
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

LOOSELY-COORDINATED, DISTRIBUTED, PACKET-LEVEL SIMULATION
OF LARGE-SCALE NETWORKS

Boleslaw K. Szymanski
Yu Liu

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180, U.S.A.

he
In
the

ls.
ntly
e
al,
for
im
the
ss

the
es

orts
nes

a-
to
aw
es
at
The
ne

et-
ries
ar-
er

d
nd
ks,
net
e

ted

so
f
n
he
-
d

el-
e
al.
in
a-
cy.
nt

is
rk

ent
el
e,
d

s
ith

is

ch
f a
s
an
s
ns

ha-
In
ABSTRACT

The complexity and dynamics of the Internet is driving t
demand for scalable and efficient network simulation.
this paper, we describe a novel approach that partitions
networks into domains and simulation time into interva
Each domain is simulated independently of and concurre
with the others with only local domain information over th
same simulated time interval. At the end of each interv
global routing information, packet delays and drop rates
each inter-domain flow are exchanged between domain s
ulators. When the exchanged information converges to
value within a prescribed precision all simulators progre
to the next simulated time interval. This approach allows
parallelization with infrequent synchronization, and achiev
significant simulation speedups. Such a solution supp
simulations of large-scale networks on distributed machi
with modest memory size.

1 INTRODUCTION

In simulating large-scale networks at the packet level, a m
jor difficulty is the enormous computational power needed
execute all events that packets undergo in the network (L
and McComas 1994). Conventional simulation techniqu
require tight synchronization for each individual event th
crosses the processor boundary (Bhatt et al. 1998).
inherent characteristics of network simulations are the fi
granularity of events (individual packet transitions in a n
work) and high frequency of events that cross the bounda
of parallel simulations. These two factors severely limit p
allel efficiency of the network simulation executed und
the traditional protocols (Bhatt et al. 1998).

Another difficulty is the large memory size require
by large-scale network simulations. With the current tre
of simulating ever larger and more complicated networ
the memory size becomes a bottleneck. Centralized
work configuration and routing information results in larg
memory requirements during construction of the simula
-

-

network. Additionally, the needed memory increases al
with the intensity of traffic flows that dictate the size o
the future event list. Although memory requirements ca
be tampered by the good design and implementation of t
simulation software (Nicol 2002), we believe that to sim
ulate truly large networks, the comprehensive, distribute
memory approach is needed.

This paper describes our long-term research on dev
oping an architecture that can efficiently simulate very larg
heterogeneous networks in near real time (Szymanski et
1999). Our approach combines simulation and modeling
a single execution. A novel coarse granularity synchroniz
tion mechanism is used to achieve better parallel efficien
Thanks to this approach, Genesis is able to use differe
simulators in a single coherent network simulation. Th
feature motivated the name of the system: General Netwo
Simulation Integration System, orGenesisin short.

Genesis addresses also the large memory requirem
problem in large-scale network simulations. Many parall
simulation systems achieved speed-up in simulation tim
however, they also required that every machine involve
had big enough memory to hold the full network. Thi
requirement is most easily achieved through a system w
shared memory. In Genesis, in contrast, memory usage
fully distributed among participating simulators.

As discussed in Szymanski et al. (2002), the approa
underlying Genesis can also be seen as a variant o
general scheme for optimistic simulation referred to a
Time-Space Mappings proposed by Chandy and Sherm
(1989). Although all optimistic simulations can be viewed a
variants of this scheme, very few apply, as we do, iteratio
over the same time interval to find a solution.

2 GENESIS APPROACH

2.1 Coarse Granularity Synchronization in Genesis

Genesis uses a coarse granularity synchronization mec
nism to simulate network traffics, as described below.



Szymanski and Liu

a
h
v
rt
se
n
te
ay

e

ic
in

ws
n

or
d

n

b
om
in
th
v
it
ch
s

-
he
c
a

ri
p
c
g
e

k
a
o
n

r-

y
a
to

nd
e
t
r

ay
el

rk

is

r
f

rk

e

t
us
-
n
ut

n
h

-
.

es
es
l.
Genesis, a large network is decomposed into parts and e
part is simulated independently and simultaneously with t
others. Each part represents a subnet or a domain or e
Autonomous System (AS) of the entire network. These pa
are connected to each other through edges that repre
communication links existing in the simulated network. I
addition, we partition the total simulation time into separa
simulation time intervals selected adaptively in such a w
that the traffic characteristics change little during each tim
interval.

