Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds.

SIMULATION FOR TESTING SOFTWARE AGENTS — AN EXPLORATION BASED ON JAMES

Jan Himmelspach
Mathias Rohl
Adelinde M. Uhrmacher

Department of Computer Science
University of Rostock
Albert-Einstein-Str. 21

Rostock, M/V, 18059, GERMANY

ABSTRACT defining social norms and regulations. Thereby the identity
of agents is fully specified by their social role in the commu-
Agents are software systems aimed at working in dynamic nity (Ryan and Schobbens 2002). All of those approaches
environments. Simulation systems can be used to provide use models, however rather different ones for rather differ-
virtual environments for testing agents. The software to be ent purposes and for different stages of the development
tested, the objective of the simulation study, and the stage process. Whereas object-oriented approaches support the
of the agent software development influences both: the automatic transformation into implementation, logic-based
environmental models used for testing and the mechanisms specifications are aimed at supporting the verification of
that synchronize the execution of agents and simulation. A certain properties and thus a static analysis of the software.
clear distinction between model and simulation layer, and a In contrast to static analysis, the dynamic analysis of
modular design of the simulation system support the required software requires the execution of software. Testing ac-
flexibility. Based on the simulation systedames (a Java tivities support quality assurance by gathering information
based Agent Modeling Environment for Simulation) and two about the software being studied. Studies indicate that
agent applications we will explore, how interfaces between testing consumes easily 50 % of the costs of software de-
virtual environments and software agents can be explicitly velopment (Harrold 2000). This percentage might even be
specified at the modeling level and suitable mechanisms for higher if the software is safety critical or, as in developing

synchronization might be chosen on demand. agents, the software development process has an intrinsically
experimental and explorative nature. “the development of
1 INTRODUCTION any agent system — however trivial — is essentially a pro-

cess of experimentation” (Wooldridge and Jennings 1998).

Agents are software systems that are aimed at working au- Surprisingly, only little work has been done so far on de-
tonomously in dynamic and uncertain environments (Jen- veloping methods for testing agents (Dam and Winikoff
nings et al. 1998). To construct agents means to develop 2003).
software that is able to successfully accomplish specified As agents are aimed at working in dynamic environ-
tasks in an environment which changes over time. To support ments, simulation seems a natural approach towards testing
the development of software agents is the goal of agent- the behavior of an agent system in interaction with its envi-
oriented software engineering (Ciancarini and Wooldridge ronment. Same as the functionality of real-time systems and
2001). embedded systems, the functionality of agent systems can

The variety of ingredients of multi-agent systems, e.g. not be evaluated based on one time point only. Its interac-
concurrent objects, Artificial Intelligence methods, and so- tion with the environment has to be observed over a period
cial structures are recognizable in approaches for specifying of time. The usage of a virtual environment in contrast to
and developing agents and are responsible for their diver- the real environment typically reduces costs and efforts and
sity. Extensions of UML can be found (Odell et al. 2003), allows to test system behavior in “rare event situations”.
same as logic approaches which are particularly aimed at Virtual environments are easier to observe and to control,
designing rational agents and pruned for reasoning about and probe effects are easier to manage. Environment mod-
changing beliefs (van der Hoek and Wooldrige 2003). Other els are used to generate the different test cases dynamically
approaches suggest to develop communities of agents by

799

Himmelspach, Rohl, and Uhrmacher

during simulation, including specific interaction patterns A formalism which extend®evs by means for reflection,
and time constraints (Schitz 1993, p.23). time models, and peripheral ports underllames. Like all

Often test cases are based on and sometimes evensimulation systems that are basedavs or its extensions,
automatically generated from software requirements, source- James allows a hierarchical, modular model design and
code statements, and module interfaces (Peraire et al. 1998).clearly distinguishes between model and simulator. Via re-
Due to their typically complex dynamic environment such flection models can change their own behavior, composition,
an automatic generation of dynamic models as test casesand interaction pattern during simulatiohime modelsnd
for agent systems is difficult to imagine. In addition to the peripheral portsenable models to interact with externally
environment the agent is supposed to work in, the stage running software. Time models can be used to translate
of the agent development process and the objective of the external resource consumption into simulation time. Via the
simulation study will necessarily affect modeling. Typically peripheral ports a model exchanges information with exter-
simulation is employed for behavioral testing, thus rather late nally running software. Messages to be sent to the software
in the software development process. However, software are putinto the peripheral output ports and messages directed
testing should start as early as possible in the development from the software to the model pass through the peripheral
cycle — “the earlier a bug is discovered the cheaper the input ports. Peripheral ports form an extension of a model’s
correction” (Beizer 1995, p. 11). The different stages in state from the point of view of transition, output, and time
developing agents require different models that embed the advance functions. The peripheral input ports are read by
agent. The environment model(s) must be easily adaptable all of those and the peripheral output ports are charged by
to provide the required granularity and to complement the the transition functions. This is in contrast to the work of
software agent as far as it has been developed. (Cho et al. 2001) where events sent by external software

