
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

SYNCHRONIZATION AND MANAGEMENT OF SHARED STATE

IN HLA-BASED DISTRIBUTED SIMULATION

Boon Ping Gan
Malcolm Yoke Hean Low

71 Nanyang Drive

Singapore Institute of
Manufacturing Technology

Singapore 638075, SINGAPORE

 Junhu Wei
Xiaoguang Wang

Stephen John Turner
Wentong Cai

Nanyang Avenue

School of Computer Engineering
Nanyang Technological University
Singapore 639798, SINGAPORE

ABSTRACT

The HLA Runtime Infrastructure can support a conserva-
tive simulation protocol for its time management service.
However, the performance of conservative simulation pro-
tocols is very much dependent on lookahead that one can
extract out of a simulation model. Also the most conserva-
tive value has to be taken in order to ensure the causality
constraint. In this paper, we propose two algorithms,
namely pullRO and pushRO, that allow one to replace
some of the timestamp order (TSO) messages (possibly
those causing zero lookahead values) with receive order
(RO) messages. This removes the time constraint that these
messages impose on the lower bound timestamp (LBTS)
calculation, which in turn will improve the time advance-
ment rate of federates. The algorithms still ensure the cau-
sality constraint and a middleware approach is used to pre-
serve the semantics of the RTI APIs. The performance of
the two algorithms is compared against a baseline model
where no TSO messages are replaced.

1 INTRODUCTION

Distributed simulation is an emerging technology for col-
laborative simulation. It enables models to be run at geo-
graphically dispersed sites. Each participant constructs
their own model, and agrees upon the messages that are
going to be exchanged among the models. Sensitive data
about a model is encapsulated within the model itself. This
is particularly useful in an application in which the sharing
of sensitive data to build a single centralized model is not
an option. One example of such an application is supply
chain simulation (Gan et al. 2000). To build a meaningful
centralized supply chain model, companies need to share a
tremendous amount of data, including sensitive data, such
as a dispatching rule at the machine level. With distributed

simulation, sharing of sensitive data is not necessary as
each company builds their own model, and the data is well
encapsulated within the company.

The High Level Architecture (HLA) standard (Kuhl,
Weatherly, and Dahmann 1999) is the de-facto standard for
distributed simulation. It facilitates the interoperability and
reusability (through the object model template, Lutz 1998)
of all types of models and simulations. The standard pro-
vides a common technical framework for the integration of
simulation models. It comprises three components: the
HLA interface specification, federation rules, and the ob-
ject model template (OMT). The interface specification,
implemented by the Run-Time Infrastructure (RTI), de-
fines how federates interact with the federation, and with
one another. In HLA terms, a federate is a simulation
model while a federation is a collection of federates that
form the entire simulation. Each federate defines the ob-
jects and interactions that are shared in its simulation ob-
ject model (SOM). The responsibilities of federates and
their relationship with the RTI are described by the federa-
tion rules.

In this paper, we focus on extending the implementa-
tion of the RTI to relax the time synchronization among
federates, particularly focusing on RTIs that support the
conservative simulation protocol for their time manage-
ment service, for example the DMSO’s RTI
(www.dmso.mil). Each federate regulates the time of the
federation with a lookahead value. This lookahead deter-
mines the next earliest time that the federate will poten-
tially send out an interaction or an object update. Hence,
federates that are constrained cannot progress beyond the
minimum of the current times of regulating federates plus
the corresponding federate lookahead, which is referred to
as the lower bound timestamp (LBTS). This ensures that a
constrained federate will not receive any updates/messages
in its past. How asynchronously federates can progress in

Gan, Low, Wei, Wang, Turner, and Cai

time is thus very much dependent on the lookahead value.
A relatively larger lookahead value means less constraint
on the federation.

In general, lookahead is chosen by considering all the
timestamp-order (TSO) interactions and object updates
within a model (TSO interaction/object updates are deliv-
ered in time order to the receiving federates). The smallest
time increment required by a TSO interaction/object up-
date is chosen as the federate lookahead. In some simula-
tion models, this could mean zero lookahead if there exists
an interaction/object update that is scheduled at the current
federate time, such as objects that define the state of a fed-
erate that is shared across federates. For example, in a sup-
ply chain comprising a raw material supplier (RMS), a
manufacturer (MANUF), a distribution center (DC), and an
order dispatching center (ODC), inventory information of
the manufacturer and the distribution center needs to be
made visible to the ODC for order dispatching purpose. In-
ventory information is thus held in the state of the MANUF
and the DC.

