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ABSTRACT 

This paper introduces a new technique for estimating cycle 
time quantiles from discrete event simulation models run at 
a single traffic intensity.  The Cornish-Fisher expansion is 
used as a vehicle for this approximation, and it is shown 
that for an M/M/1 system and a full factory simulation 
model, the technique provides accurate results with low 
variability for the most commonly estimated quantiles 
without requiring unreasonable sample sizes.  Additionally, 
the technique provides the advantages of being easy to im-
plement and providing multiple cycle time quantiles from a 
single set of simulation runs. 

1 INTRODUCTION 

On time delivery is a key metric for assessing the customer 
service level of a production facility, and the ability to 
generate accurate delivery dates is crucial, particularly in 
customer service driven industries (Gordon 1993).  One 
technique for improving this metric would be to develop 
more accurate estimates of average cycle time and, more-
over, cycle time quantiles for a given traffic intensity.  Es-
timates of the average cycle time give a feel for the ex-
pected value of the cycle time, but do not take into account 
the variability in the system or the skewness of the cycle 
time distribution.  An intelligently selected set of quantiles 
from the distribution, on the other hand, provides the deci-
sion maker with a complete picture of the cycle time distri-
bution (Chen and Kelton 1999).  Therefore, accurate quan-
tile estimates provide much more information from which 
to quote customer lead times. 
  Discrete event simulation models have traditionally 
been used to generate estimates of average cycle time, and 
much work has been done on reducing the simulation run 
time for large scale production systems in an attempt to ob-
tain these estimates more quickly.  However, even with de-

  
  
creasing run times, there are still not efficient and easily 
implemented methods for obtaining accurate estimates of 
cycle time quantiles.  Much of the reason for this is that 
quantiles are more difficult to compute than simple aver-
ages and can require excessive data storage.  

 

 A direct quantile estimate is one in which the estimate 
is a function of the data itself.  Order statistics are most 
traditionally used for this purpose.  To obtain a cycle time 
quantile estimate from a discrete event simulation model 
using order statistics, the cycle time values are simply col-
lected and ordered from low to high.  The desired quantile 
is then directly selected from the sorted data.  For example, 
to estimate the 95th quantile of cycle time from 100,000 
observations, select the 95,000th largest data point.  
Clearly, a drawback of this solution technique is that all the 
observations must be stored and then sorted to obtain the 
estimate, and even with rapidly increasing computing 
power, sorting and storing the hundreds of millions of 
samples required to estimate some quantiles is still unrea-
sonable (Chen and Kelton 1999).   

Jain and Chlamtac (1985) developed the P2 algorithm 
to estimate quantiles without storing the individual obser-
vations, but the algorithm is cumbersome to implement.  
Heidelberger and Lewis (1984) also developed techniques 
for reducing data storage in quantile estimation, but their 
algorithm requires that the simulation model be rerun for 
each quantile estimated.  Jin , Fu, and Xiong (2003) sug-
gest a new quantile estimator and show that the error prob-
ability for this estimator goes to zero with a large enough 
sample size, but the sample size required for the estimation 
grows exponentially as the problem dimension increases.  
Also, Chen and Kelton (1999) developed the zoom-in algo-
rithm for quantile estimation, which uses the concepts of 
order statistics and φ-mixing to provide upper and lower 
bounds on the desired quantile at each iteration of the algo-
rithm.  However, their approach also requires sample sizes 
on the order of tens of millions.   
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An indirect quantile estimate is one in which the esti-
mate is a function of data parameters (i.e. sample mean, 
sample variance, etc.) rather than the data itself.  Indirect 
estimation techniques have the advantage of not requiring 
as much data storage, but may be less accurate or have 
higher variance than the direct estimation techniques.  
Avramidis and Wilson (1998) suggest a technique for re-
ducing bias and variance of quantile estimators using cor-
relation induction techniques.  Hesterberg and Nelson 
(1998) also exploited control variates with known quantiles 
to reduce the variance in estimating selected quantiles of a  
distribution.  The technique showed significant reduction 
in MSE for extreme quantiles (.9, .95, and .99), but re-
quires the use of control variates with known quantiles.   