Each domain is simulated by a separate simulator wh
has a full description of the flows whose sources are with
its domain. Each simulator needs to approximate flo
routed to or through its domain whose sources are exter
to the domain. To this end, each simulator creates itsdomain
closurethat includes all the sources of flows that reach
pass through this domain. Since these are copies of no
active in other domains, we call themproxy sources. Each
proxy source uses the flow definition from the simulatio
configuration file.

The flow delay and the packet drop rate experienced
the flows outside the domain are simulated by the rand
delay and probabilistic loss applied to each packet travers
in-link proxy. These values are generated according to
average packet delay and its variance as well as obser
packet loss frequency communicated to the simulator by
peers at the end of simulation of each time interval. Ea
simulator collects this data for all of its own out-link proxie
when packets reach the destination proxy.

Every domain simulator stops its simulation at pre
defined checkpoints, and exchanges data with all the ot
domain simulators by exchanging data with others. Ea
domain simulator checks its convergence condition by an
lyzing the received data, based on some pre-defined met
(end-to-end packet delay, packet loss rate, etc.) and
rameters (e.g., precision threshold). Until the convergen
condition is satisfied, the domain simulator will be goin
back to the last checkpoint and re-simulating the last tim
interval, utilizing the data received during the latest chec
point. When all the domain simulators converge, a glob
convergence is reached, and all the domain simulators go
to the next time interval. The system framework is show
in Figure 1.

Consider a flow from an external sourceP to the
internal destinationQ, passing through a sequence of exte
nal routersr1, . . . rn and internal routersrn+1, . . . rk. The
source of the flow can be represented by the sequence
pairs (t1, p1), . . . (tm, pm), where ti denotes the time of
departure of packeti and pi denotes its size. At router
i, a packetj is either dropped, or passes with the dela
di,j . For uniformity, dropping can be represented as
delay T greater than the total simulation time. Hence,
replicate a flow with the proxy sourceQ′ sending packets
to routerrn+1, packetj produced byQ′ at time tj needs
ch
e
en
s
nt

h

al

es

y

g
e
ed
s

r
h
-

cs
a-
e

-
l
n

of

s

Figure 1: Progress of the Simulation Execution

to be delayed by timeDj = ∑n
i=1 di,j . A delay at each

router is the sum of constant processing, transmission a
propagation delays and a variable queuing delay. If th
total delay over all external routers is relatively constan
in the selected time interval, a random delay with prope
average and variance approximatesDj well. Thanks to the
aggregated effect of many flows on queue sizes, this del
changes slower than the traffic itself, making such mod
precise enough for our applications.

2.2 Efficiency Analysis

It has been observed that the execution time of a netwo
simulation grows faster than linearly with the size of the
network (Ye et al. 2001). Theoretical analysis supports th
observation because for the network size of orderO(n),
the simulation time contains terms which are (i) of orde
O(n∗ log(n)), that correspond to sorting event queue, (ii) o
orderO(n2), that result from packet routing, and (iii) even
of orderO(n3), that represent the cost of building routing
tables. Therefore, it is possible to speed up the netwo
simulation more than linearly by splitting a large simulation
into smaller pieces and parallelizing the execution of thes
pieces.

The challenge in large scale network simulations is tha
the processing of large amount of events requires enormo
computational power and long execution time. Conven
tional packet-level parallel simulations achieved executio
speedups with modest number of parallel processors, b
their scalability and parallel efficiency were limited by their
frequent event-level synchronization. To achieve executio
speedups, fluid model network simulation took the approac
of using a high level abstraction of network traffics to re
duce the number of simulation events (Liu et al. 2001)
But the efficiency and accuracy of simulating fluid models
highly depend on the types, parameters and complexiti
of network models. Hence, such models can sometim
be less efficient than packet-level simulations (Liu et a



Szymanski and Liu

t
la
of
It
e
e

d

n
ce

n
e
s

n
nd
k
-

m
n

is

ry
l

u
y

s

e

by
s
g
e

n
y

to
-

rk
o
th
ze
he

sis
a-

in
y
ng
ons
re,
nt
e.
3

-
t

in
tly
1999), and it is difficult for them to achieve high accuracy
in complex wireless network models. Genesis, in contras
took another approach and uses a novel coarse granu
ity synchronization mechanism to reduce the frequency
synchronization while preserved packet-level simulation.
achieved better parallel efficiency than conventional parall
simulations with controllable accuracy. Figure 2 shows th
comparison among these approaches.

