
Proceedings of the 2003 Winter Simulation Conference 
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds. 
  
 

 
SYNCHRONIZATION AND MANAGEMENT OF SHARED STATE  

IN HLA-BASED DISTRIBUTED SIMULATION 
 
 

Boon Ping Gan 
Malcolm Yoke Hean Low 

 
71 Nanyang Drive 

Singapore Institute of 
Manufacturing Technology 

Singapore 638075, SINGAPORE 

 Junhu Wei 
Xiaoguang Wang 

Stephen John Turner 
Wentong Cai 

 
Nanyang Avenue 

School of Computer Engineering 
Nanyang Technological University 
Singapore 639798, SINGAPORE 

   
   

 
 
ABSTRACT 

The HLA Runtime Infrastructure can support a conserva-
tive simulation protocol for its time management service. 
However, the performance of conservative simulation pro-
tocols is very much dependent on lookahead that one can 
extract out of a simulation model. Also the most conserva-
tive value has to be taken in order to ensure the causality 
constraint. In this paper, we propose two algorithms, 
namely pullRO and pushRO, that allow one to replace 
some of the timestamp order (TSO) messages (possibly 
those causing zero lookahead values) with receive order 
(RO) messages. This removes the time constraint that these 
messages impose on the lower bound timestamp (LBTS) 
calculation, which in turn will improve the time advance-
ment rate of federates. The algorithms still ensure the cau-
sality constraint and a middleware approach is used to pre-
serve the semantics of the RTI APIs. The performance of 
the two algorithms is compared against a baseline model 
where no TSO messages are replaced. 

1 INTRODUCTION 

Distributed simulation is an emerging technology for col-
laborative simulation. It enables models to be run at geo-
graphically dispersed sites. Each participant constructs 
their own model, and agrees upon the messages that are 
going to be exchanged among the models. Sensitive data 
about a model is encapsulated within the model itself. This 
is particularly useful in an application in which the sharing 
of sensitive data to build a single centralized model is not 
an option. One example of such an application is supply 
chain simulation (Gan et al. 2000). To build a meaningful 
centralized supply chain model, companies need to share a 
tremendous amount of data, including sensitive data, such 
as a dispatching rule at the machine level. With distributed 
 
simulation, sharing of sensitive data is not necessary as 
each company builds their own model, and the data is well 
encapsulated within the company. 

The High Level Architecture (HLA) standard (Kuhl, 
Weatherly, and Dahmann 1999) is the de-facto standard for 
distributed simulation. It facilitates the interoperability and 
reusability (through the object model template, Lutz 1998) 
of all types of models and simulations. The standard pro-
vides a common technical framework for the integration of 
simulation models. It comprises three components: the 
HLA interface specification, federation rules, and the ob-
ject model template (OMT). The interface specification, 
implemented by the Run-Time Infrastructure (RTI), de-
fines how federates interact with the federation, and with 
one another. In HLA terms, a federate is a simulation 
model while a federation is a collection of federates that 
form the entire simulation. Each federate defines the ob-
jects and interactions that are shared in its simulation ob-
ject model (SOM). The responsibilities of federates and 
their relationship with the RTI are described by the federa-
tion rules. 

In this paper, we focus on extending the implementa-
tion of the RTI to relax the time synchronization among 
federates, particularly focusing on RTIs that support the 
conservative simulation protocol for their time manage-
ment service, for example the DMSO’s RTI 
(www.dmso.mil). Each federate regulates the time of the 
federation with a lookahead value. This lookahead deter-
mines the next earliest time that the federate will poten-
tially send out an interaction or an object update. Hence, 
federates that are constrained cannot progress beyond the 
minimum of the current times of regulating federates plus 
the corresponding federate lookahead, which is referred to 
as the lower bound timestamp (LBTS). This ensures that a 
constrained federate will not receive any updates/messages 
in its past. How asynchronously federates can progress in 
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time is thus very much dependent on the lookahead value. 
A relatively larger lookahead value means less constraint 
on the federation. 

