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ABSTRACT

Simulations are used extensively for studying artificial in
telligence. However, the simulation technology in use b
and designed for the artificial intelligence community of
ten fails to take advantage of much of the work by th
larger simulation community to produce distributed, repea
able, and efficient simulations. We present the new syste
known asSystem for Parallel Agent Discrete Event Sim
ulator, (SPADES), which is a simulation environment for
the artificial intelligence community.SPADESfocuses on
the agent as a fundamental simulation component. Th
thinking timeof an agent is tracked and reflected in th
results of the agents’ actions by using aSoftware–in–the–
Loop mechanism.SPADESsupports distributed execution
of the agents across multiple systems, while at the sam
time producing repeatable results regardless of network
system load. We discuss the design ofSPADESin detail and
give experimental results.SPADESis flexible enough for a
variety of application domains in the artificial intelligence
research community.

1 INTRODUCTION

Simulations are an accepted and widely used method
studying artificial intelligence techniques for multi–agen
interaction. By simulating the environment and agent a
tions, a researcher can systematically tune the parameter
the environment and execute the large number of trials oft
required for machine learning. However, commonly use
simulation techniques often do not address the special co
cerns of the artificial intelligence community. In particular
previously used simulation environments do not track an
model the computation time of an agent in response to sen
environmental events. Existing simulation methods used
artificial intelligence research are often non–repeatable, b
ing sensitive to network and system loads at the time of t
simulation execution. Finally, many simulators created
the artificial intelligence community fail to take advantage o
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existing work in the parallel and distributed simulation com
munity for designing distributed, efficient, and repeatabl
simulations.

This paper demonstrates the application of well–know
parallel and distributed simulation methods for time man
agement to agent–based distributed simulation for artifici
intelligence research. In addition, we introduce the con
cept of Software–in–the–Loopsimulation, which we have
found to be particularly useful for multi–agent artificial in-
telligence research. OurSoftware–in–the–Looptechnique
provides for the tracking of the computation time used b
those agents, and including that so–calledthink timein the
simulation. By taking advantage of prior work in parallel
discrete event simulation, theSPADESsystem eases the
design of a simulation by hiding many of the system detail
required to handle distributed simulation in an efficient an
reproducible way.

2 RELATED WORK

The problem of creating efficient simulations has attracte
substantial attention for decades from a wide range o
sources, including the AI community, scientific computing
computer networking, industry, and government. While
the notion of softwareagentshas been known for some
time, the agent-based or agent-oriented simulation metho
are relatively new in the simulation community. Much of
the groundwork for agent–based simulations is by Uhrma
cher (Uhrmacher 1996, Uhrmacher 1997, Uhrmacher an
Schattenberg 1998, Uhrmacher and Gugler 2000, Uhrm
cher, Tyschler, and Tyschler 1997, Uhrmacher and Krahm
2001). For example, theJamessystem (Uhrmacher and Gu-
gler 2000) is a Java–based simulation environment for age
modeling, similar in concept to ourSPADESsimulator.

Agent–based simulation methods have existed for muc
longer in the artificial intelligence community. Many AI
simulation environments are quite specific to the domain fo
which they were created. TheGENSIMsystem (Anderson
and Evans 1995) is one exception. It attempts to provid



Riley and Riley

n
f
a
c
l

r

n

r

t

-
y
-

o
t

r
s

e
i

p
e
th

e
e
w
x
t

l

g

i

n

m

r
t

y
s

d
).

e

n.

r

i-
d
is

e

s

d
e

support for general agent based simulation, including a visio
like model of sensation and computation time tracking o
the agents. The agents are given sensations at fixed interv
and have a fixed amount of computation to respond to ea
sensation. The simulation is written in LISP and requires a
agents to be also. A distributed version calledDGENSIM
(Anderson 2000) was created which has an architectu
much likeSPADES. However,DGENSIM has no methods
to handle network and machine delays and requires all age
advance in time synchronously.

