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ABSTRACT this leads to very high event-handling overhead or context-
switch overhead in event-based simulations (McHaney 1991,
We present an efficient algorithm for effecting round-robin  Fishman 2001), and in process-oriented simulations (Law
service in discrete-event simulation systems. The approach and Kelton 2000), respectively.
generalizes and improves upon a previous approach in which The high cost of event-scheduling in the naive RR
a single arrival and a single departure event is considered approach can be greatly reduced through a computational
and handled at a time; further, the previous approach is device thatwas introduced in Sang, Chung, and Rego (1994).
already an improvement over naive round-robin scheduling The idea is to run an algorithm which first predicts and then
currently in use in simulation libraries. The prior proposal schedules the next departure from the state of the system
offered a run-time complexity 0® (n?), because the pro-  which is defined by the remaining service requirement of
cessing of each event required an entire traversal of the job each job, the number of jobs and the next job in line for
pool. We propose a generalized algorithm which includes service. A simple analysis shows that if an RR system
the previous case and also accommodates burst arrivalshasn jobs in service and no more jobs enter the pool,
and batch departures, further reducing run-time complex- the time complexity of the algorithm i® (n2). In this
ity to O(nlogn). This is achieved through a detailed but paper, we develop a novel batch departure computation in
efficient computation of multiple departure times, while si- which multiple departures can be scheduled without having
multaneously obviating the need for a job pool update with to update the state of the pool on each departure. This
each departure. Empirical results are presented to compareyields a new algorithm which further reduces simulation

performance with previously proposed algorithms. time complexity toO (n logn).
The remainder of the paper is organized as follows.
1 INTRODUCTION In Section 2, we examine the components of the origi-

nal single-departure computational algorithm. In Section

Good simulation models are a powerful tools used to answer 3, we develop a new batch departure formula which can
performance questions related to waiting-line phenomena significantly reduce simulation time. We also analyze the
(Schwetman 1988), that are difficult to answer using other problem of cancellations in the batch departure formula
means. Because these models are usually computationallyand introduce the concept of “look ahead” as a desirable
intensive, efficient techniques for implementing algorithms, primitive in a simulation kernel. In Section 4 we present an
particularly those that reduce run-time, are very useful as algorithm to handle the update of state and insertion of new
simulation execution enhancements. arrivals after a batch departure. In Section 5 we present

The round-robin(RR) service discipline is a popular the results of several experiments, comparing performance
and widely used discipline in many real-world time-sharing with previously proposed algorithms. Finally, we present a
systems because of its fairness. In this discipline, a job or brief conclusion in Section 6.
customer is serviced for a single quantyrat a time. If
the remaining service time required by a job exceeds the 2 THE SINGLE-DEPARTURE
guantum sizey, the job’s processing is interrupted at the COMPUTATIONAL ALGORITHM
end of its quantum and it is returned to the rear of the
gueue, awaiting service quantum in the next round. A naive An appropriate representation of the job pool in the compu-
approach to implementing the RR discipline in simulation tational algorithm is a circular linked list, which the server
is to physically dole out service quanta to the jobs in a traverses in a circular fashion. The original algorithm pre-
round-robin fashion. For jobs with very large service times sented in Sang, Chung, and Rego (1994) keeps three fields
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for each job record: a process identifier (PID), remaining formula will be derived assuming that no new jobs arrive

service-time, and a link to the next element in the circular between the invocation of the algorithm and the scheduled

list. An additional pointer HEAD, which is associated with  n departures. We will, however, address the issue of new

pools of jobs, is used to indicate the job which is to receive arrivals later.

the next quantum of service. We build a table T that contains the pool elements,
The computational algorithm uses a scheduling function, the remaining service times, the relative positions and the

that traverses the pool and determines the next job to departrelative order of distinct departures. The scheduled departure

— the one with minimum remaining service time. It keeps time of the next job from the pool is then given by:

track of this time fzinrem), and also counts the number of

steps {reps) between the current head (i.e., the current job current_time + [v; X size_of_pool — (terml) —

to be serviced) and the job to depart. Upon determining (term2)] x q,

these two parameters, the next departure is identified by

using the size of the poolppolsize) and service quanta  wherev; = remaining time for jols, and (term 1) and (term