Figure 2: Simulation Efficiency vs. Accuracy

Our target application is network management base
on on-line network monitoring and on-line simulation (Ye
et al. 2001). The presented method fits very well such a
application as it predicts changes in the network performan
caused by tuning of the network parameters.

2.3 Event-Level Synchronization in Genesis

The basic Genesis approach described above was desig
to simulate TCP and UDP data traffics, but could not b
used to simulate some other flows, for example, data flow
providing information for routing protocols. This is because
the traffic of a routing protocol cannot be summarized o
packet delay and drop rate; instead, different content a
timing of each routing packet might change the networ
status. Particularly, our desire to simulate BGP protocol re
quired us to develop additional synchronization mechanis
in Genesis. We developed an event-level synchronizatio
mechanism which can work within the framework of Genes
and support the simulation of BGP.

2.4 Memory Distribution

Simulations of large-scale networks require large memo
size. This requirement can become a bottleneck of sca
ability when the size or the complexity of the network
increases. For example, ns2 uses centralized memory d
ing simulation, which makes it susceptible to the memor
size limitation. The scalability of different network sim-
ulators was studied in Nicol (2002). This paper report
that in a simulation of a network of a dumbbell topology
with large number of connections, ns2 failed to simulat
,
r-

l

ed

-

r-

more than 10000 connections. The failure was caused
ns2’s attempt to use virtual memory when swapping wa
turned off. This particular problem can be solved by usin
machines with larger dedicated or shared memory. Yet, w
believe that the only permanent solution to the simulatio
memory bottleneck is to develop the distributed memor
approach.

In a typical parallel network simulation using non-
distributed memory, each of the parallel simulators has
construct the full network and to store all dynamic informa
tion (e.g., routing information) for the whole network during
the simulation. To avoid such replication of memory, we
developed an approach that completely distributes netwo
information. Thanks to this solution, Genesis is able t
simulate large networks using a cluster of computers wi
smaller dedicated memory (compared to the memory si
required by shared memory-based SSFNet simulating t
same network), as shown in section 4.2.

3 GENESIS DESIGN OVERVIEW

3.1 Design of Domain Simulator Model

In this section, we summarize the basic design of Gene
domain simulator to support domain-based parallel simul
tions presented by us in Szymanski et al. (2002).

The user is responsible only for annotating domains
the simulation configuration file. This is achieved simply b
labeling each node in the configuration by the correspondi
domain number. Based on these annotations, the extensi
to the ns system process domain definition and its closu
collect the data for information exchange and impleme
the information exchange, as well as monitor convergenc
A sample domain and its closure is presented in Figure
and discussed below.

Figure 3: Domain Simulator Structure

Support for domain definition in Genesis, i.e., identify
ing which nodes belong to a particular domain, is the firs
step towards creating the domain closure. By definition,
the domain closure, each external proxy source is direc



Szymanski and Liu

o

r
n

k

r

e
r
e
g

t
i
d

e

e
o

n

e

o
e
o

s
e-
e
ed
l.
e
In
e-
s

rt
n
n
he
a-
e

n
.
s
h
e
s-
ts
e.
e
in

rs.
ut

n-
in
e
-

te
d

nd

e
d
to

ios
rk
connected to the destination domain of its flow. We refer t
such replicated source as anproxy sourceand we call the
link that connects it to the domain border router anin-link
proxy.

The design supports the selective activation and de
activation of domains. The purpose is to process entir
simulation configuration on each participating processo
but then, during simulation, to keep active only one domai
closure while maintaining the routing information for the
entire simulation. This information is needed to identify the
destination domains for all packets that leave the domain

Consider the sample network in Figure 3. The networ
is split into three individual domains, numbered 1, 2 and
3. Packets that flow into the domain 1 from outside (with
sources in skeletons of domains 2 and 3 in Figure 3) a
produced by their proxy sources in the domain closure an
delayed or dropped during transition through in-link proxies
(marked by boxes in Figure 3).