An indirect quantile estimation technique that provides 
good accuracy, low variability, and which is easy to im-
plement would be extremely useful.  This paper introduces 
a technique for indirectly estimating cycle time quantiles 
from a discrete event simulation model run at a single traf-
fic intensity.  Results from models of a simple M/M/1 
queueing system and from a full scale semiconductor 
manufacturing system are presented.    

2 CORNISH-FISHER EXPANSION 

The Cornish-Fisher expansion, developed by   Cornish and 
Fisher (1937), relates sample data to the standard normal 
distribution in order to generate a quantile estimate.  Equa-
tion 1, given below, gives the first four terms of the Cor-
nish-Fisher expansion, where y* is the normalized quantile 
estimate, g1 is the  sample skewness, g2 is the sample kur-
tosis, and zα is a quantile draw from the standard normal 
distribution.   
 
y*=zα+1/6(zα

2-1)g1 +1/24(zα
3-3zα)g2-1/36(2zα

3-5zα)g1
2 (1) 

 
 The expansion begins with the desired quantile draw 
from the standard normal distribution and then makes ad-
justments to this quantile based on the sample skewness 
and kurtosis from the desired distribution.  Therefore, it is 
important to have accurate, consistent estimators of the 
sample skewness and kurtosis.  Equations (2) – (4), shown 
below, give estimators for the first four cumulants of a 
sample distribution (Kenney and Keeping 1954).  These 
cumulants, in turn, are used with equations (5)-(6) to ob-
tain estimates of sample skewness and kurtosis (Kenney 
1954).  In equations (2)-(6), N represents the number of 
sample data points, and mr=1/NΣ(xi-m1)r. 
 
 k2=Nm2/(N-1)  (2) 
 
 k3=N2m3/(N-1)(N-2)  (3) 
 
 k4=N2[(N+1)m4-3(N-1)m2

2]/(N-1)(N-2)(N-3)  (4) 
 

 g1=k3/k2
3/2  (5) 

 
 g2=k4/k2

2  (6) 
 
 To obtain a quantile estimate of the cycle time distri-
bution from a discrete even simulation model using the 
Cornish-Fisher expansion, running totals of  the appropri-
ate sums of squares, sums of cubes, etc. must be kept in 
order to calculate the mr values.  Then, at the conclusion of 
each simulation run, equations (2)-(6) are used to obtain 
estimates of the sample moments, which are, in turn, 
plugged into equation (1) to obtain a normalized quantile 
estimate.  To translate the quantile estimate back to the cy-
cle time distribution from the normalized distribution, the 
quantile is simply multiplied by the sample mean and di-
vided by the sample standard deviation Only minimal data 
storage, necessary for sample moment calculation, is re-
quired, and upon completion of a single set simulation 
runs, any quantile can be calculated without further simula-
tion effort using Equation (1).  

3 RESULTS 

To assess the performance of the Cornish-Fisher expansion 
as an indirect quantile estimator for discrete event simula-
tion models, its performance was compared to the direct 
estimation technique using order statistics.  Quantiles were 
estimated for a simple M/M/1 system, in which the theo-
retical quantiles are known, and for a full scale model of a 
semiconductor manufacturing facility in which the theo-
retical quantiles are not known.  Experimentation for the 
M/M/1 system was performed using a discrete event simu-
lator written in C++, while experimentation for the full fac-
tory model was performed using the commercial simula-
tion package Factory Explorer.   