In general, lookahead is chosen by considering all the 
timestamp-order (TSO) interactions and object updates 
within a model (TSO interaction/object updates are deliv-
ered in time order to the receiving federates). The smallest 
time increment required by a TSO interaction/object up-
date is chosen as the federate lookahead. In some simula-
tion models, this could mean zero lookahead if there exists 
an interaction/object update that is scheduled at the current 
federate time, such as objects that define the state of a fed-
erate that is shared across federates. For example, in a sup-
ply chain comprising a raw material supplier (RMS), a 
manufacturer (MANUF), a distribution center (DC), and an 
order dispatching center (ODC), inventory information of 
the manufacturer and the distribution center needs to be 
made visible to the ODC for order dispatching purpose. In-
ventory information is thus held in the state of the MANUF 
and the DC. 

There are two alternatives in modeling shared state in 
an HLA simulation: 

1. Request-reply (Pull): Model the inventory as an 
internal object. When the ODC needs the inven-
tory information, it sends a TSO interaction to 
both the MANUF and DC, and waits for a TSO 
reply from each of them. 

2. Push: Model the inventory as a TSO HLA object. 
Whenever the object is updated (inventory), its 
new value will be reflected at the ODC federate. 

Both approaches result in zero lookahead as the current in-
ventory level of the two federates are needed for the order 
dispatching. 

In this paper, we propose a solution to relax the looka-
head constraint by replacing TSO interaction/object up-
dates with receive-order (RO) interaction/object updates 
(RO interaction/object updates are delivered in arbitrary 
order to the receiving federates.). Even though we formu-
late the problem around a supply chain simulation, the so-
lution is general enough to be applied to other application 
domains. Further enhancement to the algorithms, that in-
troduce time guarantee to each update, can be found in 
Low et al (2003). The paper also gives a more in depth 
coverage of the implementation issues that have been re-
solved. 

This paper is organized as follows: Section 2 describes 
some related work, in particular similar work that has been 
done in parallel simulation. Following that, the proposed 
approach is discussed in Section 3, with the implementa-
tion details being discussed in Section 4. Section 5 presents 
the performance evaluation study that compares the per-
formance of the proposed approaches to a baseline model 
where none of the TSO interaction/object updates are re-
placed by RO updates. Finally, we draw conclusions and 
outline future work in Section 6. 
2 RELATED WORK 

Shared state has always been an obstacle to the application 
of conservative simulation protocols for enhancing the 
execution speed of simulation. The reason is that shared 
state introduces zero lookahead to a simulation model as 
the state variable has to be written and read at an instant of 
simulation time. A number of studies have been performed 
to eliminate this constraint. Mehl and Hammes (1993) sug-
gested two general approaches to implement shared vari-
ables for a conservative protocol. In the first approach, a 
history list is kept by the owner of the state variable. When 
the state variable is requested by a remote entity, say at 
time tr, the owner waits until it can guarantee that no future 
write will be done with timestamp smaller than tr on the 
variable. Upon which, the owner retrieves the correct value 
for the variable from its history list and sends a reply to the 
requester. Using this approach, the owner can run ahead of 
the requester in simulation time, but it introduces a disad-
vantage of suspending the requester during the requesting 
process. In the second approach, this is avoided by having 
the requester cache a copy of the variable into its future 
list. Each cached copy has a time-guarantee associated 
with it, which indicates the validity of the value. If the re-
quester needs a value, it first looks at its own future list. If 
a valid copy of the value is found, this value will be taken. 
Otherwise, a request is sent to the owner. Using this ap-
proach, the owner can progress ahead of the requester, and 
the requester does not have to be suspended to obtain the 
value if a valid value is cached. 

Our approach is very similar to the two approaches 
proposed by Mehl and Hammes. The difference is that the 
shared state is only updated locally, and no remote write is 
allowed in our approach. The owner can thus progress 
ahead of the requester in simulation time, as no remote up-
date to the state variable needs to be synchronized. This 
assumption is similar to the work done by Lim et al. 
(1998). It is particularly useful for shared state variables 
that are only read by remote entities. 