As testing in general, simulation cannot show the ab- are treated similar to externBlevs-events, i.e. read by the
sence of faults — it can only show its presence (Myers 1979) external transition and sent by the lambda function. The
and the latter only, if the models are valid. The validity conversion towardBevs-messages happens outside of the
of the environmental models will be crucial, independently model. InJames the interface between simulation and
whether abstract models of agents are experimentally eval- external software is encapsulated within a model.
uated (Wolpert and Lawson 2002), single agent modules are
embedded for testing (Schattenberg and Uhrmacher 2001),2.1 Testing Mole Agents with Representatives
or entire agent systems are plugged into the virtual en-
vironment (Pollack 1996). Validity is a relation between Mole is a Java-based mobile agent system (Baumann et al.
model, system, and the objective of the simulation study. 1997). Locations offer certain services to the agent and rep-
In accordance to regular testing, a set of simulation studies resent the source and destination of moving agevitsie
has to be executed to test the software agent under normalagents are equipped with a set of methods, e.g. for migrat-
circumstances, to explore boundary cases, and to confronting, remote procedure calls (RPC), sending and receiving
software agents with unexpected situations. messages, and for handling the individual life cycle. In

Thus, during the development of software agents, a addition, Mole agents can use the entire functionality of
variety of environment models will be needed including the Java, only constrained by the security model employed.
model that realizes the interface towards the agent software. The life of aMole agent starts in the moment a location
The type of the agent software, the objective of the sim- initiates the creation of an agent, which includes activating
ulation study, and the stage of the development process, the start method. Whereas the start method runs exactly
e.g. whether single modules or entire agents with their own once, several messages and calls can arrive at the same
thread of control and possibly with their own clock are time. Thisrequires handling several concurrent computation
tested, influence the suitability of execution mechanisms. processes. IIdJames a Mole agent is represented as one
The different and, during agent development, also chang- core model surrounded by models that represent its running
ing requirements have to be met by a flexible model and or waiting threads. These simulation models that are called
simulator design. the representative offdole agent form the interface towards
the externally runnindviole agent.

An example appears in Figure 1. The core agent models
areAgentl andAgent2 . The satelliteStart forms the
representative of the running start thread\gentland the
The following two application scenarios shall illustrate the satelliteRPCgetPrice forms arepresentative of the thread
necessity to offer different types of interfaces and simulation that has been created by calling the procedygtrice of
mechanisms to the agent developer. Our exploration will be Agent2

2 APPLICATION SCENARIOS: MOLE AND
AUTOMINDER

based on the simulation systelames, a Java based Agent
Modeling Environment for Simulation (Uhrmacher 2001).

800

During simulation, the representative reflects the agent’s
state and behavior. Whereas the agent core model repre-

Himmelspach, Rohl, and Uhrmacher

do / run agent code

Agent1 .
Agent1 as external computation

Simulation Mole-Runtime Environment created
4) RPC-
@] Response
Start [~ | public void start() {
e |] price = call("getPrice", "Agent2",

Location2");
1) RPC }
Location1
Network model

Location2

sendAndContinue

Loc1-Concierge

[all agent code executed] running

input in peripheral port Zj

[input of type Message]

Agent2 / outPortPut(input)

input in peripheral port Z

[input of type RPC or Migration
or Create or Suspend]
/ outPortPut(input)

2) RPC

public double getPrice(String name) {

\

Loc2-Conc. d

RPCgetPrice
|
I 3) RPC-

return price; resuming

do / resume execution
waiting of agent code

do / block execution

model input received

[input of type RPC or Create or (input of type
Migration and migration not succesful)]