3.1 M/M/1 System 

Figure 1 shows the results of estimating cycle time quantiles 
for an M/M/1 system using direct quantile estimation (order 
statistics). Each point on the line represents a separate set of 
30 simulation runs.  For each of the five lower traffic inten-
sities (.5, .6, .7, .8, and .9), 1,000,000 cycle time observa-
tions were recorded at each simulation run, while at the 
highest traffic intensity, .97,  2,000,000 cycle time observa-
tions were recorded at each run.  Additional observations 
were collected at the highest traffic intensity point since the 
variability in the system increases dramatically there, com-
pared to the lower traffic intensity points, and, therefore, ex-
tra observations are required to drown out the initial bias in-
duced by the empty and idle starting conditions. 
 The solid line in Figure 1 shows the mean relative per-
cent deviation from the theoretical value across each of the 
design points, while the dotted lines represent the 95% 
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Figure 1:  95% Confidence Interval on the Relative 
Percent Difference from the Theoretical 90th Quantile 
of Cycle Time for an M/M/1 System Obtained Using 
Order Statistics 

 
confidence interval on the same relative percent deviation. 
To build the confidence interval for a given traffic inten-
sity, the quantile estimates for each of the simulation runs 
were calculated.  Then, the estimates were grouped into 
sets of five, in order of simulation run, and the average of 
each group was calculated.  By the central limit theorem, 
those averages are approximately normally distributed, and 
the standard equation for building a confidence interval 
around a mean was employed.  As illustrated in Figure 1, 
the confidence interval around the quantile estimate is very 
tight, even in regions of high variability using the direct 
estimation technique. 
 Using the direct estimation as a benchmark, quantile es-
timates made using the Cornish-Fisher expansion, as shown 
in equation (1), were then calculated.  Equation (1) gives only 
the first four terms of the expansion, as additional terms of 
the expansion were not found to add significantly to the re-
sults.  In fact, using the first 6 terms of the expansion resulted 
in poorer quantile estimation.  Figure 2 shows the results of 
this experimentation for an M/M/1 system.  To ensure a fair 
comparison between the direct and indirect estimation tech-
niques, common random numbers were employed, and the 
same number of simulation runs and observations were col-
lected at each traffic intensity. 
 As expected, in Figure 2 the confidence interval is 
wider than the confidence interval obtained using order sta-
tistics, and it gets wider as the traffic intensity, and there-
fore variability in the system, gets higher.  However, it is 
still relatively narrow, never getting wider than 2% of the 
theoretical cycle time value at any traffic intensity.   
 Figure 4 illustrates the effectiveness of the Cornish-
Fisher expansion in estimating different cycle time quan-
tiles for the M/M/1 system.  As with the previous figures, 
experimentation consisted of 30 runs of 1,000,000 observa-
tions each at all traffic intensities except .97, at which 
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Figure 2:  95% Confidence Interval on the Rela-
tive Percent Difference from the Theoretical 90th 
Quantile of Cycle Time for an M/M/1 System 
Obtained Using the Cornish-Fisher Expansion   

 
2,000,000 observations were collected at each run.  
The figure illustrates that, for this system, the Cornish-
Fisher expansion does a better job estimating some quan-
tiles than others.  For instance, the 30th quantile tends to be 
underestimated by at least 5% and by as much as 12% at 
the higher traffic intensities, while the 70th and 90th quan-
tile are estimated within 3% of the theoretical value at each 
of the simulated traffic intensities.  In general, Figure 3 
demonstrates that as the quantile being estimated gets 
lower and lower, the accuracy of the estimation technique 
for an M/M/1 system tends to get poorer and poorer.  
However, the likelihood of a production manager estimat-
ing the 30th quantile of cycle time is very small.  Rather, it 
is more likely the most desirable quantiles to estimate will 
be at the other extreme, the 70th quantile or higher.    
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Figure 3:  Relative Percent Difference Between Esti-
mated and Theoretical Quantiles for an M/M/1 System 

 
 Despite the fact that Figures 1 and 2 illustrate that using 
order statistics provides slightly more accurate quantiles with 
slightly less variability for the M/M/1 system, Figure 3 high-
lights an advantage of using the indirect estimation tech-
nique.  To generate cycle time quantile estimates using the 
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Cornish-Fisher expansion, only one set of simulation runs 
was required to obtain all the quantile estimates in Figure 3. 
Once the sample moments at each of the traffic intensities 
were calculated from the simulation runs, the zα value in 
equation (1) was simply changed to produce estimates for all 
the quantiles shown in the figure.  Using direct estimation, 
additional computing work would have been required to gen-
erate the same information.  For each simulation run, for each 
quantile, the correct element of the sorted cycle time array 
would have to be identified.  Table 1 illustrates these differ-
ences between direct estimation and indirect estimation using 
the Cornish-Fisher expansion.   
 
