
Proceedings of the 2003 Winter Simulation Conference 
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds. 
  
 
 

TIME MANAGEMENT ISSUES IN COTS DISTRIBUTED SIMULATION: A CASE STUDY 
 
 

Simon J.E. Taylor 
Jon Sharpe 

 
Centre for Applied Simulation Modelling 

Department of Information Systems and Computing 
Brunel University 

Uxbridge, Middlesex, UB8 3PH, ENGLAND 

 John Ladbrook 
 

Dunton Engineering Centre 
Ford Motor Company 

Laindon, Basildon, Essex, SS15 6EE, ENGLAND 

   
   

 
 
ABSTRACT 

Commercial off-the-shelf (COTS) simulation packages 
are widely used in industry.  Several international groups 
are currently investigating techniques to integrate distrib-
uted simulation facilities in these packages.  Through the 
use of a case study developed with the Ford Motor Com-
pany, this paper investigates time management issues in 
COTS simulation packages.  Time management is classi-
fied on the basis of the ordering of events that are exter-
nally produced to a federate and the ordering of these 
with events that occur within a COTS simulation package 
federate.  Several approaches to the latter are discussed 
and one approach is presented as the most effective.  Fi-
nally the paper presents a bounded buffer problem and 
proposes the classification of information sharing with 
respect to the certification of solution. 

1 INTRODUCTION 

In 2002 the Commercial Off-The-Shelf (COTS) Simulation 
Package Interoperability Forum (CSPIF, www.cspif. 
com) was founded (an offshoot of the GROUPSIM col-
laborative simulation modelling forum www.groupsim. 
com) The forum was created to organise research into the 
development of COTS distributed simulation tools for 
those who practice simulation with COTS discrete event 
simulation packages (Arena, Extend, Simul8, Taylor, Wit-
ness, etc.).   

The main aim of this work is to provide industry with 
a business benefit from distributed simulation while mini-
mising the cost of the use of this technique.  For example, 
transparency (technological intervention) and usability are 
of key importance.  Simulation modelling is already a 
costly technique and any additional major cost is undesir-
able.  It may be argued that for distributed simulation to be 
utilised then it must be low cost and easy to use.  The tech-
nology should therefore be transparent and useable, fully 
 
integrated into the COTS simulation package that the simu-
lation modeller is using. 

There are many aspects to this work (some of which 
were debated in Taylor et al. (2002a).  This paper reports on 
some experiences the authors have had in the development 
of a distributed simulation of a automotive engine produc-
tion line that is being developed in collaboration with Ford 
Motor Company.  Specifically, these are derived from the 
time management of the COTS simulation package 
WITNESS (produced by Lanner, www.lanner.com).  
The discussion of this link is the subject of a future paper.  
Our contribution in this paper is presented so as to be gener-
ally useful to others who are attempting to produce COTS 
distributed simulation tools and applications.  The paper is 
structured as follows.  Section 2 presents our case study that 
has been developed with the Ford Motor Company.  Section 
3 introduces the approach that has been taken to interoperate 
the models in the automotive engine production line.  Sec-
tion 4 presents some approaches to COTS simulation pack-
age time management and one approach that has been de-
veloped on the basis of the analysis of information 
exchanged between models.  Section 5 discusses these with 
respect to transparency and performance.  Section 6 intro-
duces an interesting challenge that we are currently investi-
gating and a possible solution.  Section 7 concludes the pa-
per with a short discussion of future research. 

2 THE AUTOMOTIVE ENGINE  
PRODUCTION CASE STUDY 

The automotive engine production case study has been de-
veloped in conjunction with the Ford Motor Company.  It 
has been created to investigate (in the public domain) a 
representative situation where distributed simulation is re-
quired.  Each model is created by a team in a particular 
COTS simulation package.  When a production problem is 
to be analysed, the models are linked together to form a 
distributed simulation.  The consideration of alternatives to 
this are outside the scope of this paper (although the con-

http://www.cspif.com/
http://www.cspif.com/
http://www.groupsim. com/
http://www.groupsim. com/
http://www.lanner. com/
http://www.cspif.com/
http://www.cspif.com/
http://www.groupsim.com/
http://www.groupsim.com/
http://www.lanner.com/


Taylor, Sharpe, and Ladbrook 

 
venience of linking heterogeneous packages with dedicated 
data sources (through Excel for example) through distrib-
uted simulation middleware might be one convincing, but 
flawed argument!)  This is an interesting case study as it is 
challenging in terms of distributed simulation and is rele-
vant to the practice of simulation modelling. 