(¢) through a simple formula: 2) are explained in detail below.
This formula reflects three constraints imposed on the
current_time + ((minrem — 1) X poolsize (1) pool, namely:
+steps) X q. » Complete traversal of the fixed-size pool
« Extra steps due to counting elements that have
Consider a pool of jobs (A, B, C, D, E) that have already departed, which is term 1 _
remaining service-time (5, 6, 3, 4, 8) respectively and » Extra steps due to traversal from a particular ele-
HEAD points to A. it is easy to see that the next job to ment to tail, which is term 2.
leave the system i€, if no new arrivals occur prior to the We now examine these terms in detail, assuming a pool

departure, aftet3— 1) x 5+ 3 = 13 quanta. Observe that ~ Of » elements. _ o
if an arrival event occurs before the scheduled departure ~ Term 1 For a (potentially) departing job (i =
event, the scheduled departure event has to be cancelled. 1. 2. ....n), term 1 is given by:

3 NEW BATCH DEPARTURE = , =
ALGORITHM D wi—v)=G=Dxu-3 v
j=1 j=1
The original single-departure computational algorithm iden-
tifies one potential departure event and handles one arrival

event at a time. We propose a novel algorithm in which L ; . ; :

we consider the possibility of processing burst arrivals and departmg_job_SJ. The expression on the ”ght. side of
. 4 .. the equation is the one useful for implementation of the

batch departures, to handle the simulation of models with i1

bursty traffic. Figure 1 illustrates the difference between the algorithm, since the ternZv,- can be stored in a single

original algorithm and the new batch algorithm in terms of

the number of events. The new formula is a generalization ygriable.

of the formula used in the single-departure algorithm. A Term 2:  Term 2 is a little more difficult, as we will

simple approach, such as repeatedly applying the Formula 1 shortly see. For departing jab(i = 1,2, ..., n), term 2 is

presented in Section 2, is not trivial, since there is no easy given by:

way to keep track of the different remaining service quanta

for jobs in the pool and the position of the head as elements (Pool_size_at round) — (Relative position of job to

get removed. head).

On the left side of the equation, we subtract the extra
steps counted between the current jobnd all previously

j=1

3.1 Derivation of the Generalized Formula The pool size at a given round is obtained as (remembering
that Pool_size is fixed at the instant the algorithm is invoked):

The new method exploits complete traversals of a somewhat

artificially simplified pool, where the head and pool size are Pool_size_at_round_i = (Pool_size —i +1). (2)
determined by the initial state, and used for all subsequent _ - _
computations. With this approach we only need to subtract For relative positions, we take into account that the

the extra quanta to get an exact solution. The subtraction relative positions of jobs change as jobs are removed and
of quanta can be expressed mathematically, and can thus bescheduled for departure, and that the relative positions of
easily accounted for. Further, all departures from the pool jobs stationed between the head and a departing job don't
can be scheduled solely from initial state information. The change, though the positions of others must change.
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Figure 1: A Comparison of Single Arrival/Departure and Batch Ar-

rival/Departure
Let p; be the position of jok relative to the fixed Hence, computing (p;) can also be done i (logn).
head at the start of algorithm’s invocation on the pool. Combining Equation 2 and Equation 3, we obtain a

Based on the above explanation, the new relative position final form for term 2:
is determined as:
(pool_size —i +1) — p; + ¢ (pi).
relative position = pi = ¢(pi). ®) With Term 1 and Term 2 thus defined, we are finally in a

where the functions (p;) defines the number of jobs with pogitiop 'Fo define a precise expression for the departure time
relative positions smaller tham that have already departed.  Of 0P i(i = 1,2, ..., n) for the batch-departure case (the
A straightforward approach to computing(p;) by one- batch-departure formula), which has the following form:
by-one comparison will drive the time complexity of the
algorithm up toO(n?). Therefore, we have to resort to ] ) )
a more efficient but also more complicated data structure | current_time +[v; x pool_size — ((i = 1) x v;
for the calculation of¢(p;). We propose the use of a
widely-used data structure, called augmented red-black tree . ;
or order-statistic tree (Cormen et al. 2001), which can _Zvi) — ((pool_size =i+ 1) = pi + ¢(pi))] x ¢-
support fast rank operations. The rank operation can be J=1
done in a time that is proportional to the height of the
red-black tree, i.e. ir0O(logn) time.