The MESS system by Anderson (1995, 1997) is simila
is spirit toGENSIM. It also requires all agents to be written
in LISP, but provides much more flexible tracking of agen
computation.

Some work in the AI community has been done on dis
tributing agent based simulation but typically leaves man
of the issues in distribution management to the world de
signer. For example, Lees, Logan, and Theodoropoul
(2002) provide an HLA based distributed simulation, bu
fail to provide the simulation creator with a world view that
is unaffected by how objects are distributed or any suppo
for handling synchronous, conflicting actions of the agent

On the larger scale of agent simulation, theMACE3J
system (Gasser and Kakugawa 2002) is a highly flexibl
java-based agent simulation system. Scaling up is a ma
design criteria of the system; it has been run with u
to 50 processors and 5000 agents. It relies on a Shar
System Image system to provide distributed machines wi
a consistent image of the model.

Much of the work in creating efficient distributed sim-
ulations deals with how to break down a simulation into
components such that the communication requirements b
tween the components is low. For example, in agent bas
simulation, Logan and Theodoropolous (2001) discuss ho
“spheres of influence” can be used to adaptively and fle
ible organize simulation objects and agents for efficien
distributed simulation.SPADEStakes a different approach.
The breakdown of components is fixed (agents and a wor
model). WhatSPADESreasons about is how to allow
as many agents as possible to compute without violatin
causality. Notice thatSPADESdoes allow executions out
of time order as long as they do not violate causality.

3 THE SPADESSIMULATION ENVIRONMENT

This section discusses the major features of theSPADES
simulation system. When discussing these features, we w
use the termssimulation timeor just time to refer to the
simulation time within the simulation environment. The
term wall clock timewill be used to refer to the real–time
as measured by a watch outside the simulated environme
CPU Timewill refer to the amount of time a process has
used in the central processing unit on the computer syste
performing the simulation.
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SPADESsupports agent-basedexecution, as opposed
to agent-based modeling or implementation (Uhrmache
1997). In this context, agent-based execution means tha
the system explicitly models the sensing, thinking, and acting
components (and their latencies) which are the core of an
agent. Figure 1 represents a typical timeline for execution
within a cycle. Time point A represents the point at which
a sensation occurs in the environment. Time period AB
represents the elapsed time for an agent to identify an
classify the event (such as the video frame capture time
Period BC is the CPU time required for the agent to decide
what to do in response to the event, and CD is the time
it takes before the action begins to have an effect on th
world. SPADESallows arbitrary latencies for each of the
above time periods, and allows overlapped actions as show
However, twothink cycles are not allowed to overlap, since
a typical deployed agent only has a single CPU to use fo
the thinking step. We model thisthinking action by our
Software–in–the–Loopmethodology described next.

A basic premise used bySPADESis that the amount
of time an agent takes tothink is non-negligible, and must
be included in the simulation model. Further, the think-
ing time for actions is not constant, varying based on the
type of sensed event, current world state, and other var
ables. Finally, we assume that the actual software use
in the deployed agents to think about sensation events
included as part of theSPADESsimulation. Given these as-
sumptions, we developed our novelSoftware–in–the–Loop
methodology which allows accurate modeling of the think-
ing time. Since the deployed software is included in the
simulation, the amount of CPU time used by the simulated
thinking process is identical to that used by the deployed
agent in the same environment (subject to a linear scal
factor to account for differing CPU speeds). We sim-
ply measure the CPU time used by the thinking proces
in the simulation by using the Linuxperfctr (<http:
//sourceforge.net/projects/perfctr/> ) fea-
ture. This feature includes a patch for the standard Linux
kernel which provides per-process counts of CPU cycles an
instructions executed by the process. After measuring th
CPU time used by the simulatedthink process and applying
a linear scale factor,SPADESschedules theact event at the
appropriate delayed simulation time. We point out that the
termSoftware–in–the–Loophas been used previously in the
simulation literature (Choi and Kwon 1999), referring to