There are two alternatives in modeling shared state in
an HLA simulation:

1. Request-reply (Pull): Model the inventory as an
internal object. When the ODC needs the inven-
tory information, it sends a TSO interaction to
both the MANUF and DC, and waits for a TSO
reply from each of them.

2. Push: Model the inventory as a TSO HLA object.
Whenever the object is updated (inventory), its
new value will be reflected at the ODC federate.

Both approaches result in zero lookahead as the current in-
ventory level of the two federates are needed for the order
dispatching.

In this paper, we propose a solution to relax the looka-
head constraint by replacing TSO interaction/object up-
dates with receive-order (RO) interaction/object updates
(RO interaction/object updates are delivered in arbitrary
order to the receiving federates.). Even though we formu-
late the problem around a supply chain simulation, the so-
lution is general enough to be applied to other application
domains. Further enhancement to the algorithms, that in-
troduce time guarantee to each update, can be found in
Low et al (2003). The paper also gives a more in depth
coverage of the implementation issues that have been re-
solved.

This paper is organized as follows: Section 2 describes
some related work, in particular similar work that has been
done in parallel simulation. Following that, the proposed
approach is discussed in Section 3, with the implementa-
tion details being discussed in Section 4. Section 5 presents
the performance evaluation study that compares the per-
formance of the proposed approaches to a baseline model
where none of the TSO interaction/object updates are re-
placed by RO updates. Finally, we draw conclusions and
outline future work in Section 6.
2 RELATED WORK

Shared state has always been an obstacle to the application
of conservative simulation protocols for enhancing the
execution speed of simulation. The reason is that shared
state introduces zero lookahead to a simulation model as
the state variable has to be written and read at an instant of
simulation time. A number of studies have been performed
to eliminate this constraint. Mehl and Hammes (1993) sug-
gested two general approaches to implement shared vari-
ables for a conservative protocol. In the first approach, a
history list is kept by the owner of the state variable. When
the state variable is requested by a remote entity, say at
time tr, the owner waits until it can guarantee that no future
write will be done with timestamp smaller than tr on the
variable. Upon which, the owner retrieves the correct value
for the variable from its history list and sends a reply to the
requester. Using this approach, the owner can run ahead of
the requester in simulation time, but it introduces a disad-
vantage of suspending the requester during the requesting
process. In the second approach, this is avoided by having
the requester cache a copy of the variable into its future
list. Each cached copy has a time-guarantee associated
with it, which indicates the validity of the value. If the re-
quester needs a value, it first looks at its own future list. If
a valid copy of the value is found, this value will be taken.
Otherwise, a request is sent to the owner. Using this ap-
proach, the owner can progress ahead of the requester, and
the requester does not have to be suspended to obtain the
value if a valid value is cached.

Our approach is very similar to the two approaches
proposed by Mehl and Hammes. The difference is that the
shared state is only updated locally, and no remote write is
allowed in our approach. The owner can thus progress
ahead of the requester in simulation time, as no remote up-
date to the state variable needs to be synchronized. This
assumption is similar to the work done by Lim et al.
(1998). It is particularly useful for shared state variables
that are only read by remote entities.

3 THE ALGORITHMS

As discussed earlier, shared state is a critical factor that
limits the performance of parallel and distributed simula-
tion that adopts the conservative simulation protocol. The
reason is that shared state introduces zero lookahead to the
simulation, which means no federates can go ahead in time
relative to other federates in a federation. It often results in
sequential execution of federates. In general shared state
can be implemented using two approaches: 1) request-
reply: request for the state value when it is needed, 2) push:
keep a copy of the state variable at the requester side, and
the owner of the state variable pushes the updates to the
requester. Both of these approaches are generally realized
using TSO interaction/object updates, which means the

Gan, Low, Wei, Wang, Turner, and Cai

federate that owns the shared variable, and the federate that
requests for the shared variable value need to regulate the
simulation with zero lookahead.