Given the rank, the relative position can be easily Wh
calculated by following relationship:

i-1

This formula is computationally simple to implement.
en invoked, it yields departure times starting from de-
parturei = 1 to departuré = n, based solely on the initial

& (pi) = rank(p;) — 1. state of the pool.
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3.2 Computational Algorithm with
Look-Ahead

In the original computational algorithm, if an arrival event

occurs before a scheduled departure, the departure event is

cancelled to preserve consistency of the pool. In replacing
single departures with batch departures, if cancellations are
used when arrivals occur, we may arrive at a situation
where we compute and schedule the departure times of
a large numbem of jobs only to later find that nearly

all such departures must be cancelled because of arrivals.

This problem can be solved by resorting to a special look-
ahead primitive which looks ahead in the simulation to
determine the time of the next arrival. This makes for an
efficient computation that determines only what is needed
through constant monitoring via look-ahead, and because
this method does not alter a simulation’s trajectory, the
resulting simulation produces consistent results.

The algorithm has three major steps. Firstly, we traverse
the queue and build a table T containing relative positions
and remaining service times. Secondly, we sort the table
(using an efficient sorting algorithm such as quicksort) in
increasing order of remaining service timegs determine
the relative departure order and put it in the table T. After

obtaining necessary information, we use the batch departure

formula to schedule batch departure events. The algorithm
terminates when it completes the departure time computation
for each of the jobs in the table T or when the next arrival
time (via look-ahead) is reached.

Both the computational algorithm and the naive al-
gorithm yield the same results, serving to verify that the
computational algorithm is indeed a correct and more effi-
cient O (nlogn) algorithm for the prescribed task.

3.3 An Example

Consider the following illustration of the use of the batch-
departure formula. The traversal is done from left to right
to obtain a table T containing the remaining service times
v;, the relative positiong; and the departure ordeéer After
sorting T by remaining service timg, we obtain the data
shown in Table 1.

Table 1: Sample Pool

Job PID: C|D|A|B|E
Remaining timev; |3|4|5(6|8
Departure ordef 1{2|3|4|5
Relative positionp; |34 |1|2|5

Now applying the batch departure formula applied for
i =1 throughi =5, we get:
Departure 1: Job C,i = 1:
v; X pool_size =3« 5=15
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i—1
terml =G —1) xv;— Y v, =0-0=0
j=1

term2 = (pool_size-i + 1) — p; + ¢(pi) = (65—
1+41)-34+0=2

departure = current_time 15— 0— 2]q =
current_time + 13;

Departure 2: Job D,i = 2:

departure = current_time R0— 1 — 1]g=
current_time + 18;

Departure 3: Job A,i = 3:

departure = current_time R5— 3 — 2]g=
current_time + 2Q;

Departure 4. Job B,i = 4:

departure = current_time [B0— 6 — 1]g
current_time + 23

Departure 5: Job E,i =5:

departure = current_time 40— 14— 0]g =
current_time + 26;.

A graphical explanation of the computation is demon-
strated in Figure 2. Consider the computation of the third
departure, i.e. Job A departs. A total of 25 ticks are doled
out to 5 jobs because Job A requires 5 ticks service time.
These 25 ticks include 3 extra ticks (i.e. terml), as shown
circled in Figure 2(a), given to C and D even after they have
been marked as having departed. Furthermore, because A's
relative position (i.e.p;=1) is smaller than C’s (i.e., 3) and
D’s (i.e., 4), the value of Asp(p;) is 0. This results in
term2 =3—1—0= 2. There are two extra ticks, marked
by rectangles in the last row of Figure 2(a), distributed to
other in-pool jobs stationed after A (i.e., Jobs B and E).
Thus, deducting these 5 extra ticks from the total of 25
ticks, we obtain the value 20. A similar calculation for Job
B’s departure is depicted in Figure 2(b). Note that the value
of B's ¢(p;) is 1 because, among jobs that have already
departed, only A has a smaller relative position (i.e., 1) than
B (i.e., 2). Hence term2, which is22+ 1 = 1, shows
that one extra tick is given to an in-pool job (i.e., Job E).
Subtracting the extra quanta in term1 and term2, we obtain
the value 23 for Job B.

