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ABSTRACT

Physical system modeling benefits from the use of impli
equations because it is often an intuitive way to descri
physical constraints and behaviors. To achieve efficie
models, model abstraction may lead to idealized comp
nent behavior that switches between modes of operat
(e.g., an electrical diode may be on or off) based on
equalities (e.g., voltage> 0). In an explicit representation,
the combination of these local mode switches leads to
combinatorial explosion of the number of global mode
It is shown how an implicit formulation can be used t
formulate these mode switches, thereby circumventing
combinatorial problem. This leads to the use of differe
tial and algebraic equations (DAEs) for each of the mod
In case these DAEs are of high index, jumps in gener
ized state variables may occur. In combination with th
inequalities that define mode switching, this leads to ri
and complex mode transition behavior. An overview of th
mode switching behavior and an ontology is presented.

1 INTRODUCTION

Modern engineered systems have reached a complexity
requires systematic design methodologies and model ba
approaches to ensure correct and competitive realization
addition, the use of digital controllers has become critic
Embedded software, however, has proven to be difficult
manage since small errors may lead to catastrophic f
ures. Furthermore, the interdependencies in software t
implements the control algorithms are difficult to overse
which only exacerbates with the increasing size of em
bedded software. Similarly, the interdependencies betwe
controllers scattered about the control system are diffic
to distill. Their effects as well as the subtle interaction b
tween controllers and the physical environment are diffic
to analyze.

Modeling can be the mortar to combine the controll
software and hardware of the controlled system, theplant,
but different modeling paradigms are used for the differe
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domains. To model the plant, differential and algebra
equations (DAEs) are the method of choice. The control
on the other hand, is typically modeled by a discrete tim
or discrete event formalism. In early design stages, con
uous models may be preferred because of the analysis
synthesis benefits, but when moving to a software imp
mentation, at one point a discretized version has to be
rived. The combined controller/plant analysis then requi
mixed continuous/discrete formalisms, or so-calledhybrid
dynamic systems(Benedetto and Sangiovanni-Vincente
2001, Lynch and Krogh 2000, Vaandrager and van Sch
pen 1999).

In addition, hi-fidelity plant models often include highl
nonlinear behaviors that complicate analyses. In a more
ficient model, these nonlinearities may be linearized arou
one or more operating points. Switching between the
linearized models then requires a discrete mode switch
control structure combined with the continuous models
each of the modes, leading to a hybrid dynamic system
well.

Another ground for using discrete switching effects
plant models is to model perceived physical discontin
ities such as valves, overflows, and collisions. In ma
cases, it is more convenient to model such phenomen
discontinuities although it may require quite some ad
tional conceptual investment compared to a more deta
continuous model (Breedveld 1996).

There is a distinct difference between hybrid dynam
systems that arise from combining controller models w
plant models and those that emerge because of includ
discontinuities in the plant models of physical system
Controller models are by design of an explicit nature. Pla
models, on the other hand, often contain implicit constrai
that should be satisfied, without explicitly stating how the
are used to generate behavior. For example, Newto
collision law says that the difference of velocities of tw
colliding bodies after a collision,1v, equals their difference
before,1v−, given some coefficient of restitution,ε,

1v = −ε1v− (1)
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This is a general constraint that does not prescribe how t
velocities are to be computed.

In contrast to the hybrid dynamic systems that ar
applied in the control system realm, those that are of a
implicit form as found in plant models have much riche
behavior, especially with respect to the interaction betwe
the continuous and discrete model parts.

This paper gives a cursory overview of classes of b
havior as found in hybrid dynamic systems in general. T
this end, Section 2 first presents the modeling of phys
cal systems and how modeled discontinuities may result
complications. Section 3 presents the classes of behavio
a geometric representation. Section 4 then presents thes
more detail for linear systems in an algebraic representatio
Finally, Section 5 presents the conclusions of this work.