To resolve this constraint, the TSO interaction/object
updates that result in the zero lookahead value can be re-
placed by RO interaction/object updates, and the timing
information is embedded as one of the parame-
ters/attributes of the update. By doing so, owner federates
and requester federates no longer need to regulate the fed-
eration with zero lookahead as the lookahead value is only
computed using TSO messages. They can choose the next
lookahead value that is larger than zero to regulate the time
advancement of the simulation.

Having said that, the simulation must still be correct as
the causality constraint still needs to be satisfied. As RO
messages are not considered in the LBTS calculation, it is
obvious that the simulation will violate the time order of
message processing if no special synchronization mecha-
nism is introduced. This mechanism is realized by intro-
ducing a history list to the owner in the request-reply ap-
proach, and a future list to the requester in the push
approach. These keep a list of values for each state vari-
able, associating a time with each value. This associated
time is the simulation time at which the state variable is
updated. The requester can obtain the value of the state
variable through these lists if a valid value exists. Other-
wise, the requester will need to wait until a valid value be-
comes available. This is how the causality of the simula-
tion is preserved. We are relying on the requester not to
move forward in simulation time when its request cannot
be satisfied. When the requester does not move forward, it
in turn constrains the owner from progressing. This syn-
chronization only happens when the requester needs a
value of the state variable, but as the lookahead is no
longer zero, it potentially improves the simulation speed.

The history list is used in the request-reply approach to
obtain a valid value of the state variable when a value is
needed. A requester will issue a request to the owner, say
at time tr. The owner will search through its history list to
look for values whose update times satisfy the following
condition: tl ≤ tr < tu, where tl and tu are the adjacent update
times of the state variable. The update at time tl is taken, as
that is the latest update just before the time of the request.
If an update satisfying the condition is found, which means
the owner has moved past the time, this value will be
pushed to the requester. Otherwise, the request is recorded,
and a reply is issued when owner moves beyond tr. This
approach of extending the request-reply approach to use
RO messages is known as pullRO hereafter.

The future list is used in the push approach to mini-
mize the number of requests being sent out to the owner. A
search on the local future list is done before a request is is-
sued to the owner, looking for an update that satisfies the
condition of tl ≤ tr < tu, whereby tl and tu are the adjacent
update times of the state variable. If the search is success-
ful, the update at time tl is taken as the reply to the re-
quester. If the search fails, the requester will issue a request
to the owner. The push approach will thus work just as the
request-reply approach when an update on the state vari-
able cannot be found locally. Such a case happens when
the requester runs ahead of the owner in simulation time.
This approach of extending the push approach to use RO
messages is known as pushRO hereafter.

An important issue that needs to be addressed in intro-
ducing a history and future list to pullRO and pushRO re-
spectively is: when shall the state values in the list be dis-
carded, and how frequently this should be done. This is
critical as the growing lists will take up too much memory
if no fossil collection (discarding old values of shared state
that are no longer needed) is done, which in turn might af-
fect the performance of the simulation. However, fossil
collection incurs overhead too. Hence, it should not be
done too frequently. For the pullRO, the owner can discard
any shared state values in its history list that have update
time less than tc, where tc is the minimum federate time in
the whole federation. This information can be obtained
easily by requesting for the federate time of all federates
from the Management Object Model (MOM) (Fullford and
Wetzel 1999). As for the pushRO, it is very straightfor-
ward. Any shared state values in its future list that have
update time less than tc, where tc is the current federate
time of the requester, can be discarded.

4 THE IMPLEMENTATION

In order to avoid the simulation developer from worrying
about the detailed realization of the two algorithms dis-
cussed in Section 3, a middleware approach is introduced
to preserve the API of the RTI. The simulation developer
still builds their simulation federate as before, but instead
of linking the RTI library to its simulation program, the
middleware library (extended RTI), known as RTI+ hereaf-
ter, is linked. Figure 1 shows the architecture of the HLA’s
RTI. The simulation federate talks to the underlying infra-
structure through the RTI ambassador, for example sending
an interaction or updating an object. The underlying infra-
structure talks to the simulation federate through the feder-
ate ambassador, for example delivery of interactions or ob-
ject updates.

