
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

UTSAF: A MULTI-AGENT-BASED FRAMEWORK
FOR SUPPORTING MILITARY-BASED DISTRIBUTED INTERACTIVE SIMULATIONS

IN 3D VIRTUAL ENVIRONMENTS

Joseph Manojlovich
Phongsak Prasithsangaree

Stephen Hughes
Jinlin Chen

Michael Lewis

School of Information Science
135 N. Bellefield Ave.
University of Pittsburgh

Pittsburgh, PA 15260, U.S.A.

.

,

ABSTRACT

A Military-based distributed interactive simulation (DIS)
such as ModSAF has been used for many years. Sever
problems of the DIS-based simulation to support a large an
heterogeneous virtual simulation environments have bee
discovered (Stone, Zyda, Brutzman, and Falby 1996). To
solve these problems, we propose an architectural multi
agent-based framework to support a large military-base
simulation with 3D visualization using inexpensive game
simulators. Several software agents are used to support in
teroperability between DIS-based military simulation nodes
and Unreal Tournament game simulators. An agent is use
to reduce DIS traffic to efficiently utilize network band-
width. It also performs protocol conversion between DIS
protocol and a game engine protocol. Additionally, us-
ing a multi-agent system, our work is easily expandable to
support several network environments and also to suppo
agent-based intelligent operations. Our main contribution is
twofold. We use a multi-agent system which is scalable to
support our framework. In addition, our framework builds
a simulation bridge that enables affordable high-quality 3D
viewer node using affordable game simulations for military
simulations.

1 INTRODUCTION

Military-based distributed interactive simulations (IS) have
been in development for many years. Such simulations sup
port multiple simulation environments and interactions be-
tween simulation operators and computer generated force
A major example of such simulations is Modular Semi-
Automated Force (ModSAF). The ModSAF simulator is
al
d
n

-
d

-

d

rt

-

s.

composed of several simulation nodes, each of which can
be a simulation engine (server), a simulation client, or both.
Each simulation nodes communicates by using a DIS pro-
tocol through a TCP/IP network. The DIS protocol is used
to exchange messages called Protocol Data Units (PDUs)
The PDUs contain information about entities and events
in simulation environments. By using the DIS protocol,
a ModSAF simulation can be extended into a very large
network of simulation nodes (Brunett and Gottschalk 1997).

However, DIS has several problems. First, the DIS
PDU packets transmitted to other simulation nodes tend to
overwhelm a network bandwidth (Stone, Zyda, Brutzman,
and Falby 1996). Since the DIS protocol works in state-
less manner, all information of each entities and events is
transmitted to other simulation nodes even though there is
no status changes in those entities or events. Therefore
there is a need of a “middle” agent between each distributed
simulation nodes so that its network traffic is reduced and
the members of military organizations are able to simulate
a very large DIS network.

The second problem of the DIS environments is the
lack of an efficient and affordable three-dimensional (3D)
simulated environment. In the DIS environment, an operator
may want to view a surroundingarea in 3D view to determine
an appropriate position of new entities before placing them
in a simulation. The operator may also want to operate
from the view point of an entity that provides a better
3D visualization environment. Few simulators provide this
capability.

Lastly, the DIS environment was originally built to link
several simulation nodes together, but it does not provide an
interface for intelligent operations, which can be added to
aid operators in making a critical decision. In a large DIS



Manojlovich, Prasithsangaree, Hughes, Chen, and Lewis

t

environment, there is an enormous amount of information
available for an operator and it is necessary to provide an
intelligent information fusion so that the operator can make
critical decisions in timely manner.

In our framework, we propose a DIS environment us-
ing software agents and a 3D game simulation. The soft
ware agents were built using the Reusable Environment fo
Task-Structured Intelligent Networked Agents (RETSINA)
environment, which is a proven multi-agent system (MAS)
(Sycara, Paolucci, van Velsen, and Giampapa 2001). In
our framework, each simulation node is represented by a
RETSINA agent, and it is used to filter redundant informa-
tion so that the network traffic can be reduced. In addition,
our framework uses a 3D game simulation which is efficient
and inexpensive, and it also provides an amazing graphi
cal view. Our work can be easily extended to support an
interactive simulated 3D environment by using the game
simulation. Finally, with our MAS-based framework, we
can introduce an intelligent support to operators such as a
intelligent information fusion agent.