Time

ThinkSense Act
ThinkSense Act

Sense

A B C D

Figure 1: Example Timeline for the Sense-Think-Act Loop
of an Agent



Riley and Riley

a
h

a,

s
d

-
,
u

rd
at
e
d
-
)

a
r,
n
y

t
v
t

te
s
s
e

e

in

ly
i-
e

late

nt
he
-
ch
u-
s

the
n

e
l
-
e
a
te

in

er
ing
and
on

he

o

n
U

tal
ll

he

if
a method whereby some hardware portions ofhardware–
in–the–loop simulations are replaced by software–based
simulations. While this is similar in spirit to our approach,
it is substantially different.

In order to provide maximum inter-operability,SPADES
makes no requirements on the agent architecture (except th
it supports the sense-think-act cycle) or the language in whic
agents are written (except that they can write to and from
Unix pipes). In the same spirit as the SoccerServer (Nod
Matsubara, Hiraki, and Frank 1998),SPADESprovides an
environment where agents built with different architecture
or languages can inter-operate and interact in the simulate
world.

SPADESis a conservative parallel discrete event simula
tor as described in Misra (1986). In conservative simulations
events are not processed until it can be guaranteed that cas
event ordering will not be violated. In contrast, optimistic
simulations (Jefferson 1985) process events without rega
to causality, but instead support a rollback mechanism th
is invoked in case events are found to have been execut
out of order. Debates over the merits of conservative an
optimistic simulation are common and several surveys dis
cuss the issues (Ferscha and Tripathi 1996, Fujimoto 1990
Our choice of the conservative methodology was simply
practical choice due to ease of implementation. Howeve
our design does allow some degree of out–of–order eve
execution, if those events are known to be not causall
related.

An effect of the discrete event nature of our distributed
simulation environment is that agents’ interactions are no
necessarily synchronized. Any subset of the agents can ha
actions take effect at a given time step. This is in contras
to many simulations in the AI community, that require that
all agents choose an action simultaneously, with the sta
of the world model updated once based on all these action
SPADES-based simulations do not require the agents’action
to be synchronized in this manner. In particular, smaller tim
quanta for simulation of the world model do not increase
the simulation’s network load. In other words, the affect
of agents’ actions are realized precisely at the correct tim
in the simulation, as opposed to the artificially imposed
time–step actions of other simulators.

Finally, theSPADESsystem provides reproducible sim-
ulation results. Given the same set of initial conditions and
the same random seeds,SPADESwill produce identical
results for every simulation execution, as demonstrated
section 4.

3.1 System Architecture

Figure 2 gives an overview of the entireSPADESsystem,
along with the components users of the system must supp
(shaded in the diagram). The dotted lines denote poss
ble machine boundaries. The simulation engine and th
t
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World
Model

Comm.
Server

Simulation
Engine

Agent

Figure 2: Overview of the Architecture ofSPADES

communication server are supplied as part ofSPADES. The
world model and the agents are created by a user to simu
a particular environment.

The simulation engine is the heart of the discrete eve
simulator. All pending events are queued here, and t
engine coordinates all network communication. A com
munication server must be run on each machine on whi
agents run. The communication server manages all comm
nication with the agents (through a Unix pipe interface) a
well as tracking the CPU usage of the agents to calculate
thinking latency. The communication server and simulatio
engine communicate over a TCP/IP connection.

The world model is created by a user ofSPADESto
create a simulation model of a particular environment. Th
simulation engine is a library to which the world mode
must link, so the simulation engine and world model ex
ist in the same process. The world model must provid
such functionality as advancing the state of the world to
particular time and realizing an event (changing the sta
of the world in response to an event occurring).SPADES
provides a collection of C++ classes from which objects
the world model can inherit in order to interact with the
simulation engine.