4 HANDLING CHANGES OF STATE

In the original single-departure computational algorithm
(n = 1), upon departing, the job updates the pool to the
correct state at the simulation time of the event and leaves
the pool. For the batch departure case-(1), we have to
find a way of obtaining all necessary information in a single
traversal of the pool and then update all jobs accordingly.
Since each departure must have a corresponding departure-
event, any one of these departure events may be used to
update the state of the pool. Different discounts have to be
applied to different elements in the pool, depending on the
position of the head with respect to these elements.
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Figure 2: Sample Departures - (a) Job A Departs, (b) Job B Departs

The algorithm is as follows: Assume that there are
jobs to depart in a batch. The remaining service-time of the
nth job will be used as the discount quantity. Next, simply
traverse the pool from head to tail, subtractitigcount for
each job lying between head and #té job and subtracting
discount — 1 for the rest. Those jobs that have remaining
service-times less than or equal to zero are deleted from
the pool, i.e., they have been scheduled for (potential)

5 PERFORMANCE EVALUATION

We ran a number of experiments to evaluate the performance
of the batch departure algorithms. A single, unrestricted
gueue served in round-robin fashion was used to implement
and test the algorithms. Further, the algorithms were im-
plemented within an application-layer residing above the
kernel of a thread-based process-oriented simulator based

departure. Once the update is done, the pool is reindexed on the Purdue Ariadne threads library (Mascarenhas and

and the new head is defined. The pool is then ready for the
next invocation of the update algorithm.

Consider the batch departure of jobs C and D in our
previously defined example. Since job D is the last to leave
in the batch departure, we use D’s remaining service time
(i.e., 4) as the quantitdiscount. Applying the proposed
algorithm we get the results in Table 2.

Table 2: Pool after Departure of C and D

Job PID A|B|C|D|E
Remaining timev; 5/6/3|4|8
Relative positionp; 1{2/3|4]|5
discount (-) 41414143
[ Updated remaining time; [1[2]-1] 0[5

After deleting all jobs with zero or negative remaining
service-times from the pool (i.e., C and D), we obtain an
up-to-date pool with consistent stateate = clock+18g,
as shown in Table 3. The new head will now point to job
E.

Table 3: Updated Pool
Job PID A|B|E
Remaining timev; |1 2|5
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Rego 1996). The input parameters used were quamgtum
exponentially distributed job interarrival times with mean
1/x, exponentially distributed job departure times with mean
1/u, and discretized exponentially distributed batch sizes
with mean 1+ 1/8. The output parameter measured was
the amount of CPU time required to do the simulations,
given specific values for the input parameters described
above. Several variations of the proposed algorithms were
implemented within the application-layer on the simulator
kernel, to evaluate the performance of the different ideas
presented in the paper. To help identify the different runs,
we use the following notation:

» 0orCA -the original single-departure computational

algorithm

* nuBD - the batch departure formula with one-

departure at a time

e buBD - the batch departure formula with batch

departures

« BD - nuBD or buBD.

Each experiment was repeated 20 times with different
random number seeds for each run, and the results then av-
eraged. As explained in Sang, Chung, and Rego (1994), the
use of averages does not represent the absolute performance
of the algorithms but rather their relative performance given
a particular configuration of parameters.
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5.1 Benchmarks

The first experiment was designed to evaluate the behaviour
of the different variations of the algorithms to arrivals that
occur one at a time.

5.1.1 Experiment 1: Sensitivity to Traffic Intensity with
Single Arrivals

The purpose of this experiment was to measure the perfor-
mance of the algorithms as the ratio= A/u is varied.
The service timeST = 1/u and the number of job®/
were fixed at valueST = 200 andN=20,000 jobs, while

A was varied. The results are shown in Figure 3.

30 T T T T
orCA —+—

25

20

Simulation Time (seconds)

1 1 1 1
0.4 0.6 0.8
Traffic Intensity

Figure 3: Simulation Time vs. Traffic Intensity for
Single Arrivals

The following experiments were designed to evaluate
the behavior of the different variations of the algorithms for
arrivals that occur in distinct batches. For each arrival event,
where interarrival mean is/1, a (discretized exponential)
batch size BA with mean % 1/8 was defined, and BA
arrival events were generated. The service time ST, with
mean Yu, was divided by BA to obtain the service time
for each job in an arriving batch to ensure system stability.