Federate
Ambassador

RTI
Ambassador

Runtime Infrastructure

Simulation Federate

Figure 1: Architecture of RTI

Gan, Low, Wei, Wang, Turner, and Cai

Figure 2 shows the extended RTI architecture, with the
incorporation of RTI+. The middleware provides all the
RTI ambassador interfaces (known as RTI ambassador+),
and filters the federate ambassador callbacks through the
federate ambassador+ before passing it to the user’s feder-
ate ambassador. The RTI+ library is thus comprised of the
RTI ambassador+, federate ambassador+, and the original
RTI library. Adopting this approach, the only thing that the
user needs to do is to alter the TSO interaction/object class
that causes zero lookahead to a RO interaction/object class
and add a time parameter/attribute to the interaction/object
class. All the updates and requests are still carried out as
before, and the translation of TSO related calls to RO re-
lated calls are transparent from the user.

4.1 RTI Extension for Shared State

To facilitate the implementation of shared state in a HLA
based distributed simulation, we introduce two new RTI
ambassador methods that allow a simulation federate to re-
quest for an object or class update at a specific simulation
time. In the original RTI, only requestObjectAttributeVal-
ueUpdate and requestClassAttributeValueUpdate method
calls are available. These two calls do not take in time as
their argument, which means a requester will only receive

RTI
Ambassador+

Federate
Ambassador

RTI
Ambassador

Federate
Ambassador+

Runtime Infrastructure

Simulation Federate

Figure 2: Middleware Approach
an update at a time that the owner receives the request,
rather than at a time that the requester needs the value.
Contrary to these two methods, the two new methods take
in time as an argument. Figure 3 below shows the API of
these methods.

void requestObjectAttributeValueUpdate(ObjectHandle
theObject, RTI::FedTime theTime)

void requestClassAttributeValueUpdate(ClassHandle
theClass, RTI::FedTime theTime)

Figure 3: Shared State APIs for RTI

Both methods translate the call to a TSO interaction

that is sent as a request to the owner of the state variable.
This interaction contains the object/class handle that the
requester is requesting, and the simulation time at which
the value is needed. Figure 4 illustrates this mechanism. A
call to the request method in the middleware is translated
to a TSO sendInteraction call in the original RTI ambassa-
dor at the requester side. A receiveInteraction callback is
triggered in the middleware’s federate ambassador at the
owner side, which in turn triggers the owner to reply
through a call to updateAttributeValue of the original RTI
ambassador. One important point to note here is that the
receiveInteraction is not allowed to call the updateAttrib-
uteValue within the federate ambassador+. Hence, the
middleware needs to record the request, and initiates the
reply phase once the control is returned to the middleware.
During the reply phase, the owner will reply to the re-
quester once a valid value for the requested shared state is
available. In the meantime, the requester will wait for re-
flectAttributeValueUpdate to be called before it makes any
further progress in time.

The naming convention that will be used in the re-
maining sections of this paper is as follow: method calls in
italic font are calls to the RTI+ library, while method calls
in standard font are calls to the original RTI library.
Method calls with a t in the bracket are TSO method calls.
Figure 4: Sequence of Calls for Requesting Object Update – The TSO Approach

Owner Requester

reflectAttributeValue(t)

reflectAttributeValue(t)

receiveInteraction(t) sendInteraction(t)

requestObjectAttributeValueUpdate(t)

updateAttributeValue(t)

Gan, Low, Wei, Wang, Turner, and Cai

4.2 PullRO

Figure 5 illustrates the sequence of method calls to imple-
ment the pullRO approach. Comparing this to the sequence
of method calls in Figure 4, one would notice that the entry
and exit point to this sequence of method calls are the same
at the requester side. This means that the implementation
of the pullRO approach is totally transparent to the user.
The RTI+ translates the TSO request call to a RO send-
Interaction at the requester end, and replies to the requester
using a RO updateAttributeValue. As discussed earlier, the
updateAttributeValue cannot be called at receiveInterac-
tion as program control is still within the federate ambas-
sador. Hence, the request is recorded, and the reply is de-
ferred until the control returns to the middleware. Once the
middleware obtains the control, it first looks through the
history list to see if a valid value can be found. If a value is
found, the updateAttributeValue is initiated straightaway.
Otherwise, the request is processed when the simulation
time of the owner moves past the request time.