/ put(RPC-Response) to Z o

of agent code

. . model input received
Figure 1: How Mole andlames are Intertwined linput of type Migration and

migration successful]

sents the central focus of control, its “satellites”, e.g. the Figure 2: The Representative of a Thread dflale Agent
modelStart , provide the interfaces to the agent's running as a Statechart

processes. Each of the satellites forms a representative of
a running or waiting thread of Mole agent. Together prosentat mutor=> <<Compuatontiandler>> | | <<Agent>>
with the central agent model they form the representative T N T
of an entireMole agent. If the start method of tHdole =
agent encounters a remote procedure call, this call is put
into the peripheral input port of the satellite and the thread
is suspended. With this the call has entered the virtual
environment. In response to the input in its peripheral input
port the satellite will forward the remote procedure call to
the core agent model and change its state from running to
waiting. At the time it receives the result of the remote
procedure call via its input port, it will change to resuming.
After the external thread has been resumed, the satellite -----------] |=_ e 2 o Aosponse,resume
will change to the state running again. As shown in the

put "start" into Z o

|
put RPC-Call into Z 1
|

finishedEP

sleep())
|
1
|
|
|
|
|
|
|
|

RPC-Response

Statechart in Figure 2, the transitions between the different | delianiState,)
states are triggered by the flow of time, e 8esuming)

to Running , by inputs arriving from other models, e.qg. e

from Waiting to Resuming , or by inputs arriving from

the externally running software via the peripheral input port Figure 3: Interaction Between Simulation, Representatives

Z;, e.g. fromRunning to Waiting . and aMole Agent
Figure 3 shows the interaction betweenJames
model, i.e. aStart satellite, its Simulator , the externally running software agents proceed concurrently is
ComputationHandler ~ , and theAgent . Atthe moment the task of theComputationHandler
the agent core model receives the “start up” notification, it Methods inMole are not simply executed akava

will create the satelliteStart . With the creation of the methods but reflected to make sure that the execution adheres
Start satellite, its simulator is created which will execute to the security policy. Methods of thilole API which
the initialize method of the model and start the external constitute the interface betwetfole agents and their run-
computation code. With this the “start up” notification has time environment have only to be slightly changed to redirect
entered théMiole runtime environment. calls and messages to the simulation system. A concrete
Messages between simulation and agents are exchangecgent implementation does not require any changes to be
in time-stamp order. Agents do not have an own simulation run in the virtual environment. Besides testing performance
clock. Thus, the experiment in the virtual environment, issues, e.g. comparing migration and remote procedure
which takes place in virtual (simulation) time, is controlled ~ call, the functionality of single agents in different network
solely by the simulation which uses a time model to translate €nvironments and agent societies, e.g. confronting the agent
the resource consumption, e.g. in wall clock time, of the with cooperative or defective behavior, can be analyzed.
externally running agent into simulation time. To keep track
of the externally running agents and to let simulation and

801

Himmelspach, Rohl,

2.2 Autominder

Autominder is a software system to monitor the ac-
tivities of elderly and to remind elderly if they forget or
confuse certain activities (Pollack et al. 2003). The system
shall work on a mobile, autonomous rdbe- a nursebot.
Autominder has an own thread of control and commu-
nicates with the robot through a sockefutominder
sends text strings to the robot to be delivered to the client

and the robot sends messages containing interpreted sensor

information to Autominder

Both planning and time plays a crucial role in this
scenario. Autominder keeps track of the activities of
the elderly and tries to remind the elderly in a timely,
not annoying, and effective manner. Many activities are
scheduled for certain times of the day. The robot has to
remind the elderly in time if these activities are crucial for
the elderly’s health. Therefordutominder frequently
accesses wall clock time. KAutominder is truly tested
the interaction will happen in wall clock time, such that
each test run would require a day. A significant evaluation
of the effectiveness oAutominder would likely take at
least a month.

In theMole experiment the agent and its currently run-
ning thread are described as explicit models, which serve
as interfaces. In addition they allow to inspect the internal
behavior of the agents during simulation. These represen-
tatives support a kind of gray box testing. In contrast, the
intention of our experiments witAutominder is behav-
ioral testing or black box testing.