3 THE ALGORITHMS 

As discussed earlier, shared state is a critical factor that 
limits the performance of parallel and distributed simula-
tion that adopts the conservative simulation protocol. The 
reason is that shared state introduces zero lookahead to the 
simulation, which means no federates can go ahead in time 
relative to other federates in a federation. It often results in 
sequential execution of federates. In general shared state 
can be implemented using two approaches: 1) request-
reply: request for the state value when it is needed, 2) push: 
keep a copy of the state variable at the requester side, and 
the owner of the state variable pushes the updates to the 
requester. Both of these approaches are generally realized 
using TSO interaction/object updates, which means the 
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federate that owns the shared variable, and the federate that 
requests for the shared variable value need to regulate the 
simulation with zero lookahead. 

To resolve this constraint, the TSO interaction/object 
updates that result in the zero lookahead value can be re-
placed by RO interaction/object updates, and the timing 
information is embedded as one of the parame-
ters/attributes of the update. By doing so, owner federates 
and requester federates no longer need to regulate the fed-
eration with zero lookahead as the lookahead value is only 
computed using TSO messages. They can choose the next 
lookahead value that is larger than zero to regulate the time 
advancement of the simulation. 

Having said that, the simulation must still be correct as 
the causality constraint still needs to be satisfied. As RO 
messages are not considered in the LBTS calculation, it is 
obvious that the simulation will violate the time order of 
message processing if no special synchronization mecha-
nism is introduced. This mechanism is realized by intro-
ducing a history list to the owner in the request-reply ap-
proach, and a future list to the requester in the push 
approach. These keep a list of values for each state vari-
able, associating a time with each value. This associated 
time is the simulation time at which the state variable is 
updated. The requester can obtain the value of the state 
variable through these lists if a valid value exists. Other-
wise, the requester will need to wait until a valid value be-
comes available. This is how the causality of the simula-
tion is preserved. We are relying on the requester not to 
move forward in simulation time when its request cannot 
be satisfied. When the requester does not move forward, it 
in turn constrains the owner from progressing. This syn-
chronization only happens when the requester needs a 
value of the state variable, but as the lookahead is no 
longer zero, it potentially improves the simulation speed. 

The history list is used in the request-reply approach to 
obtain a valid value of the state variable when a value is 
needed. A requester will issue a request to the owner, say 
at time tr. The owner will search through its history list to 
look for values whose update times satisfy the following 
condition: tl ≤ tr < tu, where tl and tu are the adjacent update 
times of the state variable. The update at time tl is taken, as 
that is the latest update just before the time of the request. 
If an update satisfying the condition is found, which means 
the owner has moved past the time, this value will be 
pushed to the requester. Otherwise, the request is recorded, 
and a reply is issued when owner moves beyond tr. This 
approach of extending the request-reply approach to use 
RO messages is known as pullRO hereafter. 

The future list is used in the push approach to mini-
mize the number of requests being sent out to the owner. A 
search on the local future list is done before a request is is-
sued to the owner, looking for an update that satisfies the 
condition of tl ≤ tr < tu, whereby tl and tu are the adjacent 
update times of the state variable. If the search is success-
ful, the update at time tl is taken as the reply to the re-
quester. If the search fails, the requester will issue a request 
to the owner. The push approach will thus work just as the 
request-reply approach when an update on the state vari-
able cannot be found locally. Such a case happens when 
the requester runs ahead of the owner in simulation time. 
This approach of extending the push approach to use RO 
messages is known as pushRO hereafter. 

An important issue that needs to be addressed in intro-
ducing a history and future list to pullRO and pushRO re-
spectively is: when shall the state values in the list be dis-
carded, and how frequently this should be done. This is 
critical as the growing lists will take up too much memory 
if no fossil collection (discarding old values of shared state 
that are no longer needed) is done, which in turn might af-
fect the performance of the simulation. However, fossil 
collection incurs overhead too. Hence, it should not be 
done too frequently. For the pullRO, the owner can discard 
any shared state values in its history list that have update 
time less than tc, where tc is the minimum federate time in 
the whole federation. This information can be obtained 
easily by requesting for the federate time of all federates 
from the Management Object Model (MOM) (Fullford and 
Wetzel 1999). As for the pushRO, it is very straightfor-
ward. Any shared state values in its future list that have 
update time less than tc, where tc is the current federate 
time of the requester, can be discarded. 