5.1.2 Experiment 2: Sensitivity to Batch Size

The purpose of this experiment was to measure the per-
formance of the algorithms as batch size BA is varied.
The systems evaluated include orCA, nuBD and buBD.
The parameters used were fixedrl 1/u = 160, with

N = 10,000 jobs, while 1+ 1/8 was varied. The exper-
iment was repeated for different values of by varying
1/, with results for YA = 200, 320 and 5334 = 0.8, 0.5

and 0.3) shown in Figures 4, 5 and 6, respectively.
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5.1.3 Experiment 3: Sensitivity to Traffic

The purpose of this experiment was to measure the perfor-
mance of the algorithms with the batch size BA fixed, while
a is varied. The systems evaluated include orCA, nuBD
and buBD. The parameters used weéfe+ 1/8) = 30,

1/u = 160 with N = 10, 000 jobs, and A\ was varied.
The results are shown in Figure 7.

5.1.4 Interpretation of Results

The main cost incurred by the orCA algorithm is due to
repeated traversals of the pool and cancellations of many
departures. The main cost incurred by the batch departure
algorithm is due to sorting. The results indicate the relative
cost of these two algorithms, and how costs change with the
pool size. Experimentally, the pool size grows with both
large batch arrival sizes and a high traffic intensity.

Our experiments enable us to identify three different
performance regions:
The first region involves a single arrival at a time,
or very few arrivals. This behavior is witnessed
in Experiment 1. In this region, the pool sizes
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Figure 6: Simulation Time vs. Batch Sizp € 0.3)
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Figure 7: Simulation Time vs. Traffic Intensity for
Batch Arrivals

are relatively small, and it is cheaper to traverse
the pool many times instead of performing sorting
operations. So orCA performs better than BD.
The second region involves low to medium traffic
intensity. According to the figures, this is caused by
two variations: (1 = 0 to 0.5 and batch arrivals
of any size; (2) batch arrivals, with batch-size below
a critical size (in the case of the experiments, this
is mean batch-sizez 20). This is the behavior
witnessed in Experiments 2 and 3. In this region,
we have pools of moderate size, and the cost of
sorting is roughly the same as the cost of traversing
the pool repeatedly. Here, orCA and BD peform
equally well.

The third region involves medium to high traffic
intensity (according to the figures, this corresponds
to the experiments witlk = 0.5 to 1) and a batch
size over a certain threshold (here, mean batch-
size > 20 for the experiments). In this region it
costs significantly more to traverse a large pool
repeatedly than to perform a sort operation. Thus,
BD offers better performance.
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The reason why the performance-behavior of the different
algorithms reverse when going from region | to region Il
is that the repeated traversal of a large pool exhibits a
theoretical asymptotic growth rate 6f(n?), whereas a sort
operation withn red-black tree insert/rank operations can
be done both in time (n logn). Thus, for large pool sizes,
the sorting and red-black tree algorithms tend to offer better
performance. The regions are clearly demarcated in Table 4.

Through our experiments, we have determined that the
batch departure formula-based algorithm works better than
the original single-departure computational algorithm for
traffic intensitiesa > 0.5 and batch sizeBA > 20, which
includes situations of burstiness and high traffic. Examining
region Ill, we see that here traffic intensity approaches 1
and more cancellations tend to occur for orCA. Also, the
difference between BA and orCA increases with increasing
pool size.

6 CONCLUSION

It is well-known that simulations of CPU scheduling or
general waiting-line models can consume large amounts of
processing time, especially when discrete-event simulations
are supported by threads-based systems. We exploit the fact
that a reduction in the number of scheduled events offers
a correspondingly sharp reduction in simulation time. We
built upon an algorithm we proposed previously, hamely, a
computational algorithm based on a formula which predicts
the next (potential) job departure. This was shown to be
a significant improvement over a simple schedule of re-
entrant events for simulating round-robin service. Here, we
generalized the idea to batches, to make efficient simulations
thataccommodate traffic that occurs in bursts. By obtaining a
new batch-departure formula, we conclude that it is possible
to reduce simulation run-time even further. The idea of
infrequent pool-state updates reduces the time complexity
from O (n?) to O (n logn), and our experiments show the idea
to be effective. Further, the empirical results show that the
new algorithms perform significantly better that the original
single-departure computational algorithm, especially when
traffic intensity is high. We believe that generalizations to
the multiprocessor case are achievable.
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