For the 3D game simulation, we used the Unreal Tour-
nament video game because of its affordability and its
flexibility to support several modifications for our work
(Epic Game Developers). We have named our work Unrea
Tournament Semi-Automated Force (UTSAF).

In summary, the main contributionof our proposed work
is threefold. First, our framework is based on software agent
which can be distributed in any network environments to
support a large distributed interactive simulation network.
Second, our framework uses a game simulation environmen
for 3D visualization which can support interactive activi-
ties and is affordable and flexible for research in human
visualization. Third, our framework is easily extensible to
provide intelligent operations such as information fusion
agent-based interface for operators.

In this paper, a background of our work is described in
Section2. We discuss our framework of a UTSAF architec-
ture and visualization environment design in Section3. Our
experimental testbed setup is explained in Section4, and
other related works are described in Section5. Finally, we
conclude our work and discuss our future work in Section6.

2 BACKGROUND

In this section, we explain military-based simulation such as
ModSAF and its related communication protocol, the DIS
protocol. We further explain in general what software agent
is. Then, we focus on describing the essential component
of a game simulation and how to use software such as
GameBot to help in controlling a game simulation.
-
r

-

n

l

s

t

s

2.1 ModSAF and DIS Protocol

One of the well-known military simulation environments is
ModSAF, which was released by joint effort between the De-
fense Advanced Research Projects Agency (DARPA) and the
U.S. Army Simulation, Training and Instrumentation Com-
mand (STRICOM) in 1993 (Calder, Smith, Courtemarche,
Mar, Ceranowicz 1993). Later, ModSAF has been integrated
to a next generation semi-automated force (SAF) simula-
tion called One Semi-Automated Force (OneSAF) which
was released in early 2001 (OneSAF Website). ModSAF
and OneSAF were created to support DIS environments.
Each simulator communicates with one another by using
DIS protocol which was standardized by IEEE (IEEE1278
1993). The DIS protocol is used to convey messages abou
entities and events, through a network, to simulation nodes
that are involved in a distributed simulation of SAF entities
in a virtual world. The messages are in form of Protocol
Data Units (PDUs). The PDUs used to explain entity inter-
actions are Entity State PDU (ESPDU), Fire PDU (FPDU)
and Detonation PDU (DPDU). The ESPDU contains in-
formation about entity’s current status including its type,
location, orientation, velocity, and articulations. Most of
the network traffic between simulation nodes are ESPDU
messages. The FPDU is used to convey information about
a firing of a weapon. The FPDU contains a munition type,
a firing entity, a target entity, a launching location, and
munition’s velocity. The DPDU is used to convey informa-
tion about the impact of a munition. The DPDU contains
a detonation location, a detonation result, and information
similar to FPDU. More details of PDUs can be found in
(IEEE1278 1993).

2.2 Software Agents

A software agent in generally defined as an intelligent,
collaborative software object that achieves a higher level
of artificial intelligence through a global communication
structure involving other software agents. Multi-agent sys-
tems (MAS) assume that no single agent can or does know
all of the information in its given domain, and that only
through collaboration with other agents can they achieve
overall knowledge (Sycara 1998).

RETSINA is an example of a software agent test bed
and development system (Rectenwald 2002). RETSINA is a
mature MAS which has been at the core of many successful
agent-based projects (SoftAgents Website).

2.3 Game Simulation

Both military simulations and personal computer video
games have a long and related history, but with different
focuses. While military simulations concentrate on repro-
ducing as exactly as possible the real world, video games



Manojlovich, Prasithsangaree, Hughes, Chen, and Lewis

d

s.
-
rs.
e
’s
e

-
al
ap
s
-

e

ts
y
s.
e
f
r
es.
.

s

nd

d
e
lt
n

tend to focus on pushing computer hardware to its limit to
produce the most graphically intense simulation as possibl
In many ways, the cutting edge of computer developmen
in both software and hardware is being driven by the game
themselves (Lewis and Jacobson 2002).

Games have found their way into more than just battl
simulation. Recent work at the MOVES Institute at the
Naval Postgraduate School have produced their own vide
game, “America’s Army,” which uses a pre-release cop
of the Unreal Tournament 2003 video game to realisticall
portray life as a new U.S. Army recruit (Zyda, Hiles, May-
berry, Wardynski, Capps, Osborn, Shilling, Robaszewsk
and Davis 2003). Video games today are a far cry from
the once cutting edge of Pong and Space Invaders. Toda
games are reminiscent of the operating systems on whic
they run. They have a core “kernel” engine, which abstrac
the real operating system from the rest of the game. The
employ networking to link multiple game engines across
the actual network. Most now even have their own script
ing languages and full development suites to facilitate use
modifications to the games.