The background to this problem is as follows.  The 
production of an engine is a complex problem involving 
the manufacture and assembly of a wide variety of compo-
nents into several possible engine types (different capaci-
ties, fuel injection options, etc.).  The requirement for dif-
ferent engines is determined by orders from the customer.  
The demand for the different parts is ultimately derived 
from this, but, given that it takes time to machine the dif-
ferent possible parts, and production lines need to be re-
configured for each part production, buffer stock is re-
quired to keep the engine assembly process from waiting.  
The problem that needs to be addressed is how much of 
each manufactured part must be kept in the buffer.  Figure 
1 shows the automotive engine production model.  The 
MACHINING AREA

Head
Line

ASSEMBLY AREA

Camshaft
Line

Con Rod
Line

Crank
Line

Block
Line

Cylinder Head
Assembly

Hot Test and
After Test Dress

Assembly Conveyor System

Piston and Rod
Assembly

Select Select Select Select Select

Figure 1: Automotive Engine Production Model
system is split into two parts – the production of engine 
parts and the assembly of these parts into an engine.  The 
machining area has five lines (head, camshaft, con-rod, 
crank, and block) that can produce a varied mix of parts.  
Each line has a series of machining operations with buff-
ers, machines and resources.  The lines feed into the as-
sembly area.  Heads and camshafts are assembled in the 
cylinder head assembly area.  The con-rods feed into the 
piston and con-rod assembly area.  Outputs from these two 
assemblies and the remainder of the machining lines feed 
into the main assembly line on which the engines are built 
through a combination of automatic and manual opera-
tions.  When finished the engine assembly passes through 
hot test and after test dress operations before being shipped 
onto the car plant.  In our case study, each machine line is 
a different model (five of them) and the assembly line is 
represented as a single model.  Each production model 
produces a series of entities that are destined to arrive in 
the input buffers that exist for each line.  Entities will ar-
rive in each buffer at times determined by each production 



Taylor, Sharpe, and Ladbrook 

 
line and are picked by various select operations.  The case 
study has appeared in a slightly different form in Taylor et 
al. (2001) and Taylor et al. (2002b). 

3 DISTRIBUTED SIMULATION 

Although in some ways distributed simulation has become 
synonymous with the High Level Architecture, a discus-
sion of distributed simulation issues often becomes one of 
“how to use” the HLA’s Object Model Template (OMT) 
and Runtime Infrastructure (RTI) (particularly the DMSO 
RTI).  While this in itself is important it can cloud more 
fundamental issues.  Some HLA terminology is conven-
ient.  A model is resident in a COTS simulation package.  
We shall use federate to refer to the model/package combi-
nation and federation to refer to the complete distributed 
simulation.  To keep in line with distributed systems termi-
nology we shall use the term middleware to refer to the 
computer software that enables federates to communicate 
(see Boer et al. (2002) and Taylor et al. (2000)  for discus-
sion of non-RTI middleware approaches that are an alter-
native to the HLA RTI approach).  Figure 2 shows one 
possible layered middleware.  The COTS SP (simulation 
package) Interface layer provides interfacing services with 
the COTS SP (in section 4 we discuss some approaches to 
time management through this layer).  The Presentation 
layer provides translation services between the various data 
needs of each COTS simulation package.  Time manage-
ment, data distribution and network services are provided 
by each other layer in turn.   

Our case study has six models that reside in six COTS 
simulation packages.  Our distributed simulation federation 
therefore has six federates as shown in grey in figure 1.  As 
can be seen, there are essentially two types of federate: five 
producers and one consumer.  A producer federate simu-
lates the production of engine parts from one of the ma-
chine lines.  The consumer federate simulates the assembly 
of engines from the engine parts supplied by the machine 
COTS SPCOTS SPCOTS SPCOTS SPCOTS SP COTS SP

Head Line Camshaft
Line

Con Rod
Line Crank Line Block Line Assembly

Line

Presentation Services

Network Services

Time Management Services

COTS SP Interface Services

Data Distribution Services

Figure 2: Distributed Simulation Middleware 
lines.  Information exchanged between the two types of 
federate is simply the engine part entities.  This is repre-
sented by the exchange of timestamp event messages.  In 
our case study, the machine lines and the assembly lines 
are tightly coupled, i.e. any entity that leaves a machine 
line will immediately arrive at the relevant buffer in the as-
sembly line.  In a machine line model, when an engine part 
entity p1 begins the last machining operation an event e1 
representing the end of that operation will be scheduled at 
t1.  When the simulation executive advances to time t1, e1 
will be executed.  This models the end of the machine op-
eration and the movement of the engine part p1 to the exit 
point of the machine line.  As the machine and assembly 
lines are tightly coupled, logically as soon as p1 departs the 
machine line it will immediately arrive in the appropriate 
buffer of the assembly line, i.e. the end of machining op-
eration event e1 models both the end of the machining op-
eration in the machine line and the arrival of p1 in the as-
sembly line buffer at t1.   