The agents communicate with the communication serv
via pipes, so the agents are free to use any programm
language and any architecture as long as they can read
write to pipes. From the agent’s perspective, the interacti
with the simulation is fairly simple:

1. Wait for a sensation to be received
2. Decide on a set of actions and send them to t

communication server
3. Send adone thinkingmessage to indicate that all

actions were sent.
One of the communication server’s primary jobs is t

track the thinking time of the agent to support theSoftware–
in–the–Loopmethodology. When sending a sensation to a
agent, the communication server begins tracking the CP
time used by the agent. When thedone thinkingmessage
is received, the communication server calculates the to
amount of CPU time used to produce these actions. A
actions are given the same time stamp of the end of t
think phase.

The agents have one special action whichSPADES
understands: arequest time notify. The agent’s only oppor-
tunity to act is upon the receipt of a sensation. Therefore
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an agent wants to send an action at a particular time (s
as a stop turning command for a robot), it can reques
time notify. On the receipt of the time notify, the age
can returns actions as for any other sensation. In orde
give maximum flexibility to the agents,SPADESdoes not
enforce a minimum time in the future that time notifies c
be requested. However, all actions, whether resulting fr
a regular sensation or a time notify, are still constrained
the action latency.

3.2 Discrete Event Simulator

This section describes the simulation algorithm used
SPADES. This algorithm is a modification of a basic discre
event simulator.

In order to insure that all events will be executed
causal order, the simulation environment must determ
whether or not it is possible to receive a future event w
a timestamp less than the next pending event. This
called time–managementfunction of parallel simulators is
well studied, and there are a number of approaches that
be used (Chandy and Misra 1981, Bryant 1977, Matte
1993, Chandy and Misra 1979, Chandy and Sherman 19
Lubachevsky 1989, Steinmann 1991, Nicol 1993, Rile
Fujimoto, and Ammar 2000). Much of the complexity o
these approaches is due to the fact that typically a distribu
simulation will manage private event lists for each process
the distributed environment. In other words, each proc
manages its own event list, and schedules events to
from this list independently from other processes (within t
constraints imposed by the time management algorithm
For ease of implementation, we chose another well–kno
approach known as acentralized event list. In this approach,
a single composite event list is managed by amasterprocess,
which is responsible for scheduling events and managing
event list for all other processors. Any process that need
schedule a future event must notify the master process
manager of the central event list) to get the event schedu
This master process has complete knowledge at all tim
of pending events, and can independently determine wh
pending events can be safely processed. A drawback
the central event list approach is that each process m
notify the central scheduler that it has finished process
a prior event and is ready to process more events. T
design of the agents using the sense–think–act parad
mitigates this drawback, since all agents produce an ac
in response to sensed events, which serves as notifica
to the scheduler that the processing has completed.
obvious major drawback of this approach is efficiency a
scalability, since a single process coordinates activities
all agents. This single coordination point could become
bottleneck and slow down the entire simulation. For o
purposes, the total number of agents is reasonably small,
we haven’t observed significant overhead in the centraliz
h

o

–

n

,

d

s
d

).

e
o
e
.

s
h
f

st

e
m
n
n

n

r

d
d

event list management. The performance graphs given l
show clearly the overall execution time is dominated by t
agents’ CPU requirements for processing sensation eve

It is well understood that any conservative parallel di
crete event simulator requires a non–zerolookaheadproperty
in order to achieve good parallel performance (Ferscha a
Tripathi 1996). Simply stated, thelookaheadvalue is a
lower bound on the simulation time difference between t
generation of an event on any processorA and the real-
ization of that event on some other processorB. Larger
lookahead values are known to give rise to better para
performance. We now discuss the the lookahead algorit
of SPADES. We will first cover a simple version which
covers some of the fundamental ideas and then describe
SPADESalgorithm in full.

