
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

ISSUES USING COTS SIMULATION SOFTWARE PACKAGES
FOR THE INTEROPERATION OF MODELS

Michael D. Ryde
Simon J. E. Taylor

Centre for Applied Simulation Modelling

Department of Information Systems and Computing
Brunel University

Uxbridge, UB8 3PH, UNITED KINGDOM

ABSTRACT

This paper intends to examine the interoperation of simula-
tion models from the viewpoint of a simulation engineer
who uses standard tools and methods to create these mod-
els. The paper will look at the models in the context of
COTS (Commercially available Off-The Shelf) simulation
packages with a view to applying Distributed Simulation
(DS) theory to the subject. By studying current methods
employed which enable COTS simulation packages to
interoperate, this paper will discuss the tools currently used
and examine their appropriateness. The paper will also
suggest how an example COTS simulation package could
be modified to provide the necessary functions and inter-
operability required to allow full distributed simulation.

1 INTRODUCTION

Distributed Simulation has provided many opportunities
for simulation models to be run together over a computer
network such as the Internet. The High Level Architecture
(HLA) is one major contribution made by this field. The
standard (IEEE 1516) provides a framework for distributed
simulation. Each model, or federate, interacts with each
other (interoperates) to accomplish the simulation exercise.
The combined set of interoperating federates is referred to
as a federation. The HLA gives standards for data repre-
sentation (needed so that the communicating federates can
“talk” the same language – the format of data exchanged
between models) and middleware (to allow communicating
parties to “talk” – this is the federate interface specifica-
tion, the implementation of which is called a run time in-
frastructure, RTI).
 Distributed simulation enabled by the HLA has been
used extensively in military systems (see previous Winter
Simulation Conferences and SISO’s Simulation Interop-
erability Workshops for many examples). There have been
relatively few examples of this in industry. This is not for
the lack of opportunity. See Strassburger (2001) for an in-
depth discussion on how the HLA could be used outside of
the defense arena. Another use of the HLA outside the de-
fense arena was put forward as part of the Intelligent
Manufacturing Systems (IMS) mission project, see
McLean and Riddick (2000). Interestingly, an observation
made during this research was that the current RTIs (de-
veloped by different sources) did not interoperate with
each other thus all models in a distributed simulation
would need to use the same RTI.
 Another RTI based development includes GRIDS,
which provides a generic run-time infrastructure for the
execution of distributed simulations. GRIDS provides basic
simulation services to connect simulation models (feder-
ates) cooperating to perform a distributed simulation (fed-
eration), and extensible simulation services to provide per-
formance enhancement, time-management, mobile entities,
as required. Sudra et al. (2000).
 The benefits of distributed simulation could include:

• Model reuse. If components or parts of models
can be reused within a larger model then this
could save development time (a major motivation
for the development of the HLA).

• Inter-enterprise simulation. The modelling of
global enterprises across geographical boundaries,
which could normally be prohibitive because of
distance and/or ‘working hours’ issues.

• Commercial sensitivity, non-disclosure, protection
of intellectual copyrights (IPRs) and privacy. In a
supply chain, where confidentiality may have pre-
vented organizations sharing information (since it
is likely that model developers would need access
to each others models and hence potentially sensi-
tive information) the creation of models that work
together over a network that are private but share
information, could enable the modelling of supply
chains where information must be secure.

Ryde and Taylor

• Concurrent Development. Models can be built in
relative isolation thereby enabling concurrent de-
velopment in the same way that many large soft-
ware packages are developed. Indeed, in some in-
stances, a model can be as complex and as time
consuming to write as a software package.

• Large model development. Whatever the argu-
ments are to the contrary, some simulationists
build models of parts of production lines. “Cutting
and pasting” these models together to run in a sin-
gle environment is sometimes not possible. This is
another opportunity for distributed simulation.

 In the simulation modelling community there are ex-
treme views as to the ultimate future of distributed simula-
tion in industry, not least of which were expressed in Tay-
lor et al. (2002). To contribute to this debate, this paper
reviews some of the issues of the distributed simulation, or
interoperation, of simulation models in industry. To do
this, the paper is structured as follows. In section 2 we re-
view contemporary simulation modelling practice in indus-
try from the perspective of commercial off-the-shelf
(COTS) simulation packages. Section 3 then discusses the
general requirements that interoperation makes of COTS
simulation packages. Section 4 suggested some enhance-
ments to a typical COTS simulation package by way of
discussing functional and user interface requirements. Sec-
tion 5 provides some evaluation of the issues raised and
Section 6 concludes the paper with a short discussion of
some possible ‘ways forward’.