Exchange of data uses the Farmer-Worker architectur
in which one processor collects the data from all the othe
and redirects them to all the simulators. Recording th
information needed for data exchange involves calculatin
for each packet leaving the domain, the time expired from
the instance a packet leaves its source to the time it reach
the destination proxy. Also recorded is information abou
each packet source and its intended external node destinat
as well as whether the packet was dropped by a router insi
the domain.

The following functionalities were also implemented
in Genesis:

The ability to suspend the simulation to enable ex-
change of data on path delays using message passing betw
processors simulating individual domains. During the simu
lation freeze, each individual simulation domain exchange
information on packets generated and dropped along link
leaving the domain (cf. Figure 3).

The ability to record information about the delays
and drop rate experienced by the packets leaving the
domain. Each delay measures the time expired from th
instance a packet leaves its source to the time it reach
the domain boundary. Packet drop rates are computed f
each flow separately. Also recorded is information abou
each packet source and its intended destination. Havin
this information enables us to replicate the source from
the original domain to the boundary of the target domai
(sources in skeletons of domains 2 and 3 in Figure 3) an
postpone an arrival of each packet produced by the replicat
source at the domain boundary by the delay measured
the source (and transient, if necessary) domains. Als
with probability defined by packet drop rates, packets ar
randomly dropped during the passage to the boundary
the destination domain (D boxes in Figure 3).
d

-
e
,

.

e
d

,
s

,

es

on
e

en
-
s
s

e
s
r

t
g

d
d

in
,

f

3.2 Design of Distributed Wireless Network Simulation

In this section, we summarized the additional challenge
to Genesis approach arising in wireless networks and r
ported by us in Mandani and Szymanski (2003). As in th
Genesis interface to wired networks, domains are simulat
concurrently with each other over the same time interva
The domains freeze at user-specified intervals. At the tim
of freeze the inter-domain data exchange takes place.
GloMoSim, a node can schedule events (transmit and r
ceive packets) while it is mobile. The current Genesi
extension to GloMoSim accounts for the “mobility-trace”
defined mobility in which the user specifies the speed, sta
and destination locations of the nodes in a configuratio
file. Knowing the above parameters, before the simulatio
starts, Genesis computes the time and location at which t
node crosses the domain boundaries. Using this inform
tion, each domain simulator knows when and where th
mobile node will be active in its domain.

The introduction of domain closures creates regions i
the network topology which overlap at least two domains
Thus, a node in such a region is active in both domain
at the same time. The Genesis domain simulators whic
simulate activities of such a node must include the sam
events for the node. To achieve this, the inter-domain me
sages include information about communications (packe
received and sent) by nodes lying in the domain-closur
Each domain receiving this information checks if the sam
communications were executed for its copy of the nodes
question. If not, the time interval is re-simulated with the
modified list of events for the offending node.

Each domain has at most eight domains as neighbo
Thus, each domain needs to communicate information abo
the activity of domains lying in its closure to its neighbors
only. We achieve this by establishing a peer-to-peer co
nection between domains. In other words, each doma
receives data from at most eight of domains during th
freeze event. On exchange of this information, each do
main checks whether it needs to go-back and re-simula
the freeze interval (based on the information collected an
its own information).

3.3 Interoperability Design

We implemented our Genesis based on ns, SSFNet a
GloMoSim, and enabled the interoperability among them
within the Genesis framework.

To support interoperability among different systems, w
defined generic network models and common flow-base
message exchange formats. Mapping files were used
convert the flow information in common formats into local
network data for different systems. We also created scenar
where we had mixed-mode traffics between a wired netwo
(modeled using SSFNet) and a wireless network (modele



Szymanski and Liu

e
sa
e
he
m

n
ro
th
n.
rit
m
xtr
e

he
n

hb
s

te
do
,
a

te
ar
AS
n

n
rk
th

al
at
m
he
e
te

to
”
a
e
m
ce
h
os
to
th
in

s

,

e
l

using GloMoSim). The wired network (SSFNet) viewed th
wireless network (GloMoSim) as a black box, and vice ver
Proxy traffic aggents were created in Genesis to repres
the network in the black box. In such an approach, t
implementation details of each simulator are hidden fro
the others.