Coupling Autominder and the virtual environment,
which currently comprises four models, i.e. fRebot , the
Elderly , theCaregiver and theEnvironment (Fig-
ure 4), is done by utilizing the robot model as an interface
to loosely couple the agent softwaketominder and the
simulation. The virtual environment employs no represen-
tative of anAutominder model and thus does not support
the inspection of internal behavior dfutominder . The
objective of ongoing experiments is to test the behavior
and the adaptation strategies Aftitominder with dif-
ferent types of elderly. The role of the robot model is
currently only to mediate between the dynamic virtual en-
vironment andAutominder : it frequently requests status
information about the environment, information from the
environment is forwarded tAutominder , and the output
of Autominder is redirected into the simulation model
and forwarded to the elderly. In other experiments, e.g.
when the information about the elderly is transmitted di-
rectly by sensors in the flat, more detailed models about
the soft- and hardware environment of tAatominder
system will be probably required.

In Figure 5 the robot asks the environment for sen-
sory information to forward it to théutominder soft-
ware. After some time the robot will receive the re-

802

and Uhrmacher

Simulation

inform

request

Activity

Caregiver

Elderly

Data

SimReminderReq SimPlanChangeReq

SimConfirmReq

Robot

.
T

SimConfirminfo, [SimPlanChangeAccept |

Virtual Environment

Sensor Data Reminders

Autominder

Figure 4: CouplingAutominder to a Virtual Test Envi-

ronment

<<Robot>> <<Simulator>> <<Autominder>>

T
lambda(State, Z;)]

I
put Sensor Data into Zo |

—>U Sensor Data
Reminders

Figure 5: The
Autominder

Interaction Between Simulation and

sponse ofAutominder and will forward it to the el-
derly. During interaction ofJames with Mole the
ComputationHandler was responsible for managing
the synchronization between simulation and agents ac-
cording to the employed time model. Adole agents
and their methods are invoked by the simulator the
ComputationHandler keeps track of all externally run-
ning sources and, during their execution, forces the otherwise
unpaced simulation to advance in synchrony with the re-
source consumption. Inthe scenario wiilitominder the
interaction between simulation amdutominder occurs
directly and events are processed in receive order, which
obviates the need for a controlling and monitoring unit like
the ComputationHandler

Himmelspach, Rohl, and Uhrmacher

3 INTERACTION BETWEEN SIMULATOR AND | ‘/f“ T 2 — ‘,re?‘) smime

AGENTS a) /,’ 5 - wo/,/ " 15 20

i . i . /Fh/ : yl - ’I I h—l wall clock time
The interface between agents and simulator is described by 0 5 10 15 20
models. They serve as interfaces towards externally running o - -
software. Peripheral ports and time models are utilized to M T T T[] simtime
specify the interaction. Executing the model according to b) o s v
this specification and the given initial situation is the task T — b wallcleckiime
of a simulator. During the design of agents a variety of 0 5 10 18
models will be employed. Similarly, the different stages of o @ -
designing agents have different requirements when it comes T R RS S sim time

15 20

/
o 5,7
A
! ,

to executing the simulation experiment. Therefal@nes 0.7

contains a variety of simulators which can be distinguished
depending on whether the simulation itself shall be executed
in a distributed or non distributed environment, the simu-
lation shall proceed paced or non-paced, and whether the Figure 6: AdvanCing Simulation Time and Wall Clock Time
simulation shall process events in receive order or in time
stamp order. Even though the choice of a certain simulator Each time the simulator wishes to advance to the time of
should not have an effect on the results of the experiment, Next event, first all externally running processes are asked
it has a definite effect on the efficiency of the simulation Whether it is safe to proceed (Figure 7). To process events
as well as on the set-up of the testing, e.g. whether and in time-stamped order, the event from the agent is labeled
how the software to be tested has to be instrumented for with a simulation time which determines when the results
this purpose. of the agents shall return into the simulation. Therefore,
Simulation and agents are executed in wall clock time. @ time model is employed, which transforms the resources
However, wall clock time forms not necessar“y the basis that the agent consumed into simulation time. It defines
of interaction between both. In simulation we distinguish the relation of resource consumption and simulation time
between physical time, simulation time and wall clock time. locally for each model.
Whereas simulation time and physical time are connected

wall clock time

o ° s 10 e 15 20

by a semantic relation, e.g. one tick in simulation time t = tsiars + TimeModel (Consumed Resources)
refers to one minute in physical time, wall clock time is not
necessarily related to either of both. During the execution Often the already consumed resources refer to wall

of the simulation the wall clock time advances, more or less clock time and in this case the processing of events is
independently of and even alternating, with simulation time. scheduled to occur depending on the advance of wall clock
Only in paced simulation the simulation time advances in time.
synchrony with wall clock time (Fujimoto 2000).