At the requester end, once a request is issued, the re-
quester is not allowed to progress in time, until it receives
the update that corresponds to its request. This is realized
by keeping track of pending requests, and withholding time
advance request (a primitive in RTI that federates use to try
to advance their time) until the request is received.

4.3 PushRO

Figure 6 illustrates the sequence of method calls to imple-
ment the pushRO approach, where requested shared state is
found in the future list. The pushRO approach reverts back
to a pullRO approach (as illustrated in Figure 5) if the
shared state value at the requested time is not available in
the future list. All updates to the shared state are pushed
towards the requester even if the requester does not need
the value. As can be seen from Figure 6, the RTI+ trans-
lates the TSO updateAttributeValue call to a RO updateAt-
tributeValue at the owner side. At the requester side, the
RO reflectAttributeValue is called to deliver the object up-
date. The middleware at the requester side will then record
the object update, and associate the update time to the up-
date. When the requester issues a request for a shared state
value, the local future list is first searched. If a valid value
is found, the TSO reflectAttributeValue is called to deliver
the value to the requester. However, it should be noted that
the user’s reflectAttributeValue is not called immediately
when a valid value is found. It is deferred until the simula-
updateAttributeValue()

requestObjectAttributeValueUpdate(t)

sendInteraction() receiveInteraction()

Figure 5: PullRO – Sequence of RTI-Middleware Interaction
reflectAttributeValue(t)

reflectAttributeValue()

Owner Requester

updateAttributeValue(t)

reflectAttributeValue()

Figure 6: PushRO – Sequence of RTI-Middleware Interaction (Local Copy)
reflectAttributeValue(t)

requestAttributeValueUpdate(t)

updateAttributeValue()

Owner Requester

Gan, Low, Wei, Wang, Turner, and Cai

tion federate attempts to pass control to the RTI. This is to
ensure consistency between the RTI+ and RTI, as mes-
sages are only delivered to a simulation federate when the
control is with the RTI.

5 EXPERIMENTAL RESULTS

The performance of the proposed approaches, pullRO and
pushRO, are compared using a simple request-reply simu-
lation model. The simulation model consists of an owner
federate and a requester federate running on two computers
interconnected by Ethernet. The owner federate periodi-
cally updates a shared variable and sends out a user inter-
action to the requester federate. The shared variable and
interaction are updated or sent periodically, with a 100
time unit interval. Requests are issued with an interval of
0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and 10.0 times the update inter-
val, as this ratio will have a significant impact on the per-
formance. Intuitively, a lower request-to-update interval
ratio will favour the pushRO as requests happen more fre-
quently than updates. On the other hand, a higher request-
to-update interval ratio will favour the pullRO as it gener-
ates much fewer requests than updates. Also, lookahead of
10, 100, and 1000 are used for sending other interactions to
mimic models that have other TSO messages to be
sent/updated. In the case where the request-reply is sent
through a TSO message (known as the pullTSO approach),
the lookahead will be zero no matter what lookahead value
is used, as the request-reply is carried out with zero time
increment. But the lookahead of the interaction can be used
when the TSO request-reply messages are replaced with
RO messages using the pullRO and pushRO approach. The
experiments were run with 10,000 updates.

Figures 7, 8, and 9 show the execution time achieved
with varying request-to-update interval ratio, for lookahead
values of 10, 100, and 1000 respectively. As can be seen,
the execution times for the pullRO and pushRO implemen-
tations generally decrease as the lookahead is increased
from 10 to 1000. The two approaches also perform consis-
tently better than the pullTSO approach. This improvement
can be attributed to the fact that the owner can run ahead
(with a larger time grant) of the requester due to the larger
lookahead. Whenever the requester needs a value at a spe-
cific simulation time, the value is already available either
in the history list of the owner in the pullRO approach, or
the future list of the requester in the pushRO approach.

