Language Runtime (CLR). Core code is written
in C# (C-sharp) and extension libraries and tools can be
written in any of a wide variety of applicable languages. Of
course, development can take place within Microsoft’s ex-
cellent Visual Studio development environment, and lever-
age all of the tools that environment is made to integrate
with, from bug-trackers and source code control systems to
GUI, database and other components from third-party de-
velopers. Most importantly, the effort to leverage this tool
base is minimal, since you’re working in a well-known,
well-used and well-supported environment.

With a simulation (or any application) built on a
broad, well-supported technology base, an architect can
typically count on the availability of a wide range of
graphical, database, reporting and other pre-built tools and
components for integration into his application.

Finally, since we expect to have a graphical develop-
ment environment soon, we have used attributes (essen-
tially, descriptors attached to code constructs such as fields
and methods) to identify the purposes of those code con-
structs so that, for example, ports and connectors can indi-
cate their directionality, objects can declare a preference of
custom explorer type, and a model’s state machine can be
self-documenting to a GUI.

5 DEVELOPMENT METHODOLOGIES

Whether a web application, desktop application, database
application or other type, a simulation is first and foremost,
an application. In many organizations nowadays, legacy
applications are the only ones that are permitted to live as
standalone desktop applications. Web applications are be-
ing developed with an eye towards integration through por-
tals, wrappers or web services, and new enterprise applica-
tions today are becoming larger and more strategic as
supporting technologies mature. All of this makes it highly
likely that a simulation written today will have integration
requirements and functional scope far beyond those of a
simulation application written only a few short years ago.

On the thesis that a simulation is an application, and
that integration and larger-scale development were critical
factors, we chose .Net as the foundation technology. Firms
already know, or can learn readily, how to use .Net for
broad-based application development. An architect defines
subsystems and interfaces. Services (including simulation)
are designed and written by one or more groups of devel-
opers specializing in the particular area of development.
Databases are designed and written by database experts.
User interfaces are designed by usability experts and de-
veloped by GUI developers. Integration and testing follow
well-understood paths, and the application is rolled out in
much the same way that the rest of an organization’s appli-
cations are rolled out – or perhaps better.

This seemed to us to be far superior to the “Guess-and-
Go-Dark” approach taken by many simulation experts with
specialized and esoteric languages, limited and simulation-
centric tools and wide experience in delivering applications
that require the aid of a highly-trained operator in order to
be useful.

6 RELATED TECHNOLOGIES

A number of technologies are deeply embedded in Micro-
soft’s .Net technology base, and are therefore available to -
and in most cases, used by, HighMAST™. Furthermore,
each of these technologies, through the base-level class li-
braries is a part of the fabric of HighMAST™, free of the
often-ignored friction of “integration”.

XML is a broad-based industry standard that is central
to many aspects of Microsoft’s .Net initiative. Its principal
purpose is to provide self-documenting data structures that
can be manipulated by entities without full knowledge of
the entire form of the data. It is useful for integration and
serialization, as well as being a key technology to other
technologies such as SOAP and ADO.Net. Through .Net’s
XML implementations, HighMAST™ can provide excel-
lent and broad support for browsing, reading and writing
XML documents.

Attributes are a mechanism for describing some as-
pect of a piece of code. They can be attached to methods,
properties, interfaces, classes, namespaces and other arti-
facts. The descriptions can be used to specify indigenous
aspects of a piece of code such as it’s a class’ serializabil-
ity or a static variable’s being thread-local, or can be used
to declare some custom aspect of the code such as whether
a piece of code represents a model or view construct, and
perhaps whether a particular property represents an input
port, output port or bidirectional port in some piece of
code. Through the use of attributes, HighMAST™ is pre-
pared to indicate to tools, graphical and otherwise, the in-
tent of critical code elements such as tasks, ports, connec-
tors and resources.

Delegates are an object-oriented incarnation of the
function pointer. They represent callbacks, but the multi-
cast delegate goes a step further and permits a single dele-
gate instance to perform callbacks on more than one target
object. HighMAST™ uses delegates as events (see below)
as well as using them as targets for scheduling callbacks.