Table 1:  Differences in Requirements between Direct Es-
timation Using Order Statistics and Indirect Estimation Us-
ing the Cornish-Fisher Expansion 

Change zα parameter and 
recalculate the Corning-

Fisher expansion

Rerun post-processing for 
each simulation run at 
each traffic intensity

Want new percentile?

Evaluate Corning-Fisher 
approximation

Sort cycle time values 
and collect desired 

percentile

Post- processing?

Collect sample moments of 
cycle time 

Collect sample of cycle 
time observations

Purpose of 
Simulation

NoneCycle time observations 
(possibly)

Data Storage

Indirect EstimationDirect Estimation

Change zα parameter and 
recalculate the Corning-

Fisher expansion

Rerun post-processing for 
each simulation run at 
each traffic intensity

Want new percentile?

Evaluate Corning-Fisher 
approximation

Sort cycle time values 
and collect desired 

percentile

Post- processing?

Collect sample moments of 
cycle time 

Collect sample of cycle 
time observations

Purpose of 
Simulation

NoneCycle time observations 
(possibly)

Data Storage

Indirect EstimationDirect Estimation

   
3.2 Full Factory System 

In addition to testing the Cornish-Fisher expansion on a 
simple M/M/1 queueing system, experimentation was 
also performed on a more complex, full factory model.  
The model was adapted from Testbed Data Set #1, ob-
tained from the website of the Modeling and Analysis of 
Semiconductor Manufacturing lab at Arizona State Uni-
versity  (http://www.eas.asu.edu/~masmlab), and ex-
perimentation was performed using the commercial 
simulation package, Factory Explorer.  Details about the 
system are given in table 2.     
 

Table 2:  Description of Full Factory Model 
Product type Non-volatile memory 
Number of products 1 
Number of processing steps 232 
Number of tool groups 83 
Number of operator groups 32 
Rework modeled? Yes 
Machine breakdown mod-
eled? 

Yes 

Machine loading/unloading? Yes 
  

Figure 4 illustrates the results of using the Cornish-
Fisher expansion to estimate cycle time quantiles for the 
this system, so the estimates could not be compared to the  
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Figure 4:  95% Confident Interval on the Relative Per-
cent Difference between the Indirectly and Directly Es-
timated 90th Cycle Time Quantile for the Full Factory 
Model 

 
true quantile values as they were during the experimenta-
tion on the M/M/1 system.  Instead, direct estimates of the 
quantiles at each traffic intensity were obtained using order 
statistics and considered to be best available quantile esti-
mates.  The indirect estimates obtained via the Cornish-
Fisher expansion were then compared to these direct esti-
mates to assess their accuracy.  Figure 3 shows the 95% 
confidence interval on the relative percent difference be-
tween the directly and indirectly estimated 90th cycle time 
quantiles for the full factory model.    To obtain both the 
direct and indirect estimates for all traffic intensities other 
than .97, the simulation was run for 5 years. As was done 
with the M/M/1 system, at the .97 traffic intensity the 
simulation was run for twice as long, or 10 years.  Fifteen 
replications were made at each traffic intensity.   
 Figure 4 shows that quantiles obtained using indirect 
estimation are almost as good as those obtained using direct 
estimation.  In fact, across all traffic intensities, the indirect 
estimate never varies by more than 2% from the direct esti-
mate, and the width of the 95% confidence interval is never 
greater than 3% of the directly estimated quantile value.   
 As was done with the M/M/1 system, the accuracy of 
the Cornish-Fisher expansion in estimating different cycle 
time quantiles was evaluated for the full factory system.  
Figure 5 shows the relative percent difference between the 
directly and indirectly estimated values for the 30th, 50th, 
70th, 90th, and 97th quantiles of the sample cycle time dis-
tribution  As with the previous results, each data point is 
the result of 15 simulation replications of 5 or 10 years 
each, depending on the traffic intensity.   