2.3.1 Game Engines

Figure1 shows the structure of a modern computer game
In most games, the game engine, networking code, an
graphics drivers are written in a native language of th
operating system, such as C or C++. Game engines car
out all sorts of tricks to ensure that the maximum amount o
processing is used for graphics rendering. All games use
process known as “culling,” whereby parts of the simulation
that are not visible to the user are not given any renderin
time. While this may seem obvious, military simulations
in general do not follow this guideline. Another trick is to
render objects with less detail the further from the playe
that they are. This is known as level of detail optimization
The structure of objects are simplified based on distance

2.3.2 Game Networking

Most interesting of all is the ability to link game engines
across a network. Every modern game engine provides th
capability, to allow multiple human users to play a single

Figure 1: Modular Game Engine Structure from Lewis
and Jacobson (2002)
e.
t
s

e

o
y
y

i,

y’s
h

ts
y

-
r

.
d

e
ry
f
a

g

r
.
.

is

game together. Many of the problems of state replication an
security that were first encountered with military simulators
of years back, have now reappeared in these new game

Computer games of today can link together in a peer
to-peer fashion, or users can run so-called dedicated serve
By using a dedicated server, most of the non-graphical gam
logic can be dumped onto an older PC, freeing up the user
gaming PC to use more of its resources on rendering th
graphics.

2.3.3 Modern Personal Computer Graphics

Until quite recently, high resolution real-time computer
graphics were confined to expensive and proprietary com
puter systems. However, the rapid development of person
computer hardware over the last 5 years has produced che
computers that not only rival these setups, but in some way
even surpass them (Lewis 2002). PCs run both industry
standard OpenGL, giving them the ability to run older soft-
ware projects. They also support other high-performanc
toolkits such as Microsoft DirectX and Direct3D.

2.3.4 Programmable Modules

Above the game engine lies the user-configurable par
of the game. The game code typically is some proprietar
scripting language developed solely for the individual game
It abstracts out the low-level game engine details and lets th
user concentrate on modifying the game with a minimum o
knowledge of either the game engine itself or the compute
languages used to write the engine and associated modul
Above the game code lies the virtual worlds of the game
A given game will come with 10 to 20 levels, and the game
developers usually provide software that will allow the end
user to write his or her own levels.

2.3.5 Unreal Tournament

Unreal Tournament (UT) is a multi-player network-based
video game for personal computers. It runs on variou
operating systems, including Microsoft Windows, Linux,
MacOS, and even the game consoles Sony Playstation a
Microsoft XBox. Unreal Tournament provides a high reso-
lution simulation environment at a very low price, that can
run on commodity personal computer hardware.

Like most other modern video games, Unreal Tour-
nament is designed to be easily programmable. The en
user is able to modify easily most parts of the game abov
the actual rendering subsystem, to both manipulate defau
game behavior and to supplement the game with their ow
changes. These include both scenery and players.



Manojlovich, Prasithsangaree, Hughes, Chen, and Lewis

s

2.4 GameBots

GameBots is a modification to the UT video game that
allows control of game players through a normal Transmis-
sion Control Protocol and Internet Protocol (TCP/IP) socket
(Adobbati, Marshall, Scholer, Tejada, Kaminka, Schaffer,
and Sollitto 2001). Even though UT is designed to be
played over a network, the actual protocol used by the
game is undocumented and encrypted to prevent cheating
This makes the protocol unusable by third-party developers
GameBots overcomes this problem by simply side-stepping
it. GameBots talks to the game engine directly, and opens
its own networking sockets. A protocol for interacting with
UT is defined in (GameBots Website).

With a simple text-based TCP/IP protocol, we are able
to create and to manipulate players in an UT instance using
GameBots. The real bonus of this system is that we can
use the UT game itself to view, in full real-time detail, the
appearance and movement of these GameBot players in th
game.