Bosch

See below for the signature that a method must follow in
order to be able to act as a schedulable callback.

public delegate void ExecEventReceiver(
 IExecutive exec,
 object userData);

This means that a method can have any name, and

must receive two arguments, one an instance of IExecutive
and the other, a generic object that may be used to contain
any desired user data or may be null. Any method on any
object that follows this criterion, may be used as a target
for a scheduled event.

Events are a construct that uses a multicast delegate to
collect callbacks that are interested in being called when a
particular occurrence happens. Their syntax is shown in the
listing below.

// Add a handler to the status change event
// fired by the object ‘_order’. The method
// void StatusChangeHandler(…) is declared
later.
_order.StatusChangeEvent+=
 new PropertyChan-
geEvent(StatusChangeHandler);

Events provide a simple and powerful mechanism for

tying disparate elements of a simulation together while
minimizing dependencies between them.

SOAP and Web Services are technologies that enable
an application, running on a web server, to behave like a
library for other programs to call into by way of a network.
This is a big part of Microsoft’s “vision” for .Net, and pro-
vides a very powerful integration point for, among other
things, enterprise applications that desire to use simulation-
oriented services. Highpoint has several demonstrations of
HighMAST™ simulations exposed to the web via SOAP
and web services.

.Net Framework Libraries – From the Sys-
tem.Collections namespace with its ArrayList, Hashtable,
Queue, Stack and and SortedList, to the System.Threading
namespace with its behind-the-scenes threadpool, the .Net
Framework Libraries provide some impressive raw mate-
rial for creating customer-pleasing capabilities.

Built-in Compiler and Code DOM – The framework
libraries provide, in C#, an object model called the “Code
DOM (Document Object Model)” for constructing source
code and subsequently compiling it. Integrated into a simu-
lation environment, this provides a simple way for simula-
tion system designers to support user-provided behavior.
HighMAST™ includes a component called an Evaluator-
Factory, that takes a string that represents a code snippet
from the user, compiles it at run-time to generate an
Evaluator and integrates in into a running application.

Application Domains – Server development on Win-
dows used to involve a choice between the stability risks of
sharing memory space between different clients’ applica-
tions, and the performance risk of creating a new process for
handling each client’s request. Application domains are a
simple way of separating clients’ computation so that a crash
in one does not take down all of the others, and yet static
data in the application are kept isolated between clients.

Application domains are probably best used to isolate
different simulations running on the same server, but
whose results are intended for different users.

The Common Language Runtime (CLR) is a virtual
machine environment in which .Net code is run. All code is
stored in the same intermediate form, MSIL (Microsoft In-
termediate Language) but runs as compiled code, with the
compilation happening at load time. This means that while
the engine and core libraries are written in C# for perform-
ance and advanced capability, application specific code
and components can be written in VB.Net or another .Net
language that your IT or engineering staff prefer.

Unmanaged Code – The CLR provides many mecha-
nisms to protect programmers from making mistakes like
walking off the end of an array, dereferencing a wild
pointer, forgetting to free memory after it is no longer
needed, and many others. This is a productivity boon, but
comes at a performance cost. By declaring a particularly
performance sensitive region of code to be “unmanaged”,
the developer can choose to skip these protective measures
and achieve performance closer to that of C and C++.

ADO.Net is Microsoft’s premier data access technol-
ogy. It can be used to access data from a database, of
course, but it is also capable of reading from, and writing
to, spreadsheets, textual flat files, and XML documents us-
ing the same coding structures and syntax. ADO.Net Data-
Sets contain tables, rows, views, relationships and many
other object-oriented constructs that permit the application
to create and use a local in-memory database.

NUnit Integration – While not a Microsoft technol-
ogy, NUnit is an excellent testing framework distributed
from NUnit’s website at http://www.nunit.org/.
HighMAST™ is written with many tests that use this
framework, and we advocate the use of NUnit in any lar-
ger-scale .Net software project.

7 *NIX CAPABILITIES THROUGH MONO

An organization called Ximian.org has had between 30 and
150 open source developers working on a project called
Mono since about July of 2001. Currently, about 150 have
CVS commit access. Mono is an open source implementa-
tion of .Net capable of running on Linux, FreeBSD and
Windows (with the XP/NT core). There is also an inter-
preter, which is slower, that runs on the s390, SPARC and
PowerPC architectures.