An explanation of the events that occur in the norm
think-sense-act cycle of the agents must first be given. T
nature of this cycle illustrated in Figure 3. First, an eve
is put into the queue to create a sensation. Typica
the realization of this event reads the state of the wo
and converts this to some set of information to be sent
the agent. This set is encapsulated in a sense event
put into the event queue.SPADESrequires that the time
between the create sense event and the sense event
least some minimum sense latency, which is specified
the world model. When the sense event is realized, t
set of information will be sent to the agent to begin th
thinking process. Notice that the realization of a sense ev
does not require the reading of any of the current wo
state since the set of information is fixed at the time of t
realization of the create sense event. Upon the receip
the sensation, the communication server begins timing
agent’s computation. When all of the agent’s actions ha
been received by the communication server, the computa
time taken by the agent to produce those actions is conve
to simulation time. All the actions and the think latenc
are sent to the simulation engine (shown as “Act Sent”
Figure 3). Upon receipt, the simulation engine adds t
action latency (determined by querying the world mode
and puts an act event in the pending events queue. Sim
to the minimum sense latency, there is a minimum acti
latency whichSPADESrequires between the sending time o
an action and the act event time. The realization of that
event is what actually causes that agent’s actions to aff
the world. Note that the “Act Sent” time is circled becaus
unlike the others that represent events in the queue, “
Sent” is just a message from the communication server
the engine and not an event in the event queue.

Note that a single agent can have multiple sense-thi
act cycles in progress at once, as illustrated in Figure 1.
example, once an agent has sent its actions (the “Act Se
point in Figure 3), it can receive its next sensation ev
though the time which the actions actually affect the wor
(the “Act Event” point in Figure 3) has not yet occurred
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Create Sense

sense latency think latency act latency

Event
Sense Event Act Sent Act Event

Figure 3: Events in Sense-Think-Act Cycle of an Agent

The only overlapSPADESforbids is the overlapping of two
think phases.

Note also that all actions have an effect at a discre
time. Therefore there is no explicit support bySPADES
for supporting the modeling of the interaction of paralle
actions. For example, the actions of two simulated robo
may be to start driving forward. It is the world model’s job
to recognize when these actions interact (such as in a co
sion) and respond appropriately. Similarly, communicatio
among agents is handled as any other action. The wo
model is responsible for providing whatever restrictions o
communication desired.

The sensation and action latencies provide a lookahe
value for that agents and allows the agents to think
parallel. When a sense event is realized for agent 1,
cannot cause any event to be enqueued before the cur
time plus the minimum action latency. Therefore it is saf
(at least when only considering agent 1) to realize all even
up till that time without violating event ordering.

The quantity we call the “minimum agent time” deter
mines the maximum safe time over all agents. The minimu
agent time is the earliest time which an agent can cause
event which affects other agents or the world to be put in
the queue. This is similar to the Lower Bound on Times
tamp (LBTS) concept used in the simulation literature. Th
calculation of the minimum agent time is shown in Table 1
The agent status is either “thinking,” which means that
sensation has been sent to the agent and a reply has
yet been received, or “waiting,” which means that the age
is waiting to hear from the simulation engine. Beside
initialization, the agent status will always be thinking o
waiting. The current time of an agent is the time of th
last communication with the agent (sensation sent or acti
received). The receipt of a message from a communicati
server cannot cause the minimum agent time to decrea
However, the realization of an event can cause an increa
or a decrease. Therefore, the minimum agent time mu

Table 1: Code to Determine the Minimum Time that a
Agent Can Affect the Simulation

calculateMinAgentTime()
∀i ∈ set_of_all_agents

if (agent i .status = Waiting)agent_time i = ∞
elseagent_time i = agent i .currenttime

+ min_action_latency
return mini agent_time i
i-
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d

t
nt

s

n

ot
t

n
n
e.
e
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Table 2: Code for Parallel Agent Discrete Event Simulato
for Strict Timestamp Order

repeat forever
wait for messages
next = pending_events .head
min_agent_time = calculateMinAgentTime()
while (next.time < min_agent_time )

advanceWorldTime (next.time )
pending_events .remove(next )
realizeEvent (next )
next = pending_events .head
min_agent_time = calculateMinAgentTime()

be recalculated after each event realization. However, t
algorithm could be modified to be incremental so that th
entire agent set does not have to be scanned each time

Based on the calculation of the minimum agent time
we can now describe a simple version of the parallel age
discrete event simulator, which is shown in Table 2. Th
value min_agent_time is used to determine whether
any further events can appear before the time of the ne
event in the queue.