3 AN AGENT-BASED UTSAF ARCHITECTURE
AND DESIGN

Our proposed framework of an agent-based UTSAF archi-
tecture is composed of several types of agents residing in
a multi-agent environment that is used to communicate be
tween an ModSAF/OneSAF simulation world and the UT
simulation world. Figure2 shows the architecture of our
framework based on different kinds of agents.

Figure 2: UTSAF System Architecture

In a multi-agent environment, agents have different
tasks and are encouraged to communicate with other kind
of agents to get additional information that it does not
maintain. This enables the multi-agent system to be scalable
In our framework, we use three different kinds of agents
to bridge military simulation to game simulation. These
agents are SAF Broker agents, SAF Manager agents, an
GameBot agents. Later in this section, we also discuss th
communication protocol that are used in our framework.
.
.

e

-

s

.

d
e

Additionally, we discuss the modification to bridge a military
simulation to a 3D virtual environment.

3.1 SAF Broker Agent and DIS Parser

Figure 2 shows the SAF Broker listening to DIS network
traffic on a OneSAF simulation node over a multicast group.
By using the DIS Parser, it takes each DIS PDU, parses
out the relevant information (entity type, location, velocity,
and orientation), and sends this information into a SAF
Manager agent. The SAF Broker is able to listen to multiple
ModSAF/OneSAF simulations on a single multicast group,
giving the user the ability to only view entities from a single
simulation.

3.2 SAF Manager Agent

Figure3 shows the SAF Manager in action. The SAF Man-
ager agent manages information about each entity between
a ModSAF/OneSAF simulation world and a UT simulation
world. After receiving information from the SAF broker, it
updates each entity information in its database and passe
this information to the GameBot agent that is linked to the
entity. From the SAF Manager interface in Figure3, we
are able to view information of each entity such as location
and its status.

3.3 GameBot Agent

Figure4 shows a GameBot agent in action. GameBot agents
are used to link the agent space to the GameBots in UT

Figure 3: SAF Manager User Interface



Manojlovich, Prasithsangaree, Hughes, Chen, and Lewis

d

l

,

nodes. GameBot agents listen for DIS updates distribute
via the agent language from the SAF Manager agent. Whe
an update occurred, the GameBot agent, which is responsib
to this update, contacts the associated GameBot residi
in the UT node to update its information such as location
orientation, and velocity. A message-based protocol is use
for the GameBot agent to control or update the GameBo
in a UT server.

Figure 4: GameBots Agent

All GameBot agents are connected to a single SAF
Manager agent, and each GameBot agent connects to
GameBots in one UT server. Many GameBots can be in on
UT server. In some cases, it is desirable to have multiple U
servers. This could be the case when there are many doze
of ModSAF/OneSAF entities, and processing the update
via GameBots in one UT server can consume much of
computer’s resources. To reduce the computational loa
more than one UT servers are used and the GameBots a
spread among them. Therefore, more than one GameB
agents are needed, and the number of the GameBot age
should be equal to the number of the UT servers.

3.4 Communication Protocol

To support a heterogeneous simulated environment, a pr
tocol conversion is necessary. ModSAF and OneSAF sim
ulations use a DIS protocol to communicate between eac
simulator node. The SAF broker listens to the DIS traffic
parses each entity information, and passes it to SAF Ma
ager. A SAF manager forwards only this information to a
GameBot agent. The GameBot agent converts this info
mation into a meaningful form, and then uses a GameBo
Protocol to transfer this information to a GameBots residin
in a UT simulator node. Later in this section, we explain
the DIS protocol conversion and the GameBots protocol.
d
n
le

ng
,
d
t

all
e
T
ns
s
a
d,
re
ot
nts

o-
-
h

,
n-

r-
ts
g

3.4.1 DIS Protocol Conversion

The DIS protocol is purely based on exchanging messages
in a standard format described in (IEEE1278 1993). It is
a stateless protocol, and messages are always exchange
in a multicast or broadcast group. To communicate with a
UT simulation engine, a sequence of protocol conversion
must be taken so that we have a form useful for Unreal
Tournament.

Location in DIS is defined in terms of the world co-
ordinate system. As such, the zero point is the centroid of
the earth, and the axes represent distances from this centra
point. In Unreal Tournament, the zero point is defined
as the center of the level. We first convert the location
into latitude and longitude coordinates. Then, we pick a
particular latitude and longitude point to be the zero point
in Unreal Tournament. The difference between the entity
location and the new center point is then scaled and used
as the Unreal Tournament entity location.