To represent this logical interaction, the producer fed-
erate must develop an event message, i.e. if we have an 
event e1 that models the end of machining of an entity part 
p1 and its arrival at the assembly federate at t1, then we 
may represent the timestamped event message as 
timeadv(Entity, Time) or timeadv(p1,t1)  Note that in an 
actual distributed simulation the sender and receiver feder-
ate information will also be included for use by the distrib-
uted simulation middleware.  Note also that engine part en-
tity p1 will have attributes.  The discussion of attributes in 
distributed simulation and their type compatibility is out-
side the scope of this paper. 

Our producer federates will therefore produce a series 
of event messages that logically represent the arrival of a 
series of engine part entities at scheduled points in simula-
tion time.  The next section will consider the consumer 
federate and time management issues of external and inter-
nal events in COTS simulation packages.  



Taylor, Sharpe, and Ladbrook 

 
4 TIME MANAGEMENT ISSUES 

In our case study distributed simulation we have two types 
of federate: a producer (a production line) and a consumer 
(the assembly line).  As has been discussed, the producer 
federates simply perform the simulation of their particular 
production line and produce engine part entities.  These 
become timestamped event messages that the distributed 
simulation middleware must transport to the assembly line 
federate.  Apart from the minor point of producing time-
stamped event messages, there are no time management 
issues in the producer federates. 

The consumer federate and the distributed simulation 
middleware must deal with two time management issues: 
the ordering of timestamped event messages (external 
events) and the ordering of these with events scheduled by 
the simulation executive of the COTS simulation package 
as it simulates the assembly line model (internal events).  
In figure 2, these are dealt with by the Time Management 
Layer and the COTS SP Interface Layer respectively.  We 
shall deal with each management issue in turn.  We shall 
base the discussion around the conservative time manage-
ment method. 

4.1 Time Management of External Events 

The time management layer service organises external 
events in the assembly line federate.  Following the con-
servative method, a link exists between each producer fed-
erate and the assembly federate.  It is assumed that time-
stamped event messages will be sent in ascending 
timestamp order (a valid assumption if (a) the sending fed-
erate performs its simulation correctly and (b) if there is 
only one exit point from the model being simulated).  If 
this is the case then timestamped messages will enter a link 
buffer in correct order as well.  Each link buffer has a link 
clock.  The value of the link clock is either the timestamp 
of the message at the head of the link buffer or, if the 
buffer is empty, the timestamp of the last message to be 
held in the buffer.  External events are ordered for intro-
duction to the federate by repeatedly identifying the link 
buffer with the earliest clock.  If the link buffer is empty, 
the time management service waits for another event mes-
sage to arrive (as it cannot guarantee safety).  If the link 
buffer has an event message, it will remove the event mes-
sage from the link buffer and pass it to the interface service 
(the role of the presentation layer is outside of this discus-
sion).  We now address how we synchronise external 
events with internal events. 

4.2 Time Management of External/Internal Events 

The problem of managing external and internal events is an 
interesting one.  As discussed above, the time management 
of external events follows a familiar algorithm to identify 
the next external event.  However, the management of ex-
ternal and internal events presents a challenge.   

A COTS simulation package typically possesses a 
simulation executive, an event list, a clock, a simulation 
state and a number of event routines (this is a gross simpli-
fication as these packages have many variants of this).  The 
simulation state and the event routines are derived from the 
model that is implemented in the package.  Initialising the 
simulation, events are placed on the event list (typically 
modelling entities arriving in the model).  If we assume 
that the simulation executive uses some form of the three 
phase approach (TPA), the simulation first advances clock 
time to the time of the next event (the A Phase) and then 
executes that event (the B Phase) according to the event’s 
routine (the event code).  This may result in a change in the 
simulation state and the scheduling of new events on the 
event list.  The simulation execute then determines if the 
changed state has enabled any conditional events (the C 
Phase).  If any have been enabled, these events are exe-
cuted in some priority order and any changes to the simula-
tion state or event list are made.  The simulation executive 
then makes a new cycle of the three phases. 