Another general trend that can be observed from the
figures is that the pushRO approach outperforms the
pullRO approach consistently with small request-to-update
interval ratio. Although there are a large number of re-
quests from the requester compared to the number of up-
dates from the owner, only a small proportion of these are
actually sent to the owner. The requester always finds the
state value in its future list, as the owner runs much further
ahead in simulation time as compared to the requester. For
Figure 7: Execution Time vs Request-to-Update
Interval Ratio (Lookahead=10)

0

50

100

150

200

250

300

0.1 0.2 0.5 1.0 2.0 5.0 10.0

R eq uest - t o - U p d at e R at io

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

PullTSO

PullRO

PushRO

0

50

100

150

200

250

300

0.1 0.2 0.5 1.0 2.0 5.0 10.0

R equest - t o - U pdat e R at io

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

PullTSO
PullRO
PushRO

Figure 8: Execution Time vs Request-to-Update
Interval Ratio (Lookahead=100)

example, the number of requests for lookahead of 1000,
and ratio of 0.1 is only 25 in the pushRO approach but
100,000 in the pullRO approach.

0

50

100

150

200

250

300

0.1 0.2 0.5 1.0 2.0 5.0 10.0

R equest- to -Update R at io

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

PullTSO
PullRO
PushRO

Figure 9: Execution Time vs Request-to-Update
Interval Ratio (Lookahead=1000)

Conversely, the pullRO outperforms the pushRO for
large request-to-update interval ratio (refer to Table 1 for
the number comparison as the difference in performance is

Gan, Low, Wei, Wang, Turner, and Cai

Table 1: Execution Time Achieved for High Request-to-
Update Interval Ratio

 Lookahead=10
Request-to-

Update Ratio 2.0 5.0 10.0

PullRO 33.66 28.34 30.43
PushRO 35.89 34.29 34.04

 Lookahead=100

Request-to-
Update Ratio 2.0 5.0 10.0

PullRO 24.59 21.94 21.79
PushRO 28.08 25.36 24.92

 Lookahead=1000

Request-to-
Update Ratio 2.0 5.0 10.0

PullRO 12.12 9.86 8.94
PushRO 19.95 16.69 16.10

not visible from Figures 7, 8, and 9). This is due to the
small number of requests from the requester compared to
the number of updates from the owner. This means that the
requester is synchronized less often with the owner with a
large ratio. For example, the number of request for looka-
head of 1000, and ratio of 10.0 is only 1000 in pullRO but
the number of updates is 10,000 for pushRO.

6 CONCLUSIONS

As can be seen from the benchmarking test, the pullRO and
pushRO consistently outperform simulations that do not try
to eliminate zero lookahead updates/interactions even
though the two approaches introduce the overhead of man-
aging the history and future lists through the middleware.
Apparently, the overhead is minimal. We intend to perform
scalability tests on pullRO and pushRO to evaluate if the
performance achieved is sustainable with more shared state
variables. Also, both approaches will be enhanced to include
time guarantee information to each update, such that the re-
quester will have information on the validity duration of an
update. This can help to cut down the number of requests
being sent by the pullRO approach, and also benefits the
pushRO as the pushRO approach reverts back to pullRO
when the requester always runs faster than the owner.

REFERENCES

Fullford D. and D. Wetzel. 1999. A Federation Manage-
ment Tool: Using the Management Object Model
(MOM) to Manage, Control, and Monitor a Federa-
tion. In Proceedings of Spring Simulation Interopera-
bility Workshop, 99S-SIW-196.

Gan B.P., S.J. Turner, W. Cai, L. Liu, S. Jain and W.J.
Hsu. 2000. Distributed Supply Chain Simulation
Across Enterprise Boundaries. In Proceedings of the
2000 Winter Simulation Conference, ed. J.A. Joines,
R.R. Barton, K. Kang, and P.A. Fiswick, 1245-1251.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Kuhl F., R. Weatherly, and J. Dahmann. 1999. Creating
computer simulation systems: An introduction to the
high level architecture. Prentice Hall PTR.

Lim C.C., Y.H. Low, B.P. Gan and S. Jain. 1998. Imple-
mentation of Dispatch Rules in Parallel Manufacturing
Simulation. In Proceedings of the 1998 Winter Simu-
lation Conference, ed. D.J. Medeiros, E.F. Watson,
J.S. Carson, M.S. Manivannan, 1591-1597. Piscata-
way, New Jersey: Institute of Electrical and Electron-
ics Engineers.