2 PLANT MODELING

To introduce hybrid dynamic systems that result from mod
eling of physical systems,plant modeling, the cylinder of
a hydraulic actuator is modeled. Hydraulic actuators a
typically used in civil aircraft to position the control sur-
faces for pitch, yaw, and roll. A simplified representatio
of such a cylinder is shown in Fig. 1, annotated with th
modeled physical phenomena (in circles). At the top, th
supply pressure,pin, provides a flow of oil through the
intake line,fin. This flow can be interrupted by a valve
with resistance,Rin.

Figure 1: Model Parameters of a Hydraulic
Actuator

The oil in the cylinder chamber is modeled by its
elasticity,Coil , and its viscosity,Roil , which resembles a
spring/damper effect in the mechanical domain. Elastici
can also be attributed to air in the circuit. The chambe
pressure works on the cylinder piston with inertia,mp, and
velocity,vp. The piston is connected to the particular contro
surface by means of a mechanical linkage (not shown) a
so the flow of oil into the cylinder controls the position o
the surface.

A relief path is present for a flow of oil,frel , back
to the sump with reference pressure,psmp = 0. This pre-
vents possibly damaging high pressures inside the cylind
chamber. The relief valve is modeled by its resistanc
n
.

Rrel , and inertia,Irel . The inertia is included because of
the size of the relief line. In case of a small fluid flow
path, the inertia of the moving fluid has to be accounte
for (compare spraying with a garden hose by making it
opening smaller).

These basic physical phenomena represent a set
constraints that comprise the cylinder model:

φin(fin, pRin, sin) = 0
fRoilRoil = pRoil
Coil ṗCoil = fRoil
mpv̇p = pcyl
φrel(frel, pRrel , srel) = 0
Irel ḟrel = prel
foil = fin − frel − vp
prel = −pRrel + pcyl
pRin = pin − pcyl
pcyl = pRoil + pCoil

(2)

These equations are not written in an explicit form, or
computational causality has not yet been assigned. F
example, the equation for the viscosity of the oil,fRoilRoil =
pRoil , does not capture whether the pressure is comput
from the flow or the other way around. This has the distinc
advantage that causal changes between modes do not h
to be accounted for by the model designer. Plant modelin
tools (Andersson 1994) apply sophisticated equation sortin
methods to determine the computational causality of th
equations, given that the exogeneous variables (herepin)
and states (herefrel andvp) are known.

Given the problem that the model should address, th
small oil parameters (stiffness,Coil , and viscosity,Roil)
may be abstracted away. Their presence may lead to s
gradients that operate on a time scale much smaller than t
overall behavior to be studied. For example, if the aircra
behavior of interest is the effect of an actuator switch in
response to a failure, too detailed an actuator model leads
prohibitively long simulation times (Mosterman, Remelhe
Engell, and Otter 2002).

Note that the two valves are modeled by nonlinear rela
tions,φin andφrel , with additional arguments,sin andsrel ,
to capture the dimension that determines whether the valv
are open or closed. Details of these nonlinear characterist
can be found elsewhere (Mosterman and Biswas 2000b)

Such nonlinear behaviors often cause difficulty in sim
ulation because they may result in stiffness as well. Fo
example, the relief valve changes from enforcingfrel ≈ 0
to prel ≈ pth over a very short range offrel andprel . This
causes a very small step size of numerical solvers.

More efficient models replace the nonlinear behavio
by a piecewise linear approximation. For example, th
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pressure relief valve characteristic,φrel , can be modeled by
the following piecewise linear approximation

frelRrel = pRrel
Rrel = if srel then Rrel,l elseRrel,h

(3)

whereRrel,h is a high resistance when the valve is close
whereasRrel,l is a low resistance when the valve is ope
(e.g., Rrel,l = 0). The Modelica (Elmqvist et al. 1999)
notation is used to assign a unique value toRrel , either
Rrel,l or Rrel,h depending on whethersrel is true or false,
respectively. Note that this still results inC0 behavior of the
overall system, i.e., the behavior trajectories are continuo
but they may not be smooth anymore (the first and high
order derivatives with respect to time may not exist at t
switching points). The control signalsrel becomes true as
soon as|prel | ≥ pth and remains true from then on, i.e.
the relief valve remains open once the threshold press
has been exceeded until it is reset.