Entity velocity and acceleration in DIS is defined in
meters and seconds. Both are simply scaled before being
sent into Unreal Tournament.

The orientation of entities in DIS is specified in terms
of Euler angles based on the entity’s coordinate system.
For ground vehicles these values are converted into roll,
pitch, and yaw values and then input into Unreal Tourna-
ment, which uses a range from 0 to 65535 for each axis.
For aerial vehicles, the entity’s velocity was used to com-
pute the orientation instead, as it provided a more accurate
representation of the entity’s true orientation in real time.

3.4.2 GameBots Protocol

The GameBots network API is defined in (GameBots Web-
site). Incoming sensory messages from GameBots were
generally ignored, as ground truth was chosen to be entirely
in OneSAF. This also reduced the network and processing
load required to generate, transmit, and parse the sensory
messages.

Due to the extensive use of dead reckoning in ModSAF,
OneSAF, and the DIS protocol, dead reckoning had to be
added to the GameBots system. Other changes were made
including the ability to pick entity starting locations and
orientations in the Unreal Tournament virtual world and the
ability to pick which entity type to appear as.

3.5 A UTSAF Virtual Environment Design

In order to view a military simulation into a 3D virtual
world using our UTSAF architecture, several modification
to existing game environments is necessary. Later in this
section, we explain how we implement UT player models,
modify a UT game server, and create a special player for
visualization.



Manojlovich, Prasithsangaree, Hughes, Chen, and Lewis
3.5.1 Game Modification

None of the required vehicles for representing Mod-
SAF/OneSAF entities were available by default in Unreal
Tournament. A collection of 3D models were acquired from
Internet sources. Additional models were designed manu
ally, as no appropriate model could be found online. These
models were input into the user programming tools provided
by Unreal Tournament to create appropriate entities.

3.5.2 GameBot Server

A GameBot server is an Unreal Tournament server that is
specifically running a GameBot session. GameBots is a
extensive modification to the game, and therefore runs a
a special case of the server, and not as a normal UT gam
server.

3.5.3 Unreal Tournament Spectators

The Unreal Tournament GUI has the ability to connect to a
server as a spectator. In this mode, the user can survey th
running simulation, but can’t actually interact with any of
the entities. The game provides a very useful function in
spectator mode: a player can “attach” itself to an entity. In
this special case, the user’s view will move in conjunction
with the entity to which the user is attached. This allows a
user to attach to an uninhabited aerial vehicle, for example
and to view from the vehicle as it flies around the map.

4 EXPERIMENTAL TESTBED SETUP

For experiments, we set up our test bed in a local are
network. We run a OneSAF simulation engine on a Pentium
III Linux-based machine. The DIS protocol traffic from this
machine is broadcast to a multicast group which includes
a machine where RETSINA agents operate.

Figure5 shows the user interface of OneSAF simulation
on a Fort Knox terrain. In this scenario, two flights of
A-10 Thunderbolts are flying over a biochemical depot
which is surrounded by several T-80 tanks. Figure6 shows
the chemical depot and T-80 tanks. The same simulatio
scenario in 3D visualization using UT simulation engine is
shown Figure7 where the biochemical depot and T-80 tanks
are depicted. This figure shows an example of the view
from a spectator attached to an A-10 Thunderbolt flying
over the biochemical depot. In the 3D visualization, we
are able to change a view of a simulated battlefield using
our agent. Figure8 shows another view of the simulation
from a T-80 tank. It shows several A-10 Thunderbolts are
flying over the biochemical depot and other T-80 tanks in
the biochemical depot area.

By using the UTSAF broker, we are able to reduce
network traffic from the OneSAF simulation network to
-

n
s
e

e

,

a

n

Figure 5: ModSAF

Figure 6: A Biochemical Depot in OneSAF

Figure 7: A Biochemical Depot in Unreal Tournament



Manojlovich, Prasithsangaree, Hughes, Chen, and Lewis

.
o
t

e

r
s

.

t
l

.

,

l
ss
f
l

l

Figure 8: A-10 Thunderbolts Flying Over a T-80 Tank
Platoon

another end. The agent examines the entity information
received by DIS PDUs, and simply ignores the PDU if the
entity information is not changed.

When running, the UTSAF system will display in 3D a
running ModSAF/OneSAF simulation. The movement and
appearance of the ModSAF/OneSAF entities are reproduce
faithfully in real time. The user is able to both spectate the
simulation from any position in the game space, but to also
connect their view to any of the entities in the simulation.