The problem of time management of external and in-
ternal events is therefore as follows.  If a federate consist-
ing of a COTS simulation package and its model has an 
event list that contains internal events, and the time man-
agement middleware has ordered timestamped event mes-
sages, how can the simulation executive of the COTS 
simulation package determine the next event to process?  Is 
the next event an internal one taken from the event list or 
an external one represented by the timestamped event mes-
sage offered from the middleware?  In our layered mid-
dleware, the Time Management Service identifies and of-
fers the next external event and the COTS SP Interface 
Service controls the synchronisation of this with the pack-
age’s event list.  Several approaches to this synchronisation 
are possible.   

4.2.1  Event List Externalisation 

A simple solution to this is to remove the event list from 
the COTS simulation package and treat it as if it another 
link buffer.  Events scheduled within the simulation pack-
age are externalised and placed on the link buffer repre-
senting the event list.  The next event is determined by us-
ing the same conservative time management algorithm as 
described above. 

The main problem to this approach is that it would take 
much redevelopment of a COTS simulation package for this 
to be accomplished.  As one of the underlying themes of this 
work is to reduce the cost of technological intervention, this 
approach would be prohibitively expensive.  



Taylor, Sharpe, and Ladbrook 

 
4.2.2 Permission Request 

In this approach, the TPA is modified to request permis-
sion from the COTS SP Interface service.  Prior to phase 
A, time advance, the modified form of the TPA asks per-
mission to advance from the service.  The service would 
respond by either (a) granting permission to advance, (b) 
passing an event with a timestamp, or (c) requesting the 
simulation executive to wait.  In the case of (a), the time-
stamp of the next external event is greater than the sched-
uled time of the next (internal) event, the TPA would exe-
cute phase A by advancing to the time of the next event 
and then perform phases B and C as normal before making 
a new cycle of the modified TPA.  If the timestamp of the 
next external event is less than the scheduled time of the 
next (internal) event, the middleware would convert the 
timestamped event message to a form that can be placed on 
the federate’s event list.  The TPA would then carry on by 
executing phase A, i.e. advancing to the time of the newly 
scheduled event.  Phases B and C would be executed as 
normal.  If the service could not determine the earliest safe 
timestamped message (as in the case when there is an 
empty link buffer), when the TPA next asked permission it 
would be requested to wait (as in case (c)).  The TPA 
would be suspended until the time management service in-
dicated a change of circumstances. 

4.2.3 Incremental Advance 

In this, rather than controlling the advancement of time 
though the TPA, this assumes that is it not possible to ob-
tain access to the “next event time.”  Here the we must ad-
vance time by the smallest possible time unit of the feder-
ate.  At each time advance any internal events are executed 
automatically by the TPA.  When this has been accom-
plished a request is made to the COTS SP Interface service 
to determine if there is a new safe external event.  Again 
three possibilities exist.  If the service is aware of the next 
safe external event, and the timestamp of this greater than 
the next incremented time, the federate is allowed to make 
another cycle (a).  If the timestamp of the next external 
event is equal to the next incremented time, the external 
event will be introduced for execution at the next incre-
mented time (b).  Finally, if the service cannot identify the 
next safe external event the incremental time advance will 
be halted until a new message arrives (c).  

4.2.4 External Control  

An alternative to making the TPA request permission is to 
effectively make the federate a slave of the COTS SP Inter-
face service.  The service first determines the course of ac-
tion and then externally controls the behaviour of the fed-
erate’s time advancement.  Depending on the status of the 
link buffers, the service may make the federate (a) advance 
to a given time, (b) advance to a given time and then exe-
cute a new (external) event, or (c) do nothing.  In the case 
of (a) the service has determined that it is safe for the fed-
erate to advance to a given time.  The federate cycles 
through the TPA, advancing time until this “safe” time.  If 
the service has identified a new safe external event, it or-
ders the federate to advance until the timestamp of the 
event message and then introduces the new (external) event 
to the federate to be processed (as in (b)).  The TPA 
method used by the federate must be modified appropri-
ately either by re-executing the C Phase or by introducing 
the event just prior to its timestamp.  The decision depends 
on event priority and actual package implementation.  For 
example, if the C Phase cannot be manually executed, then 
a possible approach would be to stop the simulation at the 
smallest timestamp increment possible (i.e. after the com-
pletion of the C Phase) and then introduce the event for the 
next cycle of the TPA.  Unfortunately this might be neces-
sary due to the way in which a COTS simulation package 
is coded.  For (c), if the service cannot achieve either (a) or 
(b) it must do nothing until a new timestamped message 
arrives.  In this case the federate can do nothing either as it 
cannot determine the next safe event to execute. 