While this algorithm produces correct results (all even
are realized in time stamp order) and achieves some pa
lelism, it does not achieve the maximum amount of possib
parallelism. Figure 4 illustrates an example with two agen
When the sense event for agent 1 is realized, the minimu
agent time becomes A. This allows the create sense ev
for agent 2 to be realized and the sense event for agen
to be enqueued. However, the sense event for agent 2 w
not be realized until the response from agent 1 is receive
However, as discussed above, the effect of the realizat
of a sense event does not depend on the current state of
world. If agent 2 is currently waiting, there is no reaso
not to realize the sense event and allow both agents to
thinking simultaneously.

Create Sense
Agent 1

Sense
Agent 1

Create Sense
Agent 2

Sense
Agent 2

A

min_action_latency

Figure 4: An Example Illustrating Possible Parallelism tha
the Simple Parallel Agent Algorithm Fails to Exploit

However, this allows the realization of events out o
order; agent 1 can send an event which has a time less
time of the sense event for agent 2. Certain kinds of out
order realizations are acceptable (as the example illustrate
In particular, we need to verify that out of order events a
not causally related. The key insight is that sensatio
received by agents are casually independent of sensati
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received by other agents. In order to state our correctn
guarantees, we will define a new sub-class of events “fix
agent events” which have the following properties:

1. They do not depend on the current state of t
world.

2. They affect only a single agent, possibly by sendin
a message to the agent.

3. Sense events and time notify events are both fix
agent events.

4. Fixed agent events are the only events which c
cause the agent to start a thinking cycle, but th
do not necessarily start a thinking cycle.

The correctness guarantees thatSPADESprovides are:
1. All events which are not fixed agent events a

realized in time order.
2. The set of fixed agent events for a particular age

are realized in time order.
In order to achieve this, several new concepts are

troduced. The first is the notion of the “minimum sensatio
time.” This is the earliest time that anewsensation (i.e. fixed
agent event)other than a time notifycan be generated and
enqueued. The current implementation ofSPADESrequires
that the world model provide a minimum time between th
create sense event and the sense event (see Figure 3
the minimum sensation time is the current simulation tim
plus that time.

The time notifies are privileged events. They are hand
specially because they affect no agent other than the
requesting the time notification.SPADESalso allows time
notifies to be requested an arbitrarily small time in the futu
before even the minimum sensation time. This means t
while an agent is thinking, the simulation engine cannot se
any more fixed agent events to that agent without possi
causing a violation of correctness condition 2. However,
an agent is waiting (i.e. not thinking), then the first fixe
agent event in the pending event queue can be sent as
as its time is before the minimum sensation time.

To insure proper event ordering, one queue of fix
agent events per agent is maintained. All fixed agent eve
enter this queue before being sent to the agent, and an e
is put into the agent’s queue only when the event’s time
less than the minimum sensation time.

There are several primary functions dealing with th
agent queue. First, enqueueAgentEvent puts a fixed ag
event into the queue. The doneThinking function is call
when an agent finishes its think cycle. Both function
call a third function checkForReadyEvents. Pseudo-co
for these functions is shown in Table 3. Note that
checkForReadyEvents, the realization of an event can ca
the agent status to change from waiting to thinking.