Figure 6 shows how simulation time and wall clock t = tsiare + TimeModel (1)), — tiia,:
time advances given a discrete event simulator. The version
a) shows an unpaced version in which a discrete event RootCoortinaer
simulation runs as fast as possible, b) and c) are both
paced. In paced simulation, independently whether it is
scaled (c) or not scaled (b), the relation between simulation
and wall clock time has to be carefully observed to avoid a
situation where the simulator lags wall clock time (see c).

ComputationHandler

T s"arlEP

update (Activity Info) 3

send (guarantee 187)

+ startcall,

—+ 8+ timeModel(EP) < 18

3.1 Unpaced Simulation 11

- 8+ timeModel(EP) >= 18

T endcall,

finished - --------- -
One unpacedames simulator realizes a distributed simu- D HL |
lation system which executes simulation events concurrently |

that occur at the same simulation time. Thus, within the)
simulation the concurrency is rather limited. However, the Figure 7: The Interaction Between External Processes and

simulator has been developed to support an efficient test- @1 Unpaced, Conservative Simulator Combined with an
ing of a few deliberative agents by splitting simulation and Exchange of Messages in Time-Stamp Order

externally running agents into different threads and letting As long as the consumed simulation time of the ex-
them proceed concurrently (Uhrmacher and Gugler 2000). grnajly running agent is less than the time of next event

803

tim ! [1 twe

Himmelspach, Rohl, and Uhrmacher

wce
txtart

in the simulator, the simulator will wait. An optimistic
simulator could continue and roll back if agents deliver an
event in the simulator’s past. However, any message that A scaled paced simulator allows to let the simulation,
the simulator sends to the agent software has to be treated as.g., run twice or half as fast as wall clock time. Within the
an 1/0O operation and thus may not be rolled back. Not the limits that are determined by the wall clock time required
entire simulation proceeds in synchrony to wall clock time. to execute events, paced simulations can be scaled to allow
The time models are defined locally and during episodes a faster or a slower progression of time. The scaling factor
in which no external agent is running, the simulation will can be changed during simulation, to skip in a fast mode
execute as fast as possible. through less interesting episodes and to zoom in to explore
If the simulator processed events from agents in receive interesting episodes in detail. Therefatg,,,, 155, refer

order, the simulator would only check whether there are any not necessarily to the starting point of the simulation but
inputs from the agents before advancing simulation time. If to the starting point of pacing simulation with a specific
messages had arrived, it would process the received eventsscaling factor. To speed up simulation should be done
at the time of the last calculated event as the event from the within the boundary of resources needed for processing
agents occurred somewhere in between the last and the nextevents, even though a lack of slack time during the fast
scheduled event. The combination of an unpaced simulator cycles will possibly be compensated during the episodes of

t = tyare + Scale x (), —

and the processing of agent events in receive order is usedslower processing.

for competitive rather than analytical purposes. An as fast as
possible discrete event simulation jumps from one event to
the other thereby neglecting the simulation time that lies in-
between. The same consumption of wall clock time by the
agent would result in quite different reaction times measured
in the virtual environment during a simulation run. If agents
are competing with each other in a virtual environment, as
it is the case irRoboCup (Kitano et al. 1999), it is only

important that the time pressure for each agent is the same;

The paced simulator (Figure 8) has been developed
by adapting the distributed real-time simulator introduced
by Zeigler and Cho foDevs models. First the simulator
waits for the wall clock to elapse or an external or peripheral
event to arrive. In addition, the simulator waits for a small
period of time, which is defined by the user to let further
events arrive (Cho 2001). Every time an event takes place,
the peripheral ports are charged with the event sent by the
agent. Generally, the arrival of an event from an external

whether the time pressure varies throughout one experiment process is associated with an internal or confluent transition

is of less importance.

Another criterion which influences the set-up of the
experiment is whether the simulator is controlling the ex-
ecution or whether simulator and agent run more or less
independently. As shown in Figure 7, the unpaced simu-
lator invokes the agent, respectively modules of the agent,

and keeps track of all external processes: when external

in the model. With both transitions the production of an
output is associated. The state is updated, which also might
include charging the peripheral output port and thus sending
messages to the agent software. Simulators and external
software exchange messages in an asynchronous manner.

processes have been started, which processes have beewnhile simulation not yet finished

finished, and at which simulation time the completion shall
be scheduled (Uhrmacher and Krahmer 2001). The exter-

nal processes can represent entire agent systems, or single

threads of agents like ttetart andgetPrice thread in
the Mole scenario. To let agent and simulation run inde-

pendently and exchange events in time-stamp order requires

to equip the agent software with an own simulation clock
and to provide means to advance the simulation time.