Low Y.H., B.P. Gan, J.H. Wei, X. Huang, S.J. Turner and
W. Cai. 2003. Implementation Issues for Shared State
on HLA-Based Distributed Simulation. Submitted to
European Simulation Syposium.

Lutz, R. 1998. High level architecture object model de-
velopment and supporting tools. Simulation Special Is-
sue on High Level Architecture 71 (6): 401-409.

Mehl H. and S. Hammes. 1993. Shared Variables in Dis-
tributed Simulation. In Proceedings of 7th Workshop
on Parallel and Distributed Simulation, 68-75.

AUTHOR BIOGRAPHIES

BOON PING GAN is a Research Fellow with the Produc-
tion and Logistics Planning Group at Singapore Institute of
Manufacturing Technology (formerly known as Gintic In-
stitute of Manufacturing Technology). He is currently lead-
ing a research project that attempts to apply distributed
simulation technology for supply chain simulation. He re-
ceived a Bachelor of Applied Science in Computer Engi-
neering and Master of Applied Science from Nanyang
Technological University of Singapore in 1995 and 1998
respectively. His research interests are parallel and distrib-
uted simulation, parallel programs scheduling, and applica-
tion of genetic algorithms. His email address is <bpgan@
SIMTech.a-star.edu.sg>.

MALCOLM YOKE HEAN LOW is a Research Fellow
with the Production and Logistics Planning Group at the
Singapore Institute of Manufacturing Technology. He re-
ceived his doctorate from Oxford University in 2002. His
research interests are in the areas of adaptive tuning and
load-balancing for parallel and distributed simulation sys-
tems, and the application of multi-agent technology in sup-
ply chain logistics coordination. His email address is
<yhlow@SIMTech.a-star.edu.sg>.

JUNHU WEI is working with Nanyang Technological
University (Singapore) as a Research Fellow, under the
sponsorship of Research Manpower Development Pro-

Gan, Low, Wei, Wang, Turner, and Cai

gramme of Singapore Institute of Manufacturing Technol-
ogy. He received his BE in Automatic Control and ME in
System Engineering and PhD in Control Engineering from
Xi’an Jiaotong University (China). His current research in-
terests include parallel and distributed simulation, simula-
tion, planning and scheduling of manufacturing. His email
address is <asjhwei@ntu.edu.sg>.

XIAOGUANG WANG is currently a Ph.D student at
School of Computer Engineering (SCE), Nanyang Techno-
logical University, Singapore. She received her B.Sc in
Computer Science from Nanjing University of Aeronautics
and Astronautics, China in 1997. Her research interests lie
in Distributed Simulation and High Level Architecture,
which is also her Ph.D topic currently being developed.
Her email address is <PG02355670@ntu.edu.sg>.

STEPHEN J. TURNER joined Nanyang Technological
University (Singapore) in 1999 and is currently an Associate
Professor in the School of Computer Engineering and Direc-
tor of the Parallel and Distributed Computing Centre. Previ-
ously, he was a Senior Lecturer in Computer Science at Exe-
ter University (UK). He received his MA in Mathematics
and Computer Science from Cambridge University (UK)
and his MSc and PhD in Computer Science from Manches-
ter University (UK). His current research interests include:
parallel and distributed simulation, distributed virtual envi-
ronments, grid computing and multi-agent systems. His
email address is <assjturner@ntu.edu.sg>.

WENTONG CAI is currently an Associate Professor and
Head of Software System Division at School of Computer
Engineering (SCE), Nanyang Technological University
(Singapore). He received his B.Sc. in Computer Science
from Nankai University (P. R. China) and Ph.D. also in
Computer Science from University of Exeter (U.K.). He
was a Post-doctoral Research Fellow at Queen’s University
(Canada) from Feb 1991 to Jan 1993, and joined SCE as a
lecturer in Feb 1993. Dr. Cai is a member of IEEE and his
current research interests are mainly in the areas of parallel
and distributed computing, particularly, Parallel & Distrib-
uted Simulation and Grid Computing. His email address is
<aswtcai@ntu.edu.sg>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 847
	02: 848
	03: 849
	04: 850
	05: 851
	06: 852
	07: 853
	08: 854