5 RELATED WORK

There have been several works related to creating a 3D
visualization environment to support military simulation.
The DIS-Java-VRML project was created to build a Java-
based software suite to support communication using th
DIS Protocol for the simulation over the Internet (DIS-Java-
VRML Website). A simulation node listens to DIS traffic,
and an entity object is viewed in 3D using virtual Reality
Modeling Language (VRML). The entity is visualized by
a web browser as a viewing tool.

Another project involving modeling a large network of
military simulations is the NPSNET project (Macedonia,
Zyda, Pratt, Barham, and Zeswitz 1994). The NPSNET
project was initiated with a goal of expanding DIS simula-
tions and virtual environments to support more than 1000
entities or players. This work proposed a testbed which
utilizes DIS protocol (version 2.03), IP multicast protocol,
and several parallelism techniques to reduce traffic in the
network.

Schwamb et. al. proposed a program interface for
intelligent agents to ModSAF simulation (Schwamb, Koss,
and Keirsey 1994). In their work, the interface provides an
intelligence to ModSAF to simulate a human behavior using
a Soar agent (Rosenbloom, Laird, and Newell 1993). In this
work, the Soar agent models a human behavior in a cockp
in an air-to-air combat simulated by ModSAF. The interface
d

e

it

and Soar are integrated to ModSAF into a single process
This requires a modification to other ModSAF nodes and als
this does not provide multi-agent environments to suppor
heterogeneous intelligence.

Another work related to simulating ModSAF in hetero-
geneous environment is an integration of UH-60 and Ch-47
flight simulators to ModSAF simulation (Sardella and High
2000). This work proposed an architecture to integrate th
flight simulators in a ModSAF simulation world using the
DIS protocol.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed an architectural framework for
visualizing a DIS-based military simulation such as Mod-
SAF in 3D virtual world using an Unreal Tournament game
simulation. Our framework does not require any modifi-
cation to ModSAF or OneSAF application. Instead, we
introduce a multi-agent system (MAS) to support multiple
ModSAF simulations to solve several problems. We use ou
agent to reduce DIS traffic among simulation nodes so thi
framework is able to support a large DIS-based simulation
network requiring a fair amount of network bandwidths.
Secondly, our MAS-based framework can be extended to
support intelligent operations by introducing an intelligent
agent to aid in user’s operations such as time-critical tasks
Lastly, our framework uses a UT game simulator which is
fast, efficient, and affordable. It also provides flexibility
for modification to visualize different views in 3D virtual
environments.

There remains much work to be done before UTSAF
is a fully viable system. Most of the problems that the
system currently faces stem from the Unreal Tournamen
video game and not ModSAF or the agent system. Unrea
Tournament currently has limits on both the possible map
size and the number of entities allowed in a given simulation

To simulate very large ModSAF/OneSAF areas in Un-
real Tournament, beyond the allowed map size in the game
we are currently investigating ways of dividing up the map
into subunits. Each sub-map can be run on an individua
game server, and then linked together to create a seamle
representation of the overall map. Unreal Tournament itsel
does not support this feature, however, and a solution wil
have to be found outside of the video game itself.

GameBots currently has a preset limit of 16 entities
that it will allow. This was easily extended to 64 by
simply resetting this limit. Higher limits may be possible,
and experimentation to determine the upper limit actually
allowed by the game is being conducted.

A major problem that exists in UTSAF now is latency.
The time from when a PDU is emitted by ModSAF or
OneSAF and when the contained information enters Unrea
Tournament is both significant (on the order of 1 or 2



Manojlovich, Prasithsangaree, Hughes, Chen, and Lewis

-

.

seconds) and variable. It is felt that this is probably relate
to both the agent system, and overall network latency.

One final issue with UTSAF is user disorientation. A
ModSAF or OneSAF map has both grid lines and a compa
to orient users. UTSAF currently lacks both. Active researc
is being conducted into using the heads-up display provide
by the game to provide these features.

ACKNOWLEDGMENTS

This project is supported by AFOSR contract F49640-01-1
0542. The authors would like to thank Martin van Velsen
and the entire Carnegie Mellon University RETSINA team

REFERENCES

Adobbati, R., Marshall, A.N., Scholer, A., Tejada, S.
Kaminka, G., Schaffer, S., and Sollitto, C. 2001. Game
Bots: A 3D Virtual World Test-Bed For Multi-Agent
Research. InProceedings of the Second International
Workshop on Infrastructure for Agents, MAS, and Sca
able MAS.