2 COTS SIMULATION PACKAGES

A typical COTS simulation package, for the purposes of
this paper, is considered to be an application in which
simulation models can be constructed, saved and reused.
The model would normally be constructed from objects,
some of which would be standardized between models.
Further, it is also expected that the package would have
some form of representation for entities (items of work)
which would be used within the model. Typically these
packages would include definitions for entity distributions
and methods by which various objects within the model
could be linked or ordered. COTS simulation packages can
be, and often are, used by various sized organizations but
are easily accessible to even the smallest of businesses be-
cause of their low cost. Thus the diversity of model that the
packages are expected to deal with is fairly broad.
 Often organizations have their own ‘favorite’ or site-
wide license for a particular COTS simulation package.
Many packages have adopted different implementations
and model object definitions making it difficult, even if the
development resource was available, to enable model in-
teroperability. There is a selection of COTS simulation
packages available. A brief review carried out during
March 2003 revealed the following (although not exhaus-
tive) list:

1. ARENA (Rockwell Software)
2. AUTOMOD (Brooks Automation AutoSimula-

tions Division)
3. Awe Sim (Frontstep, Inc.)
4. EXTEND (Imagine That, Inc.)
5. GPSS for Windows (Minuteman Software)
6. GPSS/H/Proof Animation/SLX (Wolverine Soft-

ware Corporation)
7. iGraphx Process 2000 (Micrografx, Inc.)
8. microGPSS/webGPSS (Ingolf Stahl)
9. ProModel (Production Modelling Corporation)
10. QUEST (DELMIA Corporation)
11. SIGMA (Custom Simulation)
12. SIMPROCESS/SIMSCRIPT II.5 (CACI Products

Company)
13. SIMUL8 (SIMUL8 Corporation)
14. Taylor Enterprise Dynamics (F & H Simulations)
15. Visual Simulation Environment (Orca Computer,

Inc.)
16. WITNESS (Lanner Group, Inc.)

2.1 Pseudo Distributed Simulation:
The ‘Spreadsheet Approach’

Currently there are no known products that have the ability
to support and natively allow multiple models to interoper-
ate without at-least the use of some basic middleware com-
ponent. However, there are methods used to emulate the
interoperation of models.

2.1.1 Passing Data, Storing
Results – Sequentially

Usually simulation models require, as a minimum, input in
the form of a distribution of entities. The entity distribution
for a model could be taken from existing models by exe-
cuting a number of experimental runs to determine the re-
quired spread and frequency. This information could then
be passed directly into a model via a spreadsheet. Many
COTS simulation packages provide functionality to write
out to and read variables from a spreadsheet package in or-
der to provide a way of passing information between mod-
els. In many cases this provides little more than the passing
of information sequentially from one model to another.

2.1.2 Passing Data, Storing
Results – In a DS Way

To apply the same method to many models passing informa-
tion (entities) to one another one must consider the synchro-
nization if causality issues are to be avoided. It is likely that
if multiple models were running and passing information to
each other then these models could be running at different

Ryde and Taylor

speeds; i.e. the simulation clocks would be different. Thus
Model A when receiving an event from Model B and Model
C, would need to determine which event to process first. Us-
ing a spreadsheet package to facilitate the passing of entities
may provide some limited mechanism for reading/writing
timestamped information, event list information and even
synchronization logic (time-management). However it is
suggested that a spreadsheet, using basic functions would be
grossly inadequate and such a mechanism would require
some further middleware logic (program instructions) to
give the required functionality. It can then be argued that the
spreadsheet package is no longer acting as a simple data
passing mechanism, more as a fully-fledged time-
management component. Is a spreadsheet package really the
best tool for the job in this case?
 It has long been suggested that the distribution and in-
teroperation of simulation models can be achieved through
the use of a ‘Spreadsheet’ some evidence of this can be
found in Clarke (1993). This we term as the ‘Spreadsheet
Approach’, which, it is postulated, is inappropriate for all
but the simplest interoperations.
 As suggested earlier it can be seen that using this
method for distributed simulation cannot work without
some layer of intermediate code to deal with the time-
management functionality. It can therefore be assumed that
programming skills would also be required by the simula-
tion engineer in order to create this middleware.

2.2 Distributed Simulation

There are some emerging developments which may sup-
port the interoperation of COTS packages in the future
such as FAMAS-HLA Bridge, Boer et al. (2002). How-
ever, the design of the system requires that the packages
used to build the models are HLA compliant which, unfor-
tunately not all are. The middleware used within this sys-
tem uses a standard version of the HLA RTI (Run Time
Infrastructure).
 By examining various COTS simulation packages it is
evident that their implementations may also make it diffi-
cult to pass entities (due to the definition of an entity) and
information due to non-standardization of model interfaces.