4 THE IMPLEMENTATION 

In order to avoid the simulation developer from worrying 
about the detailed realization of the two algorithms dis-
cussed in Section 3, a middleware approach is introduced 
to preserve the API of the RTI. The simulation developer 
still builds their simulation federate as before, but instead 
of linking the RTI library to its simulation program, the 
middleware library (extended RTI), known as RTI+ hereaf-
ter, is linked. Figure 1 shows the architecture of the HLA’s 
RTI. The simulation federate talks to the underlying infra-
structure through the RTI ambassador, for example sending 
an interaction or updating an object. The underlying infra-
structure talks to the simulation federate through the feder-
ate ambassador, for example delivery of interactions or ob-
ject updates. 

 

Federate 
Ambassador

RTI 
Ambassador

Runtime Infrastructure 

Simulation Federate 

Figure 1: Architecture of RTI



Gan, Low, Wei, Wang, Turner, and Cai 

 

Figure 2 shows the extended RTI architecture, with the 
incorporation of RTI+. The middleware provides all the 
RTI ambassador interfaces (known as RTI ambassador+), 
and filters the federate ambassador callbacks through the 
federate ambassador+ before passing it to the user’s feder-
ate ambassador. The RTI+ library is thus comprised of the 
RTI ambassador+, federate ambassador+, and the original 
RTI library. Adopting this approach, the only thing that the 
user needs to do is to alter the TSO interaction/object class 
that causes zero lookahead to a RO interaction/object class 
and add a time parameter/attribute to the interaction/object 
class. All the updates and requests are still carried out as 
before, and the translation of TSO related calls to RO re-
lated calls are transparent from the user. 
 

4.1 RTI Extension for Shared State 

To facilitate the implementation of shared state in a HLA 
based distributed simulation, we introduce two new RTI 
ambassador methods that allow a simulation federate to re-
quest for an object or class update at a specific simulation 
time. In the original RTI, only requestObjectAttributeVal-
ueUpdate and requestClassAttributeValueUpdate method 
calls are available. These two calls do not take in time as 
their argument, which means a requester will only receive 

RTI 
Ambassador+ 

Federate 
Ambassador

RTI 
Ambassador 

Federate 
Ambassador+

Runtime Infrastructure 

Simulation Federate 

Figure 2: Middleware Approach 
an update at a time that the owner receives the request, 
rather than at a time that the requester needs the value.  
Contrary to these two methods, the two new methods take 
in time as an argument. Figure 3 below shows the API of 
these methods. 

 
void requestObjectAttributeValueUpdate(ObjectHandle 
theObject, RTI::FedTime theTime) 
 
void requestClassAttributeValueUpdate(ClassHandle 
theClass, RTI::FedTime theTime) 

Figure 3: Shared State APIs for RTI 
 
Both methods translate the call to a TSO interaction 

that is sent as a request to the owner of the state variable. 
This interaction contains the object/class handle that the 
requester is requesting, and the simulation time at which 
the value is needed. Figure 4 illustrates this mechanism. A 
call to the request method in the middleware is translated 
to a TSO sendInteraction call in the original RTI ambassa-
dor at the requester side. A receiveInteraction callback is 
triggered in the middleware’s federate ambassador at the 
owner side, which in turn triggers the owner to reply 
through a call to updateAttributeValue of the original RTI 
ambassador. One important point to note here is that the 
receiveInteraction is not allowed to call the updateAttrib-
uteValue within the federate ambassador+. Hence, the 
middleware needs to record the request, and initiates the 
reply phase once the control is returned to the middleware. 
During the reply phase, the owner will reply to the re-
quester once a valid value for the requested shared state is 
available. In the meantime, the requester will wait for re-
flectAttributeValueUpdate to be called before it makes any 
further progress in time. 