3.4 Design of Event-Level Synchronization for BGP
Simulations

In the simulation systems which use only event-level sy
chronization based on either conservative or optimistic p
tocol, the correct order of event delivery is guaranteed by
protocol. The price, however is frequent synchronizatio

In Genesis, we take advantage of coarse granula
synchronization for TCP and UDP traffics, and at the sa
time synchronize BGP update messages by doing e
rollbacks, to reflect the actual routing dynamics in th
network. To simulate BGP routers separately from t
Genesis domain in each parallel AS domain simulator, a
to make them produce BGP update messages for its neig
domains, we introduced proxy BGP neighbor routers. Tho
are routers mirroring their counterparts which are simula
by other domain simulators. The proxy BGP routers
not perform the full routing functionality of BGP. Instead
they maintain the BGP sessions and collect the BGP upd
messages on behalf of their counterpart routers.

At the synchronization point in Genesis, the BGP upda
messages collected in the proxy BGP routers, if there
any, are forwarded to the corresponding destination
domain simulators through a component called BGP age
These update messages are delivered to the BGP agent i
destination AS domain through a Farmer-Agent framewo
and are distributed there to the BGP routers which are
destinations of these messages.

During the Genesis checkpoint after one time interv
the BGP agent in each AS domain collects BGP upd
messages from other BGP agents. If it receives so
update messages for the previous interval, it will force t
AS domain simulator to rollback to the start time of th
previous interval. Then, it inserts all the received upda
messages into its future event list. Its domain simula
will re-simulate the time interval again, and will “receive
these update messages at the correct simulation time
will react to them correspondingly. The BGP messag
produced in the current execution might be different fro
the once seen at previous one. Hence, the rollback pro
might continue in domain simulators until all of them reac
a global convergence, as showed in Figure 4. High c
of checkpointing the network state makes it impractical
introduce separate rollbacks for BGP activities. Hence,
UDP/TCP traffic checkpoints are used for all rollbacks
Genesis.
.
nt

-
-
e

y
e
a

d
or
e
d

te

e

t.
the
,
e

,
e
e

r

nd
s

ss

t

e

Figure 4: Synchronization for BGP Updates

3.5 Memory Distribution Design

Memory distribution is particularly challenging in Genesis,
because of its special coarse granularity synchronization
approach. In Genesis, within one time interval, one domain
simulator is working independently of others, simulating the
partial traffics flowing within or through that domain. Other
parts of these traffics, which are outside of that domain,
are simulated byproxy links which compute the packet
delays and losses based on flow “summaries” provided by
the outside domain simulators. If the network information
is completely distributed among the domain simulators,
each one has information about only a part of the network.
Hence, these simulators cannot simulate global traffics in-
dependently because information about some flow source
or destinations, or both will not be there. We should notice
the difference here from other event-level synchronization
systems. In those systems, to simulate distributed network
each individual event crossing the boundary is forwarded
to remote simulators regardless of its “semantic meaning”.
Hence such parallel simulators do not need to simulate
global flows independently, but they must synchronize their
execution tightly.

In Genesis solution, each domain uses traffic proxies
that work on behalf of their counterparts in the remote
domains. Traffic proxies send or receive TCP or UDP data
packets as well as acknowledgment packets according to th
produced feedbacks. To simulate inter-domain flows, partia
flows are constructed between local hosts andproxy hosts.
Thus, in the simulation of one AS domain, the simulator
just simulates one part of an inter-domain traffic by using
proxy hostsandproxy links, as shown in Figure 5.

The actual traffic path between local hosts and remote
hosts must be decided by inter-AS routing. For example,
inter-AS routing changes can cause remote inbound traffic
to enter the current AS domain from different entry points,



Szymanski and Liu

e
to
ll
n.

o
c
a
fic
e
s
e

rk
ic
s
s
c
r
a
i

e
th
ba

ly

s

s

g

e
.
rk
n-

n

f
e
y

e-
f
-

s,
ed
e

”,
is
n

Figure 5: Proxy Hosts and Inter-domain Traffic

thus routing the flow through a different path inside th
domain. We developed a method, described below,
construct these remote traffic paths and to automatica
adjust them to reflect the current inter-AS routing decisio