3 REQUIREMENTS FOR
DISTRIBUTED SIMULATION

COTS simulation packages can be made to interoperate
through the use of bespoke middleware which may include
functionality to control the overall model, pass and convert
entity information, set and control global parameters, collect
results and statistics and provide mechanisms for different
entry and exit points into each model. Where interoperating
models are tightly coupled the complexity of such middle-
ware increases. Further issues regarding time-management
must also be addressed for successful implementations.
 If a COTS Simulation package provides full external
control and the ability to externalize data (using a spread-
sheet package), then with the use of middleware it is be-
lieved that the package could be made to support a distrib-
uted simulation model. However, the success will largely
depend on how well these functions have been imple-
mented and to what level of granularity the facilities have
been provided. In a package like SIMUL8 the use of mid-
dleware would be relatively straightforward.
 The middleware in such a distributed model would
primarily be responsible for message passing and synchro-
nization, and in the case of heterogeneous COTS simula-
tion package interoperability, translation of message/entity
information to a common standard format.
 Without middleware it is unlikely that any of the cur-
rent COTS simulation package designs could support dis-
tributed simulation.

4 SUGGESTED ENHANCEMENTS
TO A COTS SIMULATION PACKAGE

It is believed that due to the way many COTS Simulation
packages are designed adding interoperability could be
relatively straightforward. For the purposes of this paper
we restrict ourselves to one package, SIMUL8 (SIMUL8
Corporation). This package has a Visual Interactive Model-
ing (VIM) interface, uses event lists and defined entities.
SIMUL8 is an accessible package for many organizations
due to its costing structure and is available on the Micro-
soft Windows platform. The VIM provides a high level of
control to many of the technical features and functions
available to the simulation engineer and the package is be-
lieved to be an appropriate candidate for our suggested en-
hancements. An attempt has been made to suggest new or
modified functions and even a possible user interface using
SIMUL8 as an example.
 We have also decided for the purposes of this case
study not to address heterogeneous COTS simulation pack-
age interoperability.

4.1 Functions

Table 1 gives examples of functions that could be made
available in COTS simulation packages such as SIMUL8.
The authors of this paper have no knowledge of the inter-
nal mechanisms or software design that SIMUL8 uses and
so these functions serve merely as general software design
suggestions.
 At the current time the main body of work has focused
on run control and entity exchange. The functions suggested
would allow a model to use external objects and variables
and also enable the model to share it’s own objects and vari-
ables. Further, the distribution of an ‘input’ could also be de-
fined as an external function, providing an alternate method
of distribution. A final function is provided to enable a se-

Ryde and Taylor

Table 1: Run Control and Entity Exchange Functions
Function Description
Handle Exter-
nObj(Object)

Externalization of objects for ex-
ternal access. Returns handle to ob-
ject.

Handle Ex-
tern(Variable)

Externalization of variables for ex-
ternal access. Returns handle to
variable.

SetMas-
ter(Boolean)

Set Master Model - Allows a spe-
cific model to be set as a master to
stop and start the entire simulation.

Entity GetEx-
ternDist(Mode
l, FromObject,
ToObject)

Get external distribution - Modify
existing routine to interrogate ob-
jects within separate SIMUL8 mod-
els for distribution patterns. Returns
Entity.

Boolean
LinkExter-
nal(Model A,
Object, Model
B, Object)

Links object in model A to an ex-
ternal object in model B. Returns
True if successful.

lected model to become ‘the master’ for ease of control and
synchronization of the ‘global’ model.
 The functions in table 1 serve merely as example func-
tions which could exist in an API (Application Program
Interface) and are not intended to represent a complete list.
However they do serve to highlight some important
mechanisms which are required to provide external control
and entity exchange with the COTS simulation package.
 SIMUL8 supports the notion of Plugins which enable
specific software modules to be integrated in to the package.
A possible use for this could be for time-management algo-
rithms. This could allow different synchronization protocols
to be used when models have been distributed. The Plugins
could include Conservative (lookahead, lookback and null
message protocols) and Optimistic (Time Warp) algorithms.
The integration detail is expected to be more complex for
these software components however, the mechanism could
provide a neat and elegant solution to the problem.