4.2.5 Summary 

In this section we have defined four strategies for the time 
management of external and internal events for COTS simu-
lation package federates.  We have attempted to described 
them “neutrally,” i.e. not in terms of the HLA.  The reason 
for this is that it is currently unclear how these might be in-
terfaced directly, or indirectly via an ambassador, to the 
HLA time management services.  Another reason for this is 
that it is hoped that COTS simulation package vendors and 
potential end users of distributed simulation might find this 
“technology neutral” discussion of relevance (as yet far 
more people understand the TPA than the HLA).  A future 
paper will address this interfacing.  

We will now discuss the implications of each of the 
strategies. 

5 DISCUSSION 

The previous section introduced four strategies for the time 
management of external and internal events for federated 
COTS simulation packages.  Of these, which should be 
used?  Two factors need consideration: technological in-
tervention and performance.  Technological intervention is 
important as this will ultimately determine the cost to the 
vendor (and therefore the end user!) in terms of COTS 
simulation package modification (we do not consider 
methodological implications here).  Performance is impor-
tant as the time management of external events is already a 
performance overhead that does not need adding to by fur-
ther synchronisation cost. 



Taylor, Sharpe, and Ladbrook 

 

The first approach of event list externalisation can be 
immediately discounted as the cost to the vendor of the in-
tervention would be prohibitive.  COTS simulation pack-
ages tend to use the notion of an event list but implement it 
in various ways to improve efficiency.  Removing the 
event list is not a case of just “unbolting” the data structure 
and modifying the TPA (or similar) code.  Adoption of this 
technique is too costly and, in cases where it might be pos-
sible, too package specific.  The other approaches are 
based on a well defined relationship between the federate, 
the package that it encapsulates and the COTS SP Interface 
service.  Most packages have the ability to make certain 
features accessible.  For example, some allow the use of an 
external program (typically Excel or some Visual Basic 
application) to stop and start the run control, to introduce 
entities, or to alter a parameter in the model.  Some use 
DLL “plug-ins” to do this, while others have a COM inter-
face or a dedicated interface library.  While virtually all 
have some interfacing ability, there is no notion of a “stan-
dard” interface.  What do the three remaining time man-
agement approaches require in terms of an interface and 
package modifications? 

In terms of time advance, permission request and in-
cremental advance require that there is some modification 
to the simulation executive.  Permission request requires 
that prior to time advance there is interaction with the In-
terface service.  This will result in either a normal time ad-
vance, a new event being added to the event list and then a 
time advance or nothing.  Incremental advance requires 
this and the additional timestep feature (which some pack-
ages do support).  External control requires no such modi-
0

10

20

30

40

50

60

70

0.01 0.125 0.25 0.5 1 2 4 8 16 32 64 128

Ratio of Internal to External Events

R
at

io
 o

f R
un

tim
e 

R
el

at
iv

e 
to

 R
ef

er
en

ce
 R

un
tim

e

Permission request External control

Figure 3: Relative Performance of Two Time Management Strategies 
fication to the simulation executive as the time manage-
ment service controls time advancement through an 
external interface.  This approach, however, still requires 
the modification of the package to allow a new event to be 
placed on the event list.  From a simple analysis all three 
approaches require a modified interface so that there is in-
teraction with the time management service.  Permission 
request and incremental advance both require interaction 
from the package to the Interface service and vice versa.  
External control is one directional as it instructs the pack-
age what to do - the next event time derived from an exter-
nal event is derived from the time management service.  In 
terms of performance, external control may well be the 
best option as it allows the package to advance with the 
least interaction.  Additionally, it overcomes the need for 
the next event time.  Incremental advance also overcomes 
this need but adds the major overhead of step by step time 
advance.  Intuitively, external control also out performs 
permission request as many internal events can be proc-
essed without the overhead of a permission request proto-
col.  Figure 3 shows this.  This is an example taken from a 
comparative performance evaluation of time management 
for the assembly line federate.  Permission request is com-
pared again external control.  As can be seen as the ratio of 
internal to external events per external event processed in-
creases, the performance of the federate also increases.  
This is possibly an obvious result but one that is worth un-
derlining in view of current practices. 