For the lower traffic intensities (.5, .6, .7, and .8), the 
Cornish-Fisher expansion estimates for all five cycle time 
quantiles are within 1% of the values obtained using direct 
estimation.  At the higher traffic intensities (.9 and .97), the 
indirect estimates begin to vary more from their directly 
estimated counterparts, but they are never more than 5%  
 

http://www.eas.asu.edu/~masmlab
http://www.eas.asu.edu/~masmlab
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Figure 5:  Relative Percent Difference Between Indi-
rectly and Directly Estimated Cycle Time Quantiles for 
the Full Factory Model 

 
different than the direct estimates.  Additionally, as op-
posed to the results from the M/M/1 system, there does not 
appear to be any indication for the full factory that the 
Cornish-Fisher expansion predicts certain quantiles better 
than others.  All five of the estimated quantiles are pre-
dicted with approximately the same level of accuracy when 
compared to the directly estimated values.   

Finally, Figure 5 again illustrates the fact that indirect 
quantile estimation using the Cornish-Fisher expansion can 
save significant effort over direct estimation, especially 
when multiple quantile estimates are required.  To generate 
the data points for the figure, both direct and indirect esti-
mates for each quantile at each traffic intensity were re-
quired.  For the indirect estimates, once the sample mo-
ments at each traffic intensity were known, it was trivial to 
generate the estimates of the different quantiles using the 
Cornish-Fisher expansion.  Therefore, from a single set of 
computing runs, all five sets of quantile estimates were 
generated.  However, to obtain the same set of information 
for the direct estimates, a short computer program that 
identified the correct element from the sorted array of cycle 
time values had to be run at each traffic intensity for each 
quantile estimate.  

4 CONCLUSIONS 

The results from the M/M/1 system and the factory model 
illustrate that using the Cornish-Fisher expansion in con-
junction with discrete event simulation models can lead to 
accurate estimates of the most desirable quantiles for 
manufacturing systems.  For the M/M/1 system, accuracy 
decreases as the quantile being estimated tends toward the 
lower extreme of the distribution, but these quantiles are 
less likely to be useful in a manufacturing setting.  In the 
full factory model, the accuracy, when compared to di-
rectly estimated quantiles, did not depend at all on the 
quantile being estimated.  Additionally, confidence inter-
vals around the estimates show that their variance is quite 
small, provided that the initial bias in the simulation model 
is no longer affecting the sample moment calculations.   
Also, despite the fact that direct estimation using order sta-
tistics provides slightly more accurate quantile estimates 
with less variability, the gains in accuracy are offset by the 
ease of implementation and data storage requirements.  
The Cornish-Fisher expansion provides a quantile estima-
tion technique which is easy to implement and has the ad-
vantage of being able to generate multiple quantile esti-
mates from a single set of simulation runs.  Additionally, 
using the Cornish-Fisher expansion to estimate quantiles 
requires minimal data storage, resulting in an extremely 
compact representation of the system 

5 FUTURE WORK 

Future work in this area includes generating quantile esti-
mates for the entire cycle time throughput curve rather than 
for a single point on the curve at a time.  Further testing 
could also be performed on systems in which the theoreti-
cal quantiles are known (i.e. Jackson network queueing 
models).  Additionally, investigations into the required 
sample size to obtain a given confidence interval width 
could prove to be interesting.   

ACKNOWLEDGMENTS 

This research has been supported in part by grant DMII 
0140441/0140385 from the National Science Foundation and 
by grant 2001-NJ-878 from the Factory Operations Research 
Center that is jointly funded by the Semiconductor Research 
Corporation and by International SEMATECH.  Additional 
thanks go to professors Barry Nelson and Bruce Ankenman 
from Northwestern University for their creative and technical 
insights during this research.   

REFERENCES 

Avramidis, Athanassios N., and James R. Wilson. 1998.  
Correlation-Induction Techniques for Estimating 
Quantiles in Simulation Experiments. Operations Re-
search 46 (4): 574–591.  