3.2 Paced Simulation

In paced simulation, each advance in simulation time is
paced to occur in synchrony with a scaling factor times
an equivalent advance in wall clock time. Therefore, each
simulator has to block until its local virtual time has reached
the required wall clock time. To relate simulation and wall
clock time a simple time model is used. This time model
globally relates wall clock time and simulation time for all
logical processes.

804

t = tyrare + Scale x (8255, — 1355
blockUntil (t > thext) V
external Event FromModel Vv peripheral Event FromAgent
WaitToCheckForFurtherEvents()
charge z;
if 1 =tyext V peripheral Event FromAgent then
send (A(s,z;)) to parent
if external Event FromModel then

(5,20) = con (s, xb, z;)

else
(5, 20) = Sint (5, 27)
endif
else
(5,20) = Bext (s, t — tjgss, xb, 2j)
endif

Higst =1
Inext = liasr +1a(s, z;)
flush z;

end

Figure 8: Extract of a Paced Distributed Simulatalames

Himmelspach, Rohl, and Uhrmacher

In this case all simulators run in real-time and process arrived. These messages are the only ones still processed
events in receive order. A general problem with this kind of in receive order. The peripheral input ports are charged
real-time simulation is repeatability. (Bacon and Goldstein with the messages from the agents, and the corresponding
1991) classified non-determinism arising from input-data, output functions and transition functions are invoked. The
system calls, and interrupts. Non-determinism arising from time of next event is calculated and the peripheral ports are
input data can be distinguished whether the input has been flushed. Whereas the sequential simulator suffices in our
sent by logical processes, by externally running software, currentAutominder scenario, a distributed paced simula-
or by other sources, like human operators (McLean and tion system will be necessary for an efficient testing of most
Fujimoto 2000). agent applications, particularly mobile agent applications.
Whereas in the context d¥lole and for testing dif- Testing mobile agents and their strategies, e.g. (Kupper and
ferent planning agents (Uhrmacher and Gugler 2000) par- Park 1999), requires often valid network models and thus,
allel, distributed simulators have been employed, for test- fast and efficient parallel, distributed simulation strategies.
ing Autominder in the current virtual environment a Currently we are designing a paced distributed simulation
sequential simulation suffices. Thus, one source of non- system which uses time-stamped messages. The underly-
determinism, which is induced by messages that are passeding concept is similar to (McLean and Fujimoto 2000) in
between and processed in receive order by logical processesutilizing time stamps for reducing non-determinism.

of distributed, parallel simulators (Figure 9), is avoided. Scaling a paced simulation that exchanges events in
However, the other sources of non-determinism still re- receive order time with agent software in general means to
main. lessen or to amplify the time pressure for the agent software.

In the case ofAutominder , whose activities depend on

while simulation not yet finished wall clock time, the call to the internal clock is re-directed

t = tytart + Scale x (115, — 1145 to a virtual clock, which advances time according to the

i start
blockUntil (t = thextEvent) Vv

peripheral Event FromAgent
if peripheral Event FromAgent then
for all simulators
charge peripheral input port Zj
peripheral Event FromAgent = false
calculate Imminents
for all simulators € Imminents
execute (A(s,z;)) and propagate to input ports
of Influencees and update Influencees
for all simulators € Imminents
if external Event FromModel then
(5, 20) = 8con (s, xb, z;)
else
(8, 20) = Sint (5, 27)

scaling factor used in the simulation to speed up or to slow
down the experiments. This can also be done during the
simulation run.

If a scaled paced simulation exchanged events in time-
stamp order the local time models used to transform wall
clock time into simulation time would have to be carefully
selected. A simultaneous usage of different time models,
e.g. locally within each model as utilized in thdole
scenario, or within externally running agents — the latter
would be easy to realize in thutominder scenario —
and globally within the scaled paced simulation, aggravates
the interpretation of simulation results.

endif
for all simulators € Influencees \ Imminents
(5, 20) = Bext (s, t — tigst, xb, 2;)