External control appears to be the best option both in 
terms of technological intervention and performance.  It 
does still have the problem of entering the new external 



Taylor, Sharpe, and Ladbrook 

 
event into the event list so that it can be executed correctly.  
Fortunately, analysis of the interaction between the feder-
ates suggests a possible solution to this problem.  Informa-
tion exchanged between the federates in our case study is 
based on the movement of entities between the producing 
machine lines and the consuming assembly line.  The ex-
ternal events introduced into the assembly line federate are 
not general – they relate specifically to the arrival of enti-
ties in one of the assembly line buffers.  Although ideally 
the introduction of such an arrival event should be cor-
rectly placed in the event list, it is possible to avoid this in-
tervention.  Instead, we modify the model state (the con-
tents of the particular buffer) at the appropriate time to 
reflect the arrival of a given entity. 

This approach still has problems.  Using the external 
control approach as an example, let us assume that we have 
advanced the federate to a given safe time.  At this point, 
from an analysis of our link buffers, we determine our next 
external event.  Within the federate our TPA simulation ex-
ecutive is ready to begin a new cycle.  If we instruct the fed-
erate to advance to the timestamp of the external event, 
given that we are attempting to avoid any modification to the 
simulation executive, the TPA for that timestamp will exe-
cute without the introduction of our entity.  If, however, it is 
possible to execute the A phase, introduce the entity into the 
appropriate buffer (effectively forcing the external event to 
be executed in the B phase) and then cycling the TPA to cor-
rectly execute the C Phase, then (given event priority is ob-
served) the external event can be executed without need for 
modification to the C Phase.  Other approaches are possible 
– this is presented here to suggest that the “event list” or 
“next event time” problems can be avoided with a minor 
modification to the TPA (or equivalent).   

Before finishing this discussion of time management 
issues in COTS distributed simulation, we would like to 
draw the reader’s attention to an associated problem.  This 
is the bounded buffer problem. 

6 THE BOUNDED BUFFER PROBLEM 

In the previous section we outlined an approach to exter-
nal/internal event time management that is good both in 
terms of technological intervention and relative perform-
ance.   In this penultimate section we present a new problem 
based on our case study that presents a further challenge to 
distributed simulation.  This is the bounded buffer problem.   

In the case study presented in this paper, our original 
challenge was to create a distributed simulation that could 
be implemented using existing COTS simulation packages 
(in this case WITNESS).  Our approach was made on the 
assumption that the input buffers to the assembly line were 
infinite.  This was a valid assumption at the time as the end 
user understood the limitations of the approach – the ap-
proach still allowed some problems to be analysed but not 
all.  Further discussion with the end user identified that 
ideally the input buffers be limited in space, i.e. they could 
only take a certain amount of entities.  The input buffers 
are bounded.   

Normally, when a machine produces a part, the part is 
removed from the machine and placed in the following 
buffer.  If the following buffer is full, then the machine 
cannot give up the part and must block until it can pass on 
the part.  A blocked machine cannot accept new work and 
will therefore cause its own buffer to fill.  This in turn 
could cause another machine to block, etc.   This bounded 
behaviour is important to model as it can effect the overall 
performance of a production line.   

In terms of distributed simulation the implications of 
this are as follows.  Figure 4 shows an example of this.  A 
producer federate produces entities in workstation W1z.  
When these leave W1z they will instantly arrive in buffer 
B2a to be processed by workstation W2a.  When B2a be-
comes full, W1z must keep hold of the next entity it proc-
esses until B2a has space.  This happens when W2a proc-
esses one of its entities.  When W2a does this W1z can 
immediately release its entity and begin work on another 
from its own buffer.  Some kind of protocol is required so 
that this can be represented in such a way that the producer 
federate can carry the simulation of the rest of its model 
while W1z is blocked, i.e. the consumer federate must be 
able to inform the producer when to block and when to un-
block.As a step towards a general solution to this, we pre-
sent the following algorithms for discussion (algorithm 1 
and 2 show this from the consumer and producer federate 
respectively).  Better, more efficient forms of this are pos-
sible and performance evaluation of these approaches with 
respect to our case study are underway.  In the following, 
InputBuffer and OutputWorkstation refer the input buffer 
(B2a) and output workstation (W1z) of the consumer and 
producer respectively.   