Chen, E. Jack, and W. David Kelton.  1999.  Simulation-
Based Estimation of Quantiles.  Proceedings of the 
1999 Winter Simulation Conference, P.A. Farrington, 
H.B. Nembhard, D.T .Sturrock, and G.W. Evans, eds. 
428-434. 

Cornish, E.A. and R.A. Fisher.  1937.  Moments and Cu-
mulants in the Specification of Distributions.  Revue 
de l'Institut International de Statistique, 5: 307-320  

Gordon, V.S.  A Note on Optimal Assignment of Slack 
Due Dates in Single Machine Scheduling.  European 
Journal of Operational Research 70:  311-315.   



McNeill, Mackulak, and Fowler 

 
Hesterberg, Timothy C., and Barry L. Nelson.  1998.  Con-

trol Variates for Probability and Quantile Estimation.  
Management Science 44(9):  1295-1312. 

Heidelberger, P., and P.A.W. Lewis.  Quantile Estimation 
in Dependent Sequences.  Operations Research 32(1):  
185-209. 

Jain, Raj, and Imrich Chlamtac. 1985. The P2 Algorithm 
for Dynamic Calculation of Quantiles and Histograms 
without Storing Observations. Communications of the 
ACM  28(10):  1076-1085.   

Jin, Xing, Michael C. Fu, and Xiaoping Xiong.  2003.  
Probabilistic Error Bounds for Simulation Quantile 
Estimators.  Management Science 14(2):  230-246. 

Kenney, J.F., and E.S. Keeping. 1954.   Mathematics of 
Statistics, Part 1.  D. Van Nostrand Company, Inc.  
Princeton, New Jersey. 

AUTHOR BIOGRAPHIES 

JENNIFER E. MCNEILL is a Ph.D. student in the Indus-
trial Engineering department at Arizona State University.  
Her research interests are in discrete event simulation 
methodologies and manufacturing applications.  Prior to 
beginning her PhD studies, she served as an intern in the 
Operational Decision Support Technologies group at Intel, 
and was recently awarded the SRC/Intel Fellowship. 
 
GERALD T. MACKULAK is an Associate Professor of 
Engineering in the Department of Industrial Engineering at 
Arizona State University.  He is a graduate of Purdue Uni-
versity receiving his B.Sc., M.Sc., and Ph.D. degrees in the 
area of Industrial Engineering. His primary area of re-
search is simulation applications within manufacturing 
with a special focus on semiconductor manufacturing.  
 
JOHN W. FOWLER received the Ph.D. degree in Industrial 
Engineering from Texas A&M University.  He is a Professor 
of Industrial Engineering at Arizona State University (ASU) 
and is the Center Director for the Factory Operations Re-
search Center that is jointly funded by International 
SEMATECH and the Semiconductor Research Corporation.  
Prior to his current position, he was a Senior Member of 
Technical Staff in the Modeling, CAD, and Statistical Meth-
ods Division of SEMATECH and an Adjunct Assistant Pro-
fessor in the Graduate Program in Operations Research of the 
Mechanical Engineering Department at the University of 
Texas at Austin. He spent the last year and a half of his doc-
toral studies as an Intern at Advanced Micro Devices. His re-
search interests include modeling, analysis, and control of 
manufacturing (especially semiconductor) systems. He is the 
Co-Director of the Modeling and Analysis of Semiconductor 
Manufacturing Laboratory at ASU. The lab currently has had 
research contracts with NSF, SRC, International 
SEMATECH, Intel, Motorola, Infineon Technologies, ST 
Microelectronics, and Tefen, Ltd. Dr. Fowler is a member of 
ASEE, IIE, INFORMS, POMS, and SCS. He is an Area Edi-
tor for SIMULATION: Transactions of the Society for Mod-
eling and Simulation International and an Associate Editor of 
IEEE Transactions on Electronics Packaging Manufacturing. 
 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 1377
	02: 1378
	03: 1379
	04: 1380
	05: 1381
	06: 1382