Brunett, S., and Gottschalk, T. 1997. An Architecture
for Large ModSAF Simulations using Scalable Paralle
Processors.Technical Report CACR-155. California
Institute of Technology. October 1997.

Calder, R.B., Smith, J.E., Courtemarche, A.J., Mar, J.M.F
Ceranowicz, A.Z. 1993. ModSAF Behavior Simulation
and Control. InProceedings of the Second Conference
on Computer Generated Forces and Behavioral Rep
resentation.

DIS-Java-VRML Website. Available via<http://
www.web3d.org/WorkingGroups/vrtp/
dis-java-vrml/> [accessed June 20, 2003].

Epic Game Developers. Unreal Tournament Website. Avai
able via <http://unreal.epicgames.com/>
[accessed June 20, 2003].

GameBots Website. GameBots Network API. Avali-
able via <http://www.cs.cmu.edu/˜galk/
GameBots/WEB/docapi.html> [accessed June
20, 2003].

IEEE1278. 1993. Institute of Electrical and Electronics En
gineers. International Standard. ANSI/IEEE Std 1278
1993. Standard for Information Technology, Protocols
for Distributed Interactive Simulation.

Lewis, M. 2002. The New Cards.Communications of the
ACM, January 2002.

Lewis, M. and Jacobson, J. 2002. Game Engines in Scienti
Research.Communications of the ACM, January 2002.

Macedonia, M.R., Zyda, M.J., Pratt, D.R., Barham, P.T.
and Zeswitz, S. 1994. NPSNET: A Network Software
Architecture For Large Scale Virtual Environments. In
Presence3(4): 265-287.
d

ss
h
d

-
,
.

-

l-

l

.,

-

l-

-
-

fic

,

OneSAF Website. Available via <http://
www.onesaf.org> [accessed June 20, 2003].

Rectenwald, M. 2002. RETSINA AFC Devel-
opers’ Guide. Available via <http://
www-2.cs.cmu.edu/˜softagents/afc/>
[access June 20, 2003].

Rosenbloom, P.S., Laird, J.E., and Newell, A. 1993. The
Soar Papers: Readings on Integrated Intelligence. Cam
bridge, MA. MIT Press.

Sardella, J.M., and High, D.L. 2000. Integration of Fielded
Army Aviation Simulators with ModSAF: The Eighth
Army Training Solution. InProceedings of Interser-
vice/Industry Training Systems and Education Confer-
ence.

Schwamb, K.B., Koss, F.V., and Keirsey, D. 1994. Working
with ModSAF: Interfaces for Programs and Users. In
Proceedings of the Fourth Conference on Computer
Generated Forces and Behavior Representation. Or-
lando, Florida, USA. Institute for Simulation and Train-
ing. University of Central Florida.

SoftAgents Website. Available via<http://
www-2.cs.cmu.edu/˜softagents/> [accessed
June 20, 2003].

Stone, S., Zyda, M., Brutzman, D., Falby, J. 1996. Mobile
Agents And Smart Networks For Distributed Simu-
lations. In Proceedings of the 14th DIS Workshop.
Orlando, Florida.

Sycara, K.P. 1998. Multi-Agent Systems.AI Magazine
10(2): 79-93.

Sycara, K.P., Paolucci, M., van Velsen, M., Giampapa,
J. 2001. The RETSINA MAS Infrastructure. Tech-
nical Report CMU-RI-TR-01-05. Robotics Institute,
Carnegie Mellon University.

Zyda, M., Hiles, J., Mayberry, A., Wardynski, C., Capps, M.,
Osborn, B., Shilling, R., Robaszewski, M., Davis, M.
2003. The MOVES Institute’s Army Game Project: En-
tertainment R&D for Defense.IEEE Computer Graph-
ics and Applications. January/February 2003.

AUTHOR BIOGRAPHIES

JOSEPH MANOJLOVICH is a graduate student at
the School of Information Sciences at the University
of Pittsburgh. His interests include using game en-
gines for scientific research. His e-mail address is
<josephm@sis.pitt.edu> .