Using these functions, we describe in Table 4 the ma
loop that SPADESuses. This is a modification of the
algorithm given in Table 2. The two key changes are th
in the first while loop, fixed agent events are not realize
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Table 3: Code for Maintaining the Per-Agent Fixed Agen
Event Queues

checkForReadyEvents(a: Agent)
while (true)

if (agenta .status = thinking)
return

if (agenta .pending_agent_events.empty())
return

next = agenta .pending_agent_events.pop()
realizeEvent(next )

enqueueAgentEvent(e:Event)
a = e.agent
agenta .pending_agent_events.insert(e)
checkForReadyEvents(a)

doneThinking(a: Agent, t :time)
agenta .currenttime = t
checkForReadyEvents(a)

but are put in the agent queue instead. The second lo
(the “foreach” loop) scans ahead in the event queue a
moves all fixed agent events less that the minimum sensa
time into the agent queues. Note that in both cases, mov
events to the agent queue can cause the events to be rea
(see Table 3).

4 EMPIRICAL VALIDATION

In order to test the efficiency of the simulation and t
understand the effects of the various parameters on
performance of the system, we implemented a simple wo
model and agents and ran a series of experiments.
tracked the wall clock time required to finish a simulatio
as a measure of the efficiency.

4.1 Sample World and Agents

The simulated world is a two dimensional rectangle whe
opposite sides are connected (i.e. “wrap-around”). Ea
agent is a “ball” in this world. Each sensation the age
receives contains the positions of all agents in the simulatio
and the only action of each agent is to request a particu
velocity vector. The dynamics and movement properties a
reasonable if not exactly correct for small omni-direction
robots moving on carpet, except that collisions are n
modeled. The world model advanced in 1ms increment

We created two kinds of agents. The “wanderer” mov
randomly around the world. The “chaser” chases one of t
randomly moving agents by setting its requested veloc
directly towards the current observed location of that age
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Table 4: Code for Efficient Parallel Agent Discrete Even
Simulator as Used bySPADES

repeat forever
wait for messages
next = pending_events .head
min_agent_time = calculateMinAgentTime()
while (next.time < min_agent_time )

advanceWorldTime (next.time )
pending_events .remove(next )
if (next is a fixed agent event)

enqueueAgentEvent(next )
else

realizeEvent (next )
next = pending_events .head
min_agent_time = calculateMinAgentTime()

min_sense_time = current_time
+ min_sense_latency

foreache (pending_events ) /* in time order */
if (e.time> min_sense_time )

break
if (e is a fixed agent event)

pending_events .remove(e)
enqueueAgentEvent(e)

4.2 Experimental Setup

All experiments were run on theFerrari Linux cluster at
Georgia Tech. The cluster consists of sixteen identic
Linux boxes, each with 2 Pentium III CPU’s running a
850Mhz. The operating system is RedHat Linux versio
7.3. Each system has 2GB of main memory, and all syste
are connected via a private Gigabit Ethernet network and
Foundry BigIron router.

For these experiments, we varied three parameters
the simulation environment:

• The number of machines, varying from 1 to 13
(hardware problems prevented using all 16 ma
chines).

• The number of agents, varying from 2 to 26.
• Computation requirements of the agents. To simu

late agents that do more or less processing, we p
in simple delay loops. We used 3 simple condi
tions of fast, medium, and slow agents. Fast agen
simply parse the sensations and compute their ne
desired velocity with a some simple vector calcu
lations. The medium and slow agents add a simp
loop that counts to 500,000 and 5,000,000 respe
tively. On an 850MHz Pentium III, this translates to
approximately 1.0ms and 9.0ms average respon
time. Only the fast and slow performance graph
are shown, due to space considerations.
l

s

f

t

-

e

Every experimental condition was run five times and th
median of those five times is reported. Each simulation wa
run for 90 seconds of simulation time. In all experiments, th
agents received sensations every 95–105 milliseconds (act
value chosen uniformly randomly after each sensation). Th
sensation latency was chosen uniformly randomly betwee
30 and 40 milliseconds for each sensation and action.