4.2 SIMUL8 Application
Programming Interfaces

Although strictly not relevant to the simulation engineers
(due to the requirement of software development skill), the
APIs provide the first steps towards interoperability. Once
the necessary native functions have been introduced to the
application it is not unreasonable to expect separate or-
ganizations and even users with software development ex-
perience to develop standardized middleware to be used by
general simulation engineers in order to allow model inter-
operability. Currently SIMUL8 supports API’s at a number
of different levels, i.e. OLE Automation, COM and
ActiveX interface. There are also some direct linking fa-
cilities, using the user interface, which can enable the user
to link to Microsoft Excel or Visual Basic (although these
probably use the facilities provided in the API).

4.3 SIMUL8 Interface Suggestions

Modifications to the SIMUL8 interface will be required to
enable the Simulation Engineer to design interoperating
models. Below are suggested interface enhancements to
provide access to the interoperability functionality, primar-
ily focusing on model selection, object linking and setting
the master control.

4.3.1 Selecting External Models

The current object linking box in SIMUL8 version 9 pro-
vides a mechanism to link various objects within the same
simulation, see figure 1. Figure 2 suggests a modification to
this dialog box to allow links to be made to external objects
by first selecting the model in which the object resides.

Figure 1: Current Object Linking Dialog

Figure 2: Modified Object Linking Dialog

4.3.2 Linking External Objects

Once a model has been selected, external objects could
then be used for specific distributions. Alternatively, an ex-
ternalized variable from the model such as a published ‘re-
sults’ variable could be used to provide the input. Figure 3
shows an example of the dialog boxes to enable external
distribution selection.

The main purpose of creating external distributions is
to replace the commonly used stochastic distributions and
provide ‘real’ input in the form of entity occurrences (as
opposed to a statistically derived distribution). The input
captured for interoperating models could then be used to
define, after a number of experimentations, a distribution
which could be used within the model. Further implemen-

Ryde and Taylor

Figure 3: Modified External Distribution Dialog

tation could be considered to integrate the process with the
‘optimisers’ which are often provided in COTS simulation
packages. This could provide a mechanism by which ex-
periments could be automated from which a set of distribu-
tions could be derived from interoperating models.

4.3.3 Setting Model to be the Master

The modified user interface shown in figure 4 reveals an
additional menu option to set the current model to be the
master controller for all linked models. This functionality
could provide ‘central’ control for all interoperating mod-
els, such as synchronized start and stop.

Figure 4: Modified Clock Menu

5 EVALUATION

The suggested enhancements demonstrate some of the
simple modifications that could possibly be made to
SIMUL8, at functional and user interface levels, to pro-
vide some degree of interoperability between models. To
implement any of the suggested interoperability functional-
ity it is accepted that a significant amount of development
work would be required by the vendors of the COTS simu-
lation packages.
 The cost justification for such developments are argu-
able but not clearly defined as suggested in the following
‘chicken and egg’ scenario. A significant issue that should
not be overlooked is that currently simulation modelers
cannot create interoperating models unless they have the
skills which enable them to write some kind of middle-
ware. Interoperability functionality between simulation
packages is rarely if ever native to a simulation package;
chicken and egg scenario – many COTS simulation pack-
age manufactures do not see the need to provide DS func-
tionality since they believe there is not a demand from their
user-base. Users (simulation engineers) will not attempt to
build interoperating models unless they have simple tools
in which they can be created.
 Perhaps we should expect simulation engineers to be
au fait with the skills demanded of a software development
engineer, after all designing and implementing a large
simulation model is often not a trivial task. Often it is a re-
quirement that the engineer be well versed and skilled with
not only simulation practices but also the subject area and
the intricacies of the simulation tools used. However, this
still leaves the issue of the time wasted in developing mid-
dleware for potentially each interoperating model and the
unlikelihood of the re-usability of the middleware. In real-
ity, simulation engineers do not necessarily have the soft-
ware expertise to create the required middleware to enable
disparate COTS simulation packages to interoperate.
 It is also suggested that through COTS simulation
package interoperability the compromising of privacy and
IPRs based issues may be avoided. External model knowl-
edge would not be required other than required inputs and
outputs of the interoperating models.

6 CONCLUSIONS AND SUGGESTED
AREAS FOR FURTHER RESEARCH

Only those who have the ability to write middleware, usu-
ally programmers, will be able to use COTS simulation
packages in a distributed way. It is suggested that it is un-
reasonable to expect simulation experts to also be experts
in programming. It is further suggested that with the inclu-
sion of interoperability (i.e. DS) functionality within main-
stream COTS simulation packages that simulation engi-
neers may well be able to harness and make use of work
currently accessible only to academics in the DS field.