3.5.1 Global Routing Information Consistency

To compute global routing in separate simulations, each
which has only a part of the network, IP address consisten
is required to make the routers understand the routing upd
messages. In addition, we use BGP proxies and traf
proxies to act on behalf of their counterparts. To us
routing data, these proxies need to use the IP addresse
their counterparts when they produce traffic packets. W
used a global IP address scheme for the whole netwo
and introduced a mechanism of IP address mapping, wh
translates local addresses to and from global addresses u
in our BGP update messages. In our global IP addre
scheme, domains are assigned different IP address blo
to avoid address conflicts among domain simulators. Inte
domain routing information is stored based on these glob
addresses. Each proxy host stores the IP address of
counterpart host which has a global IP address. Wh
packets are sent from proxy hosts, the IP addresses in
packet headers would be replaced with corresponding glo
IP addresses. In this way, the addresses in these packets
consistent with the routing information and can be correct
routed to the destinations.

3.5.2 Remote Host, Traffic and Link

Those definitions were added to the network definition
Remote hostdefines the traffic host (source or sink) which
is not within the current simulating domain, and specifie
the global IP address for this proxy.Remote trafficpattern
allows the definition of a traffic which will use proxy IP
address instead of its own local IP address.Remote linkis
defined to connect theremote hostto the current domain,
and it is implemented as a Genesisproxy link which can
y

f
y
te

of

,
h
ed
s
ks
-
l
ts
n
e
l

are

.

adjust its link delay and applied packet drop rates durin
the simulation.

3.5.3 Remote Traffic Path Construction

The difficult part of remote traffic path construction was to
decide how to connectproxy hoststo the current AS do-
main. Changes in inter-AS routing decision might chang
the entry (exit) point of traffic packets to (from) the domain
Such a change cannot be determined during the netwo
construction phase. We designed a structure which co
nected remote traffic hosts to aproxy switch, instead of
connecting them to any entry point directly, as shown i
Figure 6. When a packet sent by aproxy hostreaches the
proxy switch, theproxy switchwill lookup an internal map-
ping from flow id to the current inter-AS routing table, and
will forward this packet via the correct inbound link to one
of the BGP routers on the domain boundary. If the inter-AS
routing is changed by some BGP activities later, theproxy
switch will automatically adjust its internal mapping, and
the packets with the same flow id will be forwarded to a
different inbound link.

Figure 6: Remote Traffic Path Construction

4 PERFORMANCE EVALUATION

This section briefly summarize results from a series o
simulations that we run on a large network model using th
distributed Genesis and which were initially described b
us in Szymanski et al. (2003).

4.1 Simulation Model

To test the performance and scalability of Genesis in larg
scale network simulations, we use a modified version o
the baseline model defined by the DARPA NMS commu
nity (NMS Baseline Model 2002). The topology for the
model that we are using can be visualized as a ring of node
where each node (representing an AS domain) is connect
to one node preceding it and another one succeeding it. W
refer to each node or AS domain as the “campus network
as shown in Figure 7. Each of the campus networks
similar to the others and consists of four subnetworks. I



Szymanski and Liu

n

s

r
n

d

.
t.

k

e

n
e
S

0
a
e
e

-

e
of

rs

-
a

n-
y

e
-

n
l,

ith
ry

n
n

o-
e

S
ns

ps

d
l

n

Figure 7: One Campus Network

addition, there are two additional routers not contained i
the subnetwork, as shown in the diagram.

The subnetwork labeled Net 0 consists of three router
in a ring, connected by links with 5 ms delay and 2 Gbps
bandwidth. Router 0 in this subnetwork acts as a BGP borde
router and connects to other campus networks. Subnetwo
1 consists of 4 UDP servers. Subnetwork 2 contains seve
routers with links to the LAN networks as shown in the
diagram. Each of the LAN networks has one router an
four different LAN’s consisting of 42 hosts. The first three
LAN’s have 10 hosts each and the fourth LAN has 12 hosts
Each of the hosts is configured to run as a UDP Clien
Subnetwork 3 is similar to Subnetwork 2, so internal links
and LAN’s have the same property as those in Subnetwor
2.

The traffic that is being exchanged in the model is
generated by all the clients in one domain choosing a serv
randomly from the Subnetwork 1 in the domain that is a
successor to the current one in the ring. We used differe
send-intervals of 0.1, 0.05 and 0.02 second to vary th
traffic intensities, and used different numbers of nodes (A
domains) to vary the size of the network. Each simulation
was run for 400 seconds of the simulated time.