The processes were distributed to the machines as fo
lows: The same machine always runs the simulation engin
and world model process. Then, all machines (includin
the machine running the simulation engine) run a commu
nication server, with the agents as equally distributed a
possible to all communication servers.

4.3 Results

Figure 5 shows speedup compared to running the simulati
on a single machine. The performance charts show som
interesting of interesting results.
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14 Agents
10 Agents

6 Agents
2 Agents

Figure 5: Speedup Results with the Sample World Mode
and Agents (note that the y-axes have different scales)

Moving from a single processor to two processors neve
slows down the simulation, and in most cases achiev
speedups between 1.3 and 1.75.

As expected, there is significant diminishing return a
the number of machines increases, due to the addition
inter–processor overhead required as more processors
added to the simulation.
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The detrimental affect of the communication overhead
quite pronounced in thefastagents case (Figure 5(a)). While
we always get non–zero speedup in the 2–processor case
the range of 1.3 to 1.75), the communication overhead f
additional processors begins to dominate the simulation
performance, with little further speedup beyond 5 processo
For larger processing time (Figure 5(b)), the communicatio
overhead becomes less significant, with continued speed
improvement up to 13 processors in some cases. The aff
of proper load balancing is obvious. Observe the speed
chart in Figure 5(b). Notice the large jump in speedup i
the 14 agents case (marked with the hollow boxes) wh
the number of processors increases from 6 to 7. With 1
agents distributed on 6 processors, 4 of the processors
assigned 2 agents, and 2 of the processors have 3 age
Since the overall progression of time in the simulation
bounded by the slowest running processor, the performan
is bounded by the processors with 3 agents each. Wh
7 processors are assigned to this scenario, each proce
gets exactly 2 agents and a noticeable speedup jump occ
at this point. The speedup line for the 14 agent case th
remains nearly flat up to 13 processors, since one or mo
processors must have 2 agents up to that point. Simi
results can be seen for the 18 agents case. A large spee
jump occurs when increasing the processors from 8 to
which is the point where all processors have exactly tw
agents. Again, the speedup remains reasonably flat beyo
9 processors, for the same reasons.

The affect of proper load balancing is obvious. Observ
the speedup chart in Figure 5(b). Notice the large jum
in speedup in the 14 agents case (marked with the hollo
boxes) when the number of processors increases from 6
7. With 14 agents distributed on 6 processors, 4 of th
processors are assigned 2 agents, and 2 of the proces
have 3 agents. Since the overall progression of time in t
simulation is bounded by the slowest running processor, t
performance is bounded by the processors with 3 age
each. When 7 processors are assigned to this scenario, e
processor gets exactly 2 agents and a noticeable spee
jump occurs at this point. The speedup line for the 1
agent case then remains nearly flat up to 13 processo
since one or more processors must have 2 agents up to
point. Similar results can be seen for the 18 agents case
large speedup jump occurs when increasing the process
from 8 to 9, which is the point where all processors hav
exactly two agents. Again, the speedup remains reasona
flat beyond 9 processors, for the same reasons.

4.4 Repeatability

In order to verify the reproducibility of theSPADESsystem,
we ran a further set of of experiments. For every combinatio
of 4, 12, and 24 agents running at the fast, medium, and sl
speeds (as described above), we repeatedly ran simulati
(in
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with the same random seeds given to both the world mo
and the agents. For each combination, we ran trials us
from 1 to 8 machines. Two trials were run while no oth
significant processes were run on the machine, and two w
run with no control over extra processes and artificial lo
added to half of the machines. The artificial load consist
of five processes running in infinite loops.

In all cases, the results of the simulation in terms of t
positions, the sensations, and the actions of all the age
are exactly identical. It should be noted that the order
event realization is not identical, asSPADESallows certain
out of order executions which do not violate causality.

Further note that perfect reproducibility can also b
achieved without theperfctr based timer. SPADESalso
supports the the recording of thinking times from one ru
to be replayed during a subsequent run.
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