Ryde and Taylor

However, very little exists in terms of tools or meth-
odologies for the simulation engineer to develop large
models within a team. Concurrent development of a simu-
lation model would require a tool set and methodologies
similar to that used by software engineers. i.e. source code
control (or model control) and version control. Further, the
paradigm could be extended to include specific develop-
ment tools for the simulation modeller, for example, de-
termining the best partition points within a simulation –
this could be calculated through experimentation, possibly
an extension to simulation optimising tools currently avail-
able. It also believed that the paradigm could include spe-
cific methodologies and practices used in large model de-
velopment in much the same way that project management
and systems management methodologies are used in large
IT developments such as PRINCE or SSADM. Extensions
to existing software development tools such as UML (the
Unified Modelling Language) to include a standardised set
of development stages and model definition. If DS/Model
interoperability does ‘make it’ into mainstream products, it
is believed that many of the above areas would require fur-
ther investigation and research.
 The main generic processes that are required for
SIMUL8 to interoperate with other models (created in the
same package) can be summarized as follows:

• To link objects in different models and use their
entity distributions where required.

• To pass entity data between objects in disparate
models.

• Provision of access to control the starting and
stopping of a model externally.

• The implementation of time-management algo-
rithms for model synchronization.

• The ability to interrogate the event list in order to
examine the next event before it is executed

• Separate control for re-running C-Phase of opera-
tion as specified in the three-phase simulation
methodology, see Brooks and Robinson (2001).

REFERENCES

Boer, C.A. and Verbraeck, A. 2002. Connecting High level
Distributed Simulation Architectures: An Approach
for a FAMAS-HLA Bridge. In Proceedings of the
14th European Simulation Symposium. Society for
Computer Simulation Publishing House, Erlangen,
Germany. 398–405.

Brooks, R.J. and Robinson, S. 2001. Simulation. Palgrave,
Hampshire, UK 32-35.

Clarke, R. 1993. Module interconnection frameworks for a
real-time spreadsheet. Computer Abstracts Interna-
tional Database, reference: 39_1890.

McLean, C. and Riddick, F. 2000. The IMS Mission Archi-
tecture for Distributed Manufacturing Simulation. In
Proceedings of the 2000 Winter Simulation Confer-
ence, J. A. Joines, R. R. Barton, K. Kang, and P. A.
Fishwick, eds. Piscataway, New Jersey: Institute for
Electrical and Electronics Engineers. 1539-1548.

Strassburger, S. 2001. Distributed Simulation Based on the
High Level Architecture in Civilian Application Do-
mains. Society for Computer Simulation Publishing
House, Erlangen, Germany.

Sudra, R., Taylor, S. J. E. and Tharumasegaram, J. 2000.
Distributed Supply Chain Simulation in GRIDS. In
Proceedings of the 2000 Winter Simulation Confer-
ence, J. A. Joines, R. R. Barton, K. Kang, and P. A.
Fishwick, eds. Piscataway, New Jersey: Institute for
Electrical and Electronics Engineers. 356-361.

Taylor, S. J. E., Bruzzone, A., Fujimoto, R., Boon Ping
Gan, Straßburger, S. and Paul, R. J. 2002. Distributed
Simulation and Industry: Potentials and Pitfalls. Pro-
ceedings of the 2002 Winter Simulation Conference,
E. Yücesan, C. H. Chen, J. L. Snowdon, and J. M.
Charnes, eds. Piscataway, New Jersey: Institute for
Electrical and Electronics Engineers. 688-694.

AUTHOR BIOGRAPHIES

MICHAEL D. RYDE is a Ph.D. student at the Department
of Information Systems and Computing, Brunel University
in the United Kingdom. He also received his M.Sc. at Brunel
University in 2000 and is a member of the university’s Cen-
tre for Applied Simulation Modelling (CASM).

SIMON J.E. TAYLOR is the Chair of the Simulation
Study Group of the UK Operational Research Society and
the collaborative simulation-modelling forum, the
GROUPSIM Network (www.groupsim.com). He is a Sen-
ior Lecturer in the Department of Information Systems and
Computing and is a member of the Centre for Applied
Simulation Modelling, both at Brunel University, UK.
With Dr Gary Tan of the School of Computing, National
University of Singapore he is joint leader of the UK
(EPSRC)/Singapore (DSTR)-funded BRUNUSIM distrib-
uted simulation research programme. He has an under-
graduate degree in Industrial Studies (Sheffield Hallam), a
M.Sc. in Computing Studies (Sheffield Hallam) and a
Ph.D. in Parallel and Distributed Simulation (Leeds Metro-
politan). His main research interest is collaborative simula-
tion modelling. He is also a member of the London-based
Purple Theatre Company.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 772
	02: 773
	03: 774
	04: 775
	05: 776
	06: 777