The Mono distribution includes a compiler for the C#
language, a runtime for the Common Language Infrastruc-
ture (analogous to Microsoft’s Common Language Runtime)
and a set of class libraries. The runtime can be embedded
into your application. It has an implementation of ASP.NET
and a limited ADO.NET implementation as part of its distri-

http://www.nunit.org/
http://www.go-mono.com/c-sharp.html
http://www.go-mono.com/runtime.html
http://www.go-mono.com/class-library.html
http://www.go-mono.com/embedded-api.html
http://www.go-mono.com/asp-net
http://www.go-mono.com/ado-net
http://www.nunit.org/
http://www.go-mono.com/c-sharp.html
http://www.go-mono.com/runtime.html
http://www.go-mono.com/class-library.html
http://www.go-mono.com/embedded-api.html
http://www.go-mono.com/asp-net
http://www.go-mono.com/ado-net

Bosch

bution. While there are some questions about Microsoft’s
strategy regarding Mono, the class libraries are X11 licensed
(similar to the BSD license), so anyone can use and change
them without worry. The runtime libraries are LGPL, so you
can ship proprietary applications linked against Mono. Fi-
nally, the compilers and utilities (varies by utility) are typi-
cally licensed under the Gnu Public License.

Many software projects have reported minimal issues
porting from .Net to Mono, and Highpoint is considering
plans to expand our platform support to include full sup-
port for Mono under our core libraries.

8 MODEL PARTICIPANT CHOICES

Most modeling environments have first class objects. In
many, they are called blocks and are “wired together”, in
some they are called “active entities” or “processes”, Law
and Kelton (2000), Watkins (1993), and embody a thread
of execution, and in some they are domain-level macro ob-
jects whose relationships are specified in the creation of
the simulation design.

With HighMAST™, you have a choice of any or all of
the above. Active entities can be created using the detach-
able callback construct. Block-and-port models can be cre-
ated using the port-equipped primitives we already have, or
by building your own through a simple recipe. Domain
specific models can be created using macro objects such as
our SupplyChainMail™ objects.

9 WORKFLOW ARCHITECTURE

HighMAST™ includes a sophisticated workflow engine
that permits a designer to describe networks of tasks to any
level of detail, and then invoke them on an arbitrary num-
ber of simultaneous or time-staggered subjects, modeling
the execution of a number of similar tasks all of which
contend for a (limited) number of resources, for example.

This workflow engine can be used to model complex
hierarchical procedures. Procedures can be specified at a
high level, and later provided with detailed sub-tasks to in-
crease fidelity where more detailed exploration is desired.
Figure 1 depicts the concept of a nestable task graph.

Parent

Task 0 Task 1
Delay 1 day

Task 3

Task 2
Delay 1 hour

Task 4 Task 5
Delay 1hr+1day

Task 6
Delay 1 hour

Task 8

Task 10

Delay 1 hour

Task 7

Task 9

Children

Children Task

Dependency

Vertex (Start) Vertex (Finish)

Figure 1: Nestable Task Graph
As the ‘parent’ task is begun, each of tasks 0, 4 and 7
are notified that they may begin. When task 0 completes, it
notifies tasks 1 & 2 of its completion. Task 2 has no other
predecessors, so it may run, but task 1 requires completion
of task 4, too, so it does not run until it is informed of task
4’s completion.

This construct, and the means for critical and shortest
path determination are shown in Cormen et al. (2001).

A designer may use inheritance from the Task class, or
utilize a set of events and an external completion signaler
to fully integrate his domain-specific tasks into the work-
flow metaphor. Each task may use the scheduler, have self-
determined duration, acquire & release resources, interact
with other tasks, etc.

Several types of relationships are provided to ensure
sequence and simultaneity as required by the designer.
These relationships are depicted in Figure 2 below.