All tests were run on up to 30 processors on Sun 1
Ultrasparc workstations, which were interconnected by
100 Mbit Ethernet. One of these workstations had 1G larg
memory, and each of the others had at least 256M dedicat
f

r
k

r

t

d

Figure 8: Memory Usage of SSFNet and One Genesis Do
main Simulator for Simulations of Different AS Domains

memory. In the simulations under distributed Genesis, th
number of processors used was equal to the number
campus networks.

4.2 Experiment Results

Genesis distributively constructs and simulates BGP route
in AS domain simulators. To measure scalability of this
solution in terms of network size, we simulated BGP net
works of 10, 15, 20 and 30 AS domains, each run by
Sun 10 Ultrasparc workstation with 256 MB of memory.
As shown in Figure 8, when the number of AS domains
increases, unlike SSFNet, the memory usage of one Ge
esis AS simulator does not increase much. As a result, b
utilizing more computers with smaller memories, we are
able to simulate much larger networks.

Memory usage of simulation is related not only to the
static network size, but also to the network dynamics. W
increased the traffic intensity by reducing the traffic send
interval from 0.1 to 0.05 and 0.02 second. As shown in
Figure 9, although we did not observe very big changes i
memory usage in SSFNet on this campus network mode
Genesis showed even smaller increase in memory size w
the same changes in traffic (thanks to its smaller base memo
size).

As we have shown, Genesis achieved executio
speedups thanks to its coarse granularity synchronizatio
mechanism. In addition, despite the extra overheads intr
duced by distributing the network, good speedups wher
achieved for 10, 15, 20 and 30 domain simulators with
BGP routers. The Genesis domains were defined by the A
boundaries. Figure 10 shows the speedups of simulatio
for these networks.

Figure 11 shows that Genesis achieved higher speedu
with higher traffic intensities. This is because with higher
traffic intensity, more events need to be simulated in a fixe
simulation time. Theoretical analysis tells us that sequentia
simulation time includes terms of orderO(n ∗ log(n)), due
to sorting event queues. Genesis distributes the simulatio
among domain simulators, which reduces the number o



Szymanski and Liu

ca
we

we
cke
es
et

tha
et
%,
e
a

n
s o
tive
me
er
of

g
of
sis
ed

is
ork
a-
ith
rk-
s:
ins
ro-
tter

n-
cs
e,

ar-
u-
ble
rk
in

ffi-

ent
P

e.
ing

t
ms
ect
events needed to be simulated by one simulator, so it
achieve higher speedups when the traffic increases as
as when the network size increases.

To measure the accuracy of the simulation runs,
monitored the per flow end-to-end packet delays and pa
drop rates. We compared the results from distributed Gen
with the results from sequential simulations under SSFN
and calculated the relative errors. Our results showed
for most of the flows, the relative errors of both pack
delay and drop rate were within the range from 2% to 10
while a small number of individual flows had higher relativ
errors of up to 15% to 20%. Considering the fact that in
simulation with large number of flows, the network conditio
was mainly determined by the aggregated effects of set
flows, we calculated the root-mean-square of the rela
errors on each set of flows which went through the sa
domain. These root-mean-squares of relative errors w
below 5%, which seems sufficiently close approximation
the sequential simulation for many applications.

Simulation results showed that by fully distributin
the simulation in Genesis, we gained the scalability
memory size. In addition, the parallel simulation in Gene
still achieved performance improvement in this distribut
framework, compared to sequential simulations.

5 COMMUNICATION FRAMEWORK

The current Farmer-Worker framework used in Genesis
a simple centralized client/server system. This framew
worked efficiently with modest number of domain simul
tors. In order to maximize the efficiency of Genesis w
huge number of domain simulators, we are currently wo
ing on a new framework with the following new feature
peer-to-peer traffic data communications among doma
hierarchical communication structures for global synch
nization. New framework is expected to provide even be
scalability for large scale network simulations.