4 CONCLUSION

for all simulators € Imminents U Influencees The testing of agents by simulation requires different models
;lwf;ftl ¢ rats.) and also different strategies for synchronization. Whether
bress Eoeny = MinimUM of next events of simulators representatives of the software to be tested are used de-
for all simulators pends on how early in the designing process the simulation
flush peripheral input port 2 is employed. Representatives can be derived from spec-
end ifications and lend themselves to testing specific aspects
of the agents. Because they can be used to complement
the software developed so far and provide insights into the
Figure 9: Extract of the Sequential Paced Simulator in internal functioning of agents and their modules during exe-
James cution, representatives will be of use to interface simulation
and agents early in the design process. However, when
The sequential simulation holds all information about simulation is applied to test software, most of the time it
the simulators, which are reduced to data structures and arewl| support so called behavioral testing. This black box
no longer active threads — their associated atomic models, testing, often executed by a third party, usually represents
the coupled models they belong to, and the coupling be- 35 to 65 percent of all testings whereby these percentages
tween models. The simulation waits until the time of next are even h|gher for object oriented programs (Beizer 1995,
event is reached or messages of an external source havep. 11) and may even be topped by agent software. If

805

Himmelspach, Rohl, and Uhrmacher

the entire system is tested it will be rather an environment
model than a representative that will serve as an interface
between simulation and agent system. Thus, during the
development process the coupling between simulation and
agent systems might be gradually loosened.

In the beginning of developing the agent system not
only the environment but also part of the agents will be

Fujimoto, R. 2000.Parallel and Distributed Simulation
SystemsJohn Wiley and Sons.

Harrold, M. J. 2000. Testing: A roadmap. IGSE - Future
of SE Track 61-72.

Jennings, N. R., K. Sycara, and M. Wooldridge. 1998. A
roadmap of agent resarch and developmi&umtionomous
Agents and Multi-Agent Systerhq1): 275-306.

modeled. Therefore, an as fast as possible execution andKitano, H., S. Tadokoro, H. Noda, I. Matsubara, T. Takhasi,

the use of local time models might support the early stages
of designing agents best. Later the agent software gains
weight and autonomy in the experimental setting. Real-
time executions of simulation and treating simulation and
agents as equal partners might provide the answer to this

changed perspective. However, it is not the case that paced

simulation is exclusively used in later phases and unpaced
simulation in earlier phases. Thus, the required flexibility
refers not only to the modeling layer, but will permeate all
layers of simulation systems which are aimed at supporting
the design of software agents.

ACKNOWLEDGMENTS

A. Shinjou, and S. Shimada. 1999. Robocup-rescue:
Search and rescue for large scale disasters as a do-
main for multi-agent research. IRroc. of the IEEE
Conference on Systems, Men, and Cybernetics

Kipper, A., and A. Park. 1999. Realizing Nomadic commu-
nication with mobile agents: Strategies and their evalu-
ation. In Telecommunications Information Networking
Architecture Conference

McLean, T., and R. Fujimoto. 2000. Repeatability in real-
time distributed simulation executions. Ifith Work-
shop on Parallel and Distributed Simulation (PADS
2000) 23-32.

Myers, G. 1979The Art of Software Testinglohn Wiley
& Sons, Inc.

This research is supported by the DFG (German ResearchOdell, J., H. Parunak, M. Fleischer, and S. Brueckner. 2003.

Foundation).
REFERENCES

Bacon, D., and S. Goldstein. 1991. Hardware-assisted re-
play of multiprocessor programs. IRroceedings of
the ACM/ONR Workshop on Parallel and Distributed
Debugging Volume 26 of ACM SIGPLAN Notices
194-206.

Baumann, J., F. Hohl, K. Rothermel, and M. Strasser. 1997.
Mole-Concepts of a mobile agent systéiVW Journal
- Special Issue on Applications and Techniques of Web
Agentsl (3): 133-137.

Beizer, B. 1995 Black-Box TestingJohn Wiley & Sons,
Inc.

Cho, Y. 2001RTDEVS/CORBA: A Distributed Object Com-
puting Environment for Simulation-Based Design of
Real-Time Discreet Event SysterR&. D. thesis, Elec-
trical and Computer Engineering Dept., University of
Arizona.

Cho, Y., B. Zeigler, and H. Sarjoughian. 2001. Design and
implementation of distributed real-time DEVS/CORBA.
In IEEE Systems, Man, and Cybernetics Conference
Tucson.

Ciancarini, P., and M. J. Wooldridge. (Eds.) 20@bent-
Oriented Software Engineeringolume 1957 of_ecture
Notes in Computer Scienc8pringer.