PHONGSAK PRASITHSANGAREE is a doctoral student
at the School of Information Sciences at the University
of Pittsburgh. His research interests are position location
system, networking protocols,and wireless network security
His e-mail address is<phongsak@sis.pitt.edu> .

<http://
http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/
www.web3d.org/WorkingGroups/vrtp/
http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/
dis-java-vrml/>
http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/
<http://unreal.epicgames.com/>
http://unreal.epicgames.com/
<http://www.cs.cmu.edu/~galk/
http://www.cs.cmu.edu/~galk/GameBots/WEB/docapi.html
GameBots/WEB/docapi.html>
http://www.cs.cmu.edu/~galk/GameBots/WEB/docapi.html
<http://
http://www.onesaf.org
www.onesaf.org>
http://www.onesaf.org
<http://
http://www-2.cs.cmu.edu/~softagents/afc
www-2.cs.cmu.edu/~softagents/afc/>
http://www-2.cs.cmu.edu/~softagents/afc
<http://
http://www-2.cs.cmu.edu/~softagents/
www-2.cs.cmu.edu/~softagents/>
http://www-2.cs.cmu.edu/~softagents/
<josephm@sis.pitt.edu>
mailto:josephm@sis.pitt.edu
<phongsak@sis.pitt.edu>
mailto:phongsak@sis.pitt.edu
http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/
http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/
http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/
http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/
http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/
http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/
http://unreal.epicgames.com/
http://unreal.epicgames.com/
http://www.cs.cmu.edu/~galk/GameBots/WEB/docapi.html
http://www.cs.cmu.edu/~galk/GameBots/WEB/docapi.html
http://www.cs.cmu.edu/~galk/GameBots/WEB/docapi.html
http://www.cs.cmu.edu/~galk/GameBots/WEB/docapi.html
http://www.onesaf.org
http://www.onesaf.org
http://www.onesaf.org
http://www.onesaf.org
http://www-2.cs.cmu.edu/~softagents/afc
http://www-2.cs.cmu.edu/~softagents/afc
http://www-2.cs.cmu.edu/~softagents/afc
http://www-2.cs.cmu.edu/~softagents/afc
http://www-2.cs.cmu.edu/~softagents/afc
http://www-2.cs.cmu.edu/~softagents/afc
http://www-2.cs.cmu.edu/~softagents/afc
http://www-2.cs.cmu.edu/~softagents/afc
mailto:josephm@sis.pitt.edu
mailto:josephm@sis.pitt.edu
mailto:phongsak@sis.pitt.edu
mailto:phongsak@sis.pitt.edu


Manojlovich, Prasithsangaree, Hughes, Chen, and Lewis
STEPHEN HUGHES is a doctoral student at the
School of Information Sciences at the University of
Pittsburgh. His research interests include human nav-
igation in 3D environments. His e-mail address is
<shughes@sis.pitt.edu> .

JINLIN CHEN is a visiting professor in School of Infor-
mation Sciences, University of Pittsburgh. Before joining
University of Pittsburgh, he was a researcher in Microsoft
Research Asia. He received his Ph.D. from Department
of Automation, Tsinghua University in 1999. His e-mail
address is<jlchen@sis.pitt.edu> .

MICHAEL LEWIS is an associate professor at the School
of Information Sciences at the University of Pittsburgh. He
is a principle investigator ofUsability Laboratory. His email
address is<mlewis@sis.pitt.edu> and his website
is <http://www.pitt.edu/˜cmlewis> .

<shughes@sis.pitt.edu>
mailto:shughes@sis.pitt.edu
<jlchen@sis.pitt.edu>
mailto:jlchen@sis.pitt.edu
http://usl.sis.pitt.edu
<mlewis@sis.pitt.edu>
mailto:mlewis@sis.pitt.edu
<http://www.pitt.edu/~cmlewis>
http://www.pitt.edu/~cmlewis
mailto:shughes@sis.pitt.edu
mailto:shughes@sis.pitt.edu
mailto:jlchen@sis.pitt.edu
mailto:jlchen@sis.pitt.edu
http://usl.sis.pitt.edu
mailto:mlewis@sis.pitt.edu
mailto:mlewis@sis.pitt.edu
http://www.pitt.edu/~cmlewis
http://www.pitt.edu/~cmlewis

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 960
	02: 961
	03: 962
	04: 963
	05: 964
	06: 965
	07: 966
	08: 967
	09: 968