B1z W1z B2a W2a

Figure 4: Bounded Buffer Problem 

The message pull(Amount) sent from consumer to 
producer demands a certain amount of entities to be pro-
duced.  The amount is determined by the space that the In-
putBuffer has at the decision simulation time.  The impli-
cation is that while there is space, the producer is left to 
produce event messages until the InputBuffer may be full.  
The consumer advances time as discussed in section 4 (re-
ceived as timeadv(Entity, Time)). 

When the InputBuffer is full, adv(endNextEndProc-
Time(InputWorkstation)) is sent from the consumer to the 
producer to identify the next possible time that the Input-
Buffer could have space.  The producer receives this as  
 



Taylor, Sharpe, and Ladbrook 

 

while not end of simulation do 
 //wait for instructions from Consumer 
 get InputMsg; 
 //The Consumer will either demand entities 
 //or will give a safe Time to advance to 
 if InputMsg = adv(Time) then 
  //Simulate until Time.  When the  
  //OutputWorkstation finishes an Entity  
  //it will block until Time.  If  
  //OutputWorkstation is blocked at Time  
  //the Producer will unblock the  
  //Workstation and send the Entity to 
  //the Consumer at Time.  If not it will 
  //advance until the next Time it  
  //produces an Entity and then send it.  
  send timeadv(Entity, Time) 
 else //pull(Amount) 
  simulate until Amount entities have 
   been produced 
 endif 
endwhile 

Algorithm 1: Consumer Federate 

while not end of simulation do 
 Amount = remainingAmount(InputBuffer); 
 //If there is no Amount left then find 
 //out when there will be and order  
 //the Producer to simulate until that Time 
 if Amount = 0 then 
  //Get the Time at which an Entity 
  //leaves the InputBuffer and send 
  //it to the Producer.  Producer will 
  //simulate until that Time.  The  
  //Producer will block the  
  //OutputWorkstation when it finishes 
  //processing its next Entity.  At 
  //Time, If the OutputWorkstation has  
  //an Entity, the Producer will send it 
  //to the Consumer.  If not, the  
  //Producer will send the next Time 
  //when it produces an Entity and then 
  //wait 
  send adv(endNextEndProcTime 
   (InputWorkstation)) to Producer; 
  //Wait for the response 
  get InputMsg(Entity, Time); 
  timeadv(Entity, Time); 
  //Producer has produced an Entity.   
  //Advance Time and add Entity to  
  //buffer.   
  //If Time = endNextEndProcTime  
  //InputWorkstation will end 
  //simultaneously and take an Entity 
  //from InputBuffer. 
 else 
  send pull(Amount) to Producer 
  repeat 
   get InputMsg; 
   timeadv(Entity, Time)  
   //Producer has produced an Entity 
   //Cycle the TPA as normal to  
   //consume it  
  until Amount entities received 
 endif 
endwhile 

Algorithm 2: Producer Federate 
 

adv(Time).  It advances time to Time, simulating the pro-
duction line as appropriate.  If during this simulation, Out-
putWorkstation begins work on an entity, the workstation 
will block until Time and then send timeadv(Entity, Time).  
If not, the producer continues simulation past Time until 
OutputWorkstation finishes working on an entity.  When it 
does, timeadv(Entity, Time) is sent to the consumer.   The 
algorithm is expressed for the consumer and producer as 
shown in algorithms 1 and 2. 

7 CONCLUSION 

On the basis of a real world case study, this paper has dis-
cussed issues concerning time management that are unique 
to the distributed simulation of COTS simulation packages.  
It has also presented a “challenge” that must be overcome 
for an approach with wider applicability.  The main point 
to this paper is that the interrelationships between models 
in such a federation may be exploited to provide workable 
solutions to distributed simulations of this type.  It also 
shows that different approaches are possible given the re-
quirements of the simulation (i.e. unbounded and bounded 
behaviour).  From this it is trivial to argue that there might 
be other information sharing needs that are either known 
but not needed or unknown (and therefore cannot be 
planned for).   

The reason why the two problems have been presented 
separately is to show that they can be considered in isola-
tion.  One makes supply chain simulation problems possi-
ble, the other production line problems.    This is one of the 
major goals of HLA-CSPIF – to separate out requirements 
of distributed simulation.  By doing this it is possible that 
practical solutions to distributed simulation are possible 
which do not need to be held back by other as yet unsolved 
problems.  Whether certification is the key it is difficult to 
say.  Steps are in progress to develop reference object 
models in conjunction with SISO from which “standard” 
approaches can be identified.   