Dam, K. H., and M. Winikoff. 2003. Comparing agent-
oriented methodologies. Rroceedings of the Fifth In-
ternational Bi-Conference Workshop on Agent-Oriented
Information SystemdVelbourne. To appear.

806

Agent UML: A formalism for specifying multiagent
software systems. IMgent-Oriented Software Engi-
neering lll, ed. F. Giunchiglia, J. Odell, and G. Weiss,
Volume 2585 ofLecture Notes in Computer Science
16-31. Springer.

Peraire, C., S. Barbey, and D. Buchs. 1998. Test selection for
object-oriented software based on formal specifications.
In PROCOMET 385-403.

Pollack, M. 1996. Planning in dynamic environments: The
DIPART system. InAdvanced Planning Technology
ed. A. Tate. AAAL

Pollack, M., L. Brown, D. Colbry, C. McCarthy, C. Orosz,
B. Peintner, S. Ramakrishnan, and |. Tsamardinos. 2003.
Autominder: An intelligent cognitive orthotic system
for people with memory impairmenRobotics and Au-
tonomous System® appear.

Ryan, M., and P.-Y. Schobbens. 2002. Agents and roles:
Refinement in alternating-time temporal logic.litel-
ligent Agents VIII: Agent Theories, Architectures, and
Languagesed. J. Meyer and M. Tambe, Volume 2333
of Lecture Notes in Atrtificial Intelligengel00-114.
Springer-Verlag.

Schattenberg, B., and A. Uhrmacher. 2001. Planning agents
in JamesProceedings of the IEEB9 (2): 158-173.

Schitz, W. 1993The Testability of Distributed Real-Time
SystemsKluwer Academic Publishers, Boston / Dor-
drecht / London.

Uhrmacher, A. 2001. A system theoretic approach to con-
structing test beds for multi-agent systemsAfapestry
of Systems and Al-based Modeling & Simulation The-
ories and Methodologies: A Tribute to the 60th Birth-

Himmelspach, Rohl, and Uhrmacher

day of Bernard P. Zeiglered. F. Cellier and H. Sar-
joughian, Lecture Notes on Computer Science. New
York: Springer.

Uhrmacher, A., and K. Gugler. 2000. Distributed, Parallel
Simulation of Multiple, Deliberative Agents. IRaral-
lel and Distributed Simulation Conference PADS’2000
Bologna: IEEE Computer Society Press.

Uhrmacher, A., and M. Krahmer. 2001. A Conservative,
Distributed Approach to Simulating Multi-Agent Sys-
tems. InProc. European Multi-Simulation Conference
ed. E. Kerckhoffs and M. Snorek, 257-264. San Diego:
SCS.

van der Hoek, W., and M. Wooldrige. 2003. Towards a logic
of rational agencyJournal of Autonomous Agents and
Multi-Agent System$1 (2): 133-157.

Wolpert, D., and J. Lawson. 2002. Designing agent collec-
tives for systems with markovian dynamics. AAMAS
2002: Autonomous Agents and Multi-Agent Systems

Wooldridge, M., and N. Jennings. 1998. Pitfalls of agent-
oriented development. IRroceedings of the 2nd Inter-
national Conference on Autonomous AgeB&5-391.

AUTHOR BIOGRAPHIES

JAN HIMMELSPACH holds a MSc in Computer Science
from the University of Koblenz. His research interests are
on developing methods for agent-oriented modeling and
simulation, with a focus on possible interaction patterns
between simulation and software agents. He is currently a
research scientist at the Modeling and Simulation Group at
the University of Rostock.

MATHIAS ROHL holds a MSc in Computer Science from
the University of Rostock. His research interests are on
developing methods for agent-oriented modeling and sim-
ulation and their application to sociological, biological and
software systems. He is currently a research scientist at
the Modeling and Simulation Group at the University of
Rostock.

ADELINDE M. UHRMACHER is an Associate Professor
at the Department of Computer Science at the Univer-
sity of Rostock and head of the Modeling and Simulation
Group. Her research interests are in modeling and simu-
lation methodologies, particularly agent-oriented modeling
and simulation and their applications. Web pages of authors
can be found at<www.informatik.uni-rostock.

de/mosi>

807

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 799
	02: 800
	03: 801
	04: 802
	05: 803
	06: 804
	07: 805
	08: 806
	09: 807