The naming convention that will be used in the re-
maining sections of this paper is as follow:  method calls in 
italic font are calls to the RTI+ library, while method calls 
in standard font are calls to the original RTI library. 
Method calls with a t in the bracket are TSO method calls. 
Figure 4: Sequence of Calls for Requesting Object Update – The TSO Approach 

Owner Requester 

reflectAttributeValue(t) 

reflectAttributeValue(t) 

receiveInteraction(t) sendInteraction(t) 

requestObjectAttributeValueUpdate(t)

updateAttributeValue(t) 



Gan, Low, Wei, Wang, Turner, and Cai 

 
4.2 PullRO 

Figure 5 illustrates the sequence of method calls to imple-
ment the pullRO approach. Comparing this to the sequence 
of method calls in Figure 4, one would notice that the entry 
and exit point to this sequence of method calls are the same 
at the requester side. This means that the implementation 
of the pullRO approach is totally transparent to the user. 
The RTI+ translates the TSO request call to a RO send-
Interaction at the requester end, and replies to the requester 
using a RO updateAttributeValue. As discussed earlier, the 
updateAttributeValue cannot be called at receiveInterac-
tion as program control is still within the federate ambas-
sador. Hence, the request is recorded, and the reply is de-
ferred until the control returns to the middleware. Once the 
middleware obtains the control, it first looks through the 
history list to see if a valid value can be found. If a value is 
found, the updateAttributeValue is initiated straightaway. 
Otherwise, the request is processed when the simulation 
time of the owner moves past the request time. 

At the requester end, once a request is issued, the re-
quester is not allowed to progress in time, until it receives 
the update that corresponds to its request. This is realized 
by keeping track of pending requests, and withholding time 
advance request (a primitive in RTI that federates use to try 
to advance their time) until the request is received. 

4.3 PushRO 

Figure 6 illustrates the sequence of method calls to imple-
ment the pushRO approach, where requested shared state is 
found in the future list. The pushRO approach reverts back 
to a pullRO approach (as illustrated in Figure 5) if the 
shared state value at the requested time is not available in 
the future list. All updates to the shared state are pushed 
towards the requester even if the requester does not need 
the value. As can be seen from Figure 6, the RTI+ trans-
lates the TSO updateAttributeValue call to a RO updateAt-
tributeValue at the owner side. At the requester side, the 
RO reflectAttributeValue is called to deliver the object up-
date. The middleware at the requester side will then record 
the object update, and associate the update time to the up-
date. When the requester issues a request for a shared state 
value, the local future list is first searched. If a valid value 
is found, the TSO reflectAttributeValue is called to deliver 
the value to the requester. However, it should be noted that 
the user’s reflectAttributeValue is not called immediately 
when a valid value is found. It is deferred until the simula-
updateAttributeValue() 

requestObjectAttributeValueUpdate(t)

sendInteraction() receiveInteraction() 

Figure 5: PullRO – Sequence of RTI-Middleware Interaction 
reflectAttributeValue(t) 

reflectAttributeValue() 

Owner Requester 

updateAttributeValue(t) 

reflectAttributeValue() 

Figure 6: PushRO – Sequence of RTI-Middleware Interaction (Local Copy) 
reflectAttributeValue(t) 

requestAttributeValueUpdate(t) 

updateAttributeValue() 

Owner Requester 
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tion federate attempts to pass control to the RTI. This is to 
ensure consistency between the RTI+ and RTI, as mes-
sages are only delivered to a simulation federate when the 
control is with the RTI. 