Transport

Pick
Order

Predecessor/Successor

Costart Cofinish

Vent
Workstation

Acid
Bath

Take
Order

Unload

Handoff

Task B follows Task A

Task A cannot end until Task B has begun

Tasks share start or finish times, or both

Discharge
Fluids

Receive
Fluids

Tasks must begin simultaneously

Figure 2: Task Sequencing Relationships

From the top left, going clockwise, the first (synchro-

nizer) relationship ensures that two tasks receive start sig-
nals at the same clock time. The second (handoff) relation-
ship ensures that the ‘unload’ operation must have begun
before the ‘transport’ operation can conclude. The third
(predecessor/successor) relationship ensures that the ‘pick
order’ task does not begin until the ‘take order’ task has
concluded. The fourth box shows two relationships, the
first a costart relationship, which ensures that the ‘acid
bath’ cannot start until the ‘vent workstation’ task has be-
gun. The second relationship is a cofinish relationship,
which ensures that the ‘vent workstation’ task cannot finish
until the ‘acid bath’ task finishes.

10 RESOURCE MANAGEMENT

HighMAST™ resources implement a simple interface,
shown below. They have a Capacity field, representing
how much they can give, and an Available field, represent-
ing how much remains to be given. They also support sev-
eral means of processing resource requests, and fire several
events, meaningful to the lifecycle of a resource.

ch
Bos

public interface IResource : IModelObject {
 IResourceManager Manager { get; set; }
 double Capacity { get; }
 double Available { get; }

 bool Reserve (IResourceRequest request);
 void Unreserve (IResourceRequest request);
 bool Acquire (IResourceRequest request);
 void Release (IResourceRequest request);

 event ResourceStatusEvent AcquiredEvent;
 event ResourceStatusEvent ReleasedEvent;
}

HighMAST™ includes a generic Resource implemen-

tation that can be configured as integral (capacity and ac-
quisitions are both integral – models discrete resources),
atomic (integral, but capacity is 1.0 – models singleton re-
sources), or neither (capacity and acquisitions are uncon-
strained – models partial acquisition of scalar resources,
such as pounds of steam drawn off of a steam system.)

Resource requests serve as a means for processing a
request, as well as a means for tracking the resource pool
from which an acquisition was made, and finally for exe-
cuting a release. The requester communicates his desired
quantity, and is informed of the granted quantity through
the resource request. The GetScore(…) method holds the
requester’s logic for determining the score of each avail-
able resource, and the Resource Manager grants the best
resource. A resource that scores double.MinValue will
never be granted to a requester, and a resource that scores
double.MaxValue will immediately be granted.

public interface IResourceRequest {

 double GetScore(IResource resource);
 double QuantityDesired { get; }
 double QuantityObtained { get; set; }
 IResource ResourceObtained { get; set; }
 IResourceManager
 ResourceObtainedFrom { get; set; }

 bool Reserve(
 IResourceManager resourceManager,
 bool blockAwaitingAcquisition);
 bool Acquire(
 IResourceManager resourceManager,
 bool blockAwaitingAcquisition);
 void Release();
}

11 PORTS-AND-CONNECTORS

HighMAST™ includes a Port-and-Connector architecture
that allows the developer to create a familiar “create ob-
jects with ports and wire the ports together with connec-
tors” model. There are very few constraints placed on the
kind of object that can serve as owner of such ports – basi-
cally, it must be able to enumerate ports, and inform the
ports of their owner through a registration protocol.
 Ports serve to transfer data objects between entities such
as products between assembly stations in a manufacturing
simulation. They present objects to, and accept objects from,
the world outside of a port owner. They fire events when
data arrives or is sent, and support out-of-band data, which is
a set of alternate date elements that usually pertain to the
data object being transmitted. As an example, a vat, transfer-
ring 100 kg of sucrose mixture to another vat, might present
a Mixture object on its output port, and a TimeSpan object
on an out of band channel called “MinTransferDuration”.

Note that for values that do not represent transfers, do
not change through being read, or for which a Java-like
PropertyChangeListener construct serves sufficiently (such
as when modeling production rates instead of discrete
product in a manufacturing environment), a simple field
and event are more than adequate to communicate data be-
tween entites. In other words, unlike many block and port
architectures, this is one of several first-class means you
have at your disposal for communicating information be-
tween participants in your simulation.