ACKNOWLEDGMENTS 

The authors would like to take the opportunity to thank the 
reviewers of this paper who have provided stimulating 
comments.  We have attempted to address all comments 
where possible and, where not, will follow these in future 
work (as possible collaboration)! 

REFERENCES 

Boer, C.A., A. Verbraeck and H.P.M. Veeke. 2002. Dis-
tributed Simulation of Complex Systems: Application 
in Container Handling.  In Proceedings of SISO Euro-
pean Simulation Interoperability Workshop.  Simula-
tion Interoperability Standards Organisation, Orlando, 
Florida.  



Taylor, Sharpe, and Ladbrook 

 
Sudra R., S.J.E Taylor and T. Janahan. 2000.  Distributed 

Supply Chain Management in GRIDS.  In Proceed-
ings of the 2000 Winter Simulation Conference, J. A. 
Joines, R. R. Barton, K. Kang, and P. A. Fishwick, 
eds. Association for Computing Machinery Press, 
New York, NY. Association for Computing Machin-
ery Press, New York, NY. 356-361. 

Taylor, S.J.E., R. Sudra, T. Janahan, G. Tan and J. Lad-
brook. 2001.  Towards COTS Distributed Simulation 
Using GRIDS.  In Proceedings of the 2001 Winter 
Simulation Conference,  B. A. Peters, J. S. Smith, D. J. 
Medeiros, and M. W. Rohrer, eds.  Association for 
Computing Machinery Press, New York, NY. 1372-
1379. 

Taylor, S.J.E., A. Bruzzone, R. Fujimoto, B.P. Gan, S. 
Strassburger and R.J. Paul. 2002a.  Distributed Simu-
lation and Industry: Potentials and Pitfalls.  In Pro-
ceedings of the 2002 Winter Simulation Conference, ,  
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. 
Charnes, eds. Association for Computing Machinery 
Press, New York, NY. 688-694. 

Taylor, S.J.E., R. Sudra, T. Janahan, G. Tan and J. Lad-
brook 2002b. GRIDS-SCS: An Infrastructure for Dis-
tributed Supply Chain Simulation. SIMULATION. 
78(5): 312-320. 

AUTHOR BIOGRAPHIES 

SIMON J.E. TAYLOR is the Information Director of 
ACM SIGSIM, ACM SIGSIM PADS Liaison Officer and 
Chair of the Simulation Study Group of the UK Opera-
tional Research Society.  He is a steering committee mem-
ber of PADS, DS-RT and general co-chair of the UK 
Simulation Workshop Series.  He currently leads the inter-
national COTS simulation package interoperability forum 
(HLA-CSPIF) through SISO (www.cspif.com).  He is a 
Senior Lecturer in the Department of Information Systems 
and Computing and is a member of the Centre for Applied 
Simulation Modelling, both at Brunel University, UK. He 
was previously part of the Centre for Parallel Computing at 
the University of Westminster. He has an undergraduate 
degree in Industrial Studies (Sheffield Hallam), a M.Sc. in 
Computing Studies (Sheffield Hallam) and a Ph.D. in Par-
allel and Distributed Simulation (Leeds Metropolitan). His 
main research interests are distributed simulation and ap-
plications of simulation health care. He is also a member of 
the Purple Theatre Company. His email and web addresses 
are <simon.taylor@brunel.ac.uk>. 

 
JON SHARPE is a Research Associate in the Centre of 
Applied Simulation Modelling.  He is currently working on 
a distributed simulation infrastructure as part of on-going 
research work with Dr Taylor.  His is also a member of the 
Purple Theatre Company. 
 

JOHN LADBROOK has worked for Ford Motor Com-
pany since 1968 where his current position is Simulation 
Technical Specialist. In 1998 after 4 years research into 
modelling breakdowns he gained an M.Phil (Eng.) with the 
University of Birmingham. In his time at Ford, he has 
served his apprenticeship, worked in Thames Foundry 
Quality Control before training to be an Industrial Engi-
neer. Since 1982 he has used and promoted the use of Dis-
crete Event Simulation. In this role he has been responsible 
for sponsoring many projects with various universities. For 
the past seven years, he has been Chairman of the Witness 
Automotive Special Interest Group. His email address is 
<jladbroo@ford.com>. 

http://www.cspif/
http://www.cspif/

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 838
	02: 839
	03: 840
	04: 841
	05: 842
	06: 843
	07: 844
	08: 845
	09: 846