5 EXPERIMENTAL RESULTS 

The performance of the proposed approaches, pullRO and 
pushRO, are compared using a simple request-reply simu-
lation model. The simulation model consists of an owner 
federate and a requester federate running on two computers 
interconnected by Ethernet. The owner federate periodi-
cally updates a shared variable and sends out a user inter-
action to the requester federate. The shared variable and 
interaction are updated or sent periodically, with a 100 
time unit interval. Requests are issued with an interval of 
0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and 10.0 times the update inter-
val, as this ratio will have a significant impact on the per-
formance. Intuitively, a lower request-to-update interval 
ratio will favour the pushRO as requests happen more fre-
quently than updates. On the other hand, a higher request-
to-update interval ratio will favour the pullRO as it gener-
ates much fewer requests than updates. Also, lookahead of 
10, 100, and 1000 are used for sending other interactions to 
mimic models that have other TSO messages to be 
sent/updated.  In the case where the request-reply is sent 
through a TSO message (known as the pullTSO approach), 
the lookahead will be zero no matter what lookahead value 
is used, as the request-reply is carried out with zero time 
increment. But the lookahead of the interaction can be used 
when the TSO request-reply messages are replaced with 
RO messages using the pullRO and pushRO approach. The 
experiments were run with 10,000 updates. 

Figures 7, 8, and 9 show the execution time achieved 
with varying request-to-update interval ratio, for lookahead 
values of 10, 100, and 1000 respectively. As can be seen, 
the execution times for the pullRO and pushRO implemen-
tations generally decrease as the lookahead is increased 
from 10 to 1000. The two approaches also perform consis-
tently better than the pullTSO approach. This improvement 
can be attributed to the fact that the owner can run ahead 
(with a larger time grant) of the requester due to the larger 
lookahead. Whenever the requester needs a value at a spe-
cific simulation time, the value is already available either 
in the history list of the owner in the pullRO approach, or 
the future list of the requester in the pushRO approach. 

Another general trend that can be observed from the 
figures is that the pushRO approach outperforms the 
pullRO approach consistently with small request-to-update 
interval ratio. Although there are a large number of re-
quests from the requester compared to the number of up-
dates from the owner, only a small proportion of these are 
actually sent to the owner. The requester always finds the 
state value in its future list, as the owner runs much further 
ahead in simulation time as compared to the requester. For 
Figure 7: Execution Time vs Request-to-Update 
Interval Ratio (Lookahead=10) 
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Figure 8: Execution Time vs Request-to-Update 
Interval Ratio (Lookahead=100) 

example, the number of requests for lookahead of 1000, 
and ratio of 0.1 is only 25 in the pushRO approach but 
100,000 in the pullRO approach.  
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Figure 9: Execution Time vs Request-to-Update
Interval Ratio (Lookahead=1000) 

Conversely, the pullRO outperforms the pushRO for 
large request-to-update interval ratio (refer to Table 1 for 
the number comparison as the difference in performance is  
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Table 1: Execution Time Achieved for High Request-to-
Update Interval Ratio 

 Lookahead=10 
Request-to- 

Update Ratio 2.0 5.0 10.0 

PullRO 33.66 28.34 30.43 
PushRO 35.89 34.29 34.04 

    
 Lookahead=100 

Request-to-
Update Ratio 2.0 5.0 10.0 

PullRO 24.59 21.94 21.79 
PushRO 28.08 25.36 24.92 

    
 Lookahead=1000 

Request-to-
Update Ratio 2.0 5.0 10.0 

PullRO 12.12 9.86 8.94 
PushRO 19.95 16.69 16.10 

 
not visible from Figures 7, 8, and 9). This is due to the 
small number of requests from the requester compared to 
the number of updates from the owner. This means that the 
requester is synchronized less often with the owner with a 
large ratio. For example, the number of request for looka-
head of 1000, and ratio of 10.0 is only 1000 in pullRO but 
the number of updates is 10,000 for pushRO. 

6 CONCLUSIONS 

As can be seen from the benchmarking test, the pullRO and 
pushRO consistently outperform simulations that do not try 
to eliminate zero lookahead updates/interactions even 
though the two approaches introduce the overhead of man-
aging the history and future lists through the middleware. 
Apparently, the overhead is minimal. We intend to perform 
scalability tests on pullRO and pushRO to evaluate if the 
performance achieved is sustainable with more shared state 
variables. Also, both approaches will be enhanced to include 
time guarantee information to each update, such that the re-
quester will have information on the validity duration of an 
update. This can help to cut down the number of requests 
being sent by the pullRO approach, and also benefits the 
pushRO as the pushRO approach reverts back to pullRO 
when the requester always runs faster than the owner. 
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