This may still lead to an inefficient simulation mode
in particular whenRrel,h is a relatively large value it may
cause time constants that are several orders of magnit
faster than what is present in the model otherwise.

In a further approximation the valve can be modele
as an ideal switch by

frelRrel = pRrel
0= if srel then prel + pRrel − pcyl elsefrel

(4)

which replaces

φrel(frel, pRrel , srel) = 0
prel = −pRrel + pcyl (5)

in Eq. (2). This, however, may lead to changes in th
computational causality during run-time whenfrel is forced
to be 0, and, therefore at times needs to be treated as
exogeneous variable. So, this approximation eliminates
stiff gradients otherwise found in the model, but it add
complexity as it now needs to be dealt with the chang
in computational causality and possibly even changes
the complexity of the system of differential and algebra
equations (DAEs).

In Fig. 2 the three different types of valve models a
illustrated.

(a) Nonlinear
Model

(b) C0 Hybrid
Model

(c) Hybrid
Model

Figure 2: Levels of Abstraction of a Cylinder
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Note how the change in equations in Eq. (4) is specifie
locally and in an implicit form, so it can be automatically
handled by an implicit solver without the need for re-orderin
(sorting) the equations (Mosterman 2002).

To illustrate changes in the complexity of the DAEs
that may occur, consider the model so derived:

0= if sin then pin − pRin − pcyl elsefin
finRin = pRin
mpv̇p = pcyl
frelRrel = pRrel
Irel ḟrel = prel
vp = fin − frel
0= if srel then prel + pRrel − pcyl elsefrel

(6)

It contains twogeneralizedstate variables (Verghese, Lévy,
and Kailath 1981),frel andvp. These are generalized state
variables as they may not be true states because algebraic
related to one another.

To clarify, consider the mode where the relief valve
is open and the intake valve is not. So,fin = 0, and,
consequently,vp = frel . Therefore, these are not indepen
dent states, and instead of a second order system, it is
first order. However, since bothvp as well asfrel are in
the system of equations as time-derivatives, a modeling
simulation tool has to manipulate the model to arrive at
form where only one state is present. In effect, the gene
alized state space is of dimension two, but in this mode th
system ‘lives’ in a one-dimensional subspace. This notio
of generalized state space and reduced subspaces in wh
the system evolves is an intrinsic part of plant modeling an
constitutes a large part of the continuous/discrete interacti
discussed in the rest of this paper.

3 A GEOMETRIC VIEW

An overview of different classes of behavior in hybrid
dynamic systems is given in geometric terms.

3.1 The Elementary Case

A hybrid dynamic system evolves continuously in time in
a mode,αi , according to a field,fαi , that defines a relation
fαi (ẋ, x, u, t) = 0 between the state,x, its time derivative,
ẋ, the inputu, and the time,t .

A mode transition relationγ αi+1
αi (x, u, t) ≥ 0 defines

the change from modeαi to αi+1 when true. The state
space in a modeαi consists of two parts: (i) the domain
wherefαi is properly defined and (ii) apatch, whereγ αi+1

αi

does not invoke a mode change.
Without loss of generality it is first assumed tha

the explicitly defined state transition function,xαi+1 =
g
αi+1
αi (xαi , uαi , t), is the identity function, i.e.,xαi+1 = xαi .
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This is illustrated in Fig. 3 where a trajectory in a
hybrid state space is shown. The patches where the st
can evolve continuously in each of the modes are show
as white areas. After initialization in modeα1, the state
evolves till the boundary of the patch ofα1 is reached.
At this point, xα1, a mode transition as defined byγ α2

α1 is
invoked. In the new mode, a patch defined byγ

α3
α2 is entered

in which the state can continue to evolve, now governed