12 MODEL ARCHITECTURE

HighMAST™ currently provides several model architec-
tures implemented as prebuilt frameworks. All architectures
are implemented on top of the HighMAST™ base engine
and libraries, described above, and leverage some or all of
their executive, resource, queue and other primitive func-
tionalities. Some of the key architectures are Plant-Process-
Product, Block-And-Connector, and Modular Supply Chain.

The Plant-Process-Product framework, depicted in
Figure 3, below is built on the premise that there are three
principal domains to some simulations – Plant, Process, and
Product. Each has its own constructs and capabilities, and a
wide range of simulations can be built up to any desired level
of fidelity from primitives in each of these three domains.

Plant Process

Product

Executive
& Core Libs

Figure 3: The Plant-Process-Product Framework

sch
Bo

The Plant domain models that aspect of the real
world where location and capability are critical. This do-
main incorporates elements for modeling plants, ware-
houses, equipment, vehicles, manufacturing stations, and
other elements of an enterprise’s Plant & Equipment as-
sets. This is also the domain into which resource alloca-
tion, staff scheduling and cost analysis falls. Elements in
the Plant domain are typically used by elements of the
Process domain to manipulate elements of the Product do-
main. The plant domain is implemented primarily as re-
sources and resource pools with allocation managers.

The Process domain models things that people and
machines do. The workflow engine, described above, has
been used to good effect, in describing and modeling com-
plex procedures with interactions between manufacturing
stations. A large task graph is built up, with one subpath
for each of a number of manufacturing stations, and appro-
priate handoff and synchronization primitives to govern the
progress of execution. Many of the tasks have resource ac-
quisitions that draw from model-global, or manufacturing-
station-local resource pools, as appropriate to the environ-
ment being modeled.

CPM and PERT analysis modules allow the analyst to
gain a detailed understanding of the timing and dependencies
of the model, or the enterprise application to make parameter-
ized decisions in configuring exploratory simulations.

The Product domain is where a company’s product is
modeled. This domain utilizes a framework of items and
transformations, shown in Figure 4, below, to model part-
whole transformations of one set of items into one or more
new items that have unique properties. Transformations may
be bidirectional, and the new item may aggregate, retaining
the identities of its constituent items, or transform, creating a
new product. This enables modeling of a wide range of
product transformations including chemical manufacturing,
assembly of parts into components, subassemblies, assem-
blies and so forth, and boxing and palleting for shipment.

Item (Type A)

Item (Type B)

Tr
an

sf
or

m
at

io
n

1

Item (Type C)

Item (Type D)

Tr
an

sf
or

m
at

io
n

2

Item (Type E)

Item (Type F)

Figure 4: Item/Transformation Framework

Blocks and connectors are a well-known paradigm

for building up models. HighMAST™ has a library of
typical block constructs such as queues, distributions and
item generators, and has been used to create a generic bank
teller model and lake pollution model, which is available
for inspection on the Highpoint Software website.

Modular Supply Chain - HighMAST™ has a modular
supply chain modeling architecture which currently consists
of a module called SupplyChainLink™. This module (N.B.
This is still in development, but we expect it to be demon-
strable before WSC ’03) receives orders from above, main-
tains an inbound and an outbound inventory, receives ship-
ments from below, and is capable of product transformation
to represent palleting, manufacturing, transportation, etc, as
described in Chopra (2000). We model customer pull through
frequent small orders. The inbound inventory contains raw
materials, and the outbound inventory contains finished
goods. The SupplyChainLink class is capable of generating
orders and transmitting them to adjacent links in the chain.
Our SupplyChainMail™ permits a supply chain to incorpo-
rate many links at many levels to represent different service
levels and product chains. Order & routing strategy objects
exist at each level, and determine whether a link is push or
pull, as well as providing replenishment levels, various cost
data, and defining the individual chains. Separate channels in
the link object can model material and financial cycles.

13 OTHER GOODIES

There are a few other tools, techniques and micro-
architectures that have been developed for customers of
Highpoint Software Systems as a part of our HighMAST™
efforts, that are powerful and useful enough to warrant
mention here.