Figure 9: Memory Usage of SSFNet and Genesis for
20-AS BGP Network Simulations with Different Send-
Rates
n
ll

t
is
,
t

f

e

;

Figure 10: Speedup Achieved for Simulations of Dif-
ferent BGP Network Sizes

Figure 11: SpeedupAchieved for 20-AS BGP Network
Simulations with Different Send-Rates

6 CONCLUSIONS

The need for scalable and efficient network simulators i
creases with the rapidly growing complexity and dynami
of the Internet. In this paper we introduced a novel schem
implemented in Genesis, to support scalable, efficient p
allel network simulation. Our results indicate that the s
perlinear speedup for the single iteration step is possi
and is the result of the non-linear complexity of the netwo
simulation. Our approach achieved significant speedup
the simulations of different network scenarios.

We also demonstrated that our system can work e
ciently with fully distributed network memory. This design
reduces and makes scalable the memory size requirem
for large-scale network simulations, especially large BG
network simulations which require very large memory siz
As a result, Genesis is able to simulate huge networks us
limited computer resources.

ACKNOWLEDGMENTS

This work was partially supported by the DARPA Contrac
F30602-00-2-0537 and an URP Grant from CISCO Syste
Inc. The content of this paper does not necessarily refl
the position or policy of the U.S. Government or CISCO



Szymanski and Liu

rch
d

e-
rch
rk
Systems—no official endorsement should be inferred or
implied.

REFERENCES

Bhatt, S., R. Fujimoto, A. Ogielski, and K. Perumalla. 1998.
Parallel simulation techniques for large-Scale networks.
IEEE Communications Magazine, 36.

Chandy, K.M., and R. Sherman. 1989. Space-time and
simulation. InProceedings of Distributed Simulation,
53–57. Society for Computer Simulation.

Law, L.A., and M. G. McComas. 1994. Simulation software
for communication networks: the state of the art.IEEE
Communications Magazine, 32:44–50.

Liu, B., D. R. Figueirido, Y. Guo, J. Kurose, and D. Towsley.
2001, April. A study of networks simulation efficiency:
Fluid simulation vs. packet-level simulation. InPro-
ceedings of IEEE Infocom 2001.

Liu, B., Y. Guo, J. Kurose, D. Towsley, and W. Gong. 1999,
June. Fluid simulation of large scale networks: issues
and tradeoff.PDPTA’99, 2136–2142.

Mandani, K., and B.K. Szymanski. 2003, July. Integrating
Distributed Wireless Simulation Into Genesis Frame-
work. Summer Computer Simulation Conference, to
appear.

Nicol, D. 2002. Comparison of network simulators re-
visited. Available at <http://www.ssfnet.
org/Exchange/gallery/dumbbell/
dumbbell-performance-May02.pdf> [ac-
cessed June 11, 2003].

NMS (Network Modeling and Simulation DARPA
Program) baseline model. 2002. See web site at
<http://www.cs.dartmouth.edu/˜nicol/
NMS/baseline/> [accessed June 11, 2003]

Szymanski, B., A. Saifee, A. Sastry, Y. Liu and K. Madnani.
2002. Genesis: a system for large-scale parallel network
simulation. InProceedings of 16thWorkshop on Parallel
and Distributed Simulation, 89–96.

Szymanski, B., Y. Liu, and R. Gupta. 2003. Parallel network
simulation under distributed Genesis. InProceedings of
17th Workshop on Parallel and Distributed Simulation,
61–68.

Szymanski, B., J.-F. Zhang, and J. Jiang. 1999. A dis-
tributed simulator for large-scale networks with on-line
collaborative simulators. InProceedings of European
Multisimulation Conference - ESM99, II:146–150. SCS
Press.

Ye, T., D. Harrison, B. Mo, S. Kalyanaraman, B. Szymanski,
K. Vastola, B. Sikdar, and H. Kaur. 2001. Traffic man-
agement and network control using collaborative on-line
simulation. InProceedings of International Conference
on Communication, ICC2001.
AUTHOR BIOGRAPHIES

BOLESLAW K. SZYMANSKI , is a Professor of Computer
Science at Rensselaer Polytechnic Institute. His resea
interests include simulation methodology, networking an
parallel and distributed computing.

YU LIU is a Ph.D. candidate in Computer Science d
partment at Rensselaer Polytechnic Institute. His resea
interests include distributed network simulation and netwo
managements.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 712
	02: 713
	03: 714
	04: 715
	05: 716
	06: 717
	07: 718
	08: 719
	09: 720