StatisticsLogger is an object that can be registered to
listen for PropertyChangeEvents from any data that fires
that event, and can aggregate statistics on the values and
optionally the timing of the values taken on by that field.

Expressions – EvaluatorFactory is a class that can
take a user-supplied string that represents an expression,
and compile it, all while running in an application, into an
executable module of code called an Evaluator, returning a
function pointer (a delegate) to the compiled instance of
that expression.

SmartPropertyBag is a dictionary (a set of name-
value pairs, indexed and obtainable by using the name as a
key) that can hold raw numeric data, delegates (function
pointers) for dynamically determining the value to be re-
turned for a key, expressions that may utilize other entries
in the dictionary to dynamically determine the numeric
value of a key, aliases to entries in other SmartPropertyBag
constructs, and child (contained) SmartPropertyBag ob-
jects. Large networks of very flexible, user-programmable
data entities (such as plant resources and heuristic strate-
gies) can be modeled using these elements.

Mementos – Using a well-known design pattern from
Gamma (1995), HighMAST™ includes a mechanism called
a memento that we have used to enable a simulation partici-
pant to snapshot its state, and later reset that state from the
snapshot or memento. The memento can represent an object
hierarchy, and will be intelligent about how the snapshotting
is performed. Elements that have changed since the last
snapshot are re-recorded, and elements that have not
changed, use the snapshot they recorded previously.

DbReflect is a framework that allows a nearly arbitrary
object hierarchy to be accessible either as that object hierar-

Bosch

chy, or as a set of tables, one-per-class, with a row per ob-
ject. Tables may specify an index column, and changes to
the table are instantly reflected in the underlying objects, and
vice versa.

14 SUMMARY AND FURTHER READING

HighMAST™ is a new object oriented simulation frame-
work, written in C#, that enables the designer to create simu-
lations around a core event scheduling engine with a ports-
and-connectors approach, a workflow-and-plant-model ap-
proach, or a range of other approaches. It exposes the full
capabilities of Microsoft’s .Net libraries to the designer,
thereby enabling simpler web services, easier database and
enterprise application integration, and better and more intui-
tive user interfaces created around WinForms or WebForms
and animations written in DirectDraw.

HighMAST™ represents an acknowledgment that
simulation development and application development are
often one and the same, and takes a significant step toward
bringing simulation development up to the state of the art
in application development.

For further information on HighMAST™, please visit
http://www.highpointsoftware.com.

REFERENCES

Chopra, S. et al. 2000. Supply Chain Management. ISBN
0-13-026465-2 Upper Saddle River, N.J. Prentice Hall

Cormen, T. et al. 2001. Introduction to Algorithms. ISBN
0-262-03293-7. MIT Press.

Gamma, E. et. al. 1995. Design Patterns. ISBN 0-201-
63361-2. Reading, MA: Addison-Wesley.

Garrido, J. M. 1993. Object-Oriented Discrete-Event
Simulation with Java. ISBN 0-306-46688-0. New
York: Kluwer Academic / Plenum Publishers.

Law, A. M., and Kelton, W. D. 2000. Simulation Model-
ing and Analysis, 3rd ed. ISBN 0-070-59292-6 New
York: McGraw-Hill.

Watkins, K. 1993. Discrete Event Simulation in C, ISBN
0-077-707733-4 England: McGraw-Hill Europe.

AUTHOR BIOGRAPHY

PETER C. BOSCH is a founder of Highpoint Software
Systems, a small and attentive decision-support technology
firm in the upper Midwest. He holds a BSEE from the
State University of New York, and is a Certified Java De-
veloper and Microsoft Certified Solution Developer. Pete
has published numerous technical articles on object-
oriented development in these environments. Pete has been
designing and building simulations since 1991, for Fortune
100 firms in aerospace, medical imaging, pharmaceutical
manufacturing and investment banking. He has been lead-
ing large software projects since 1995.

http://www.highpointsoftware.com/
http://www.highpointsoftware.com/

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1852
	02: 1853
	03: 1854
	04: 1855
	05: 1856
	06: 1857
	07: 1858
	08: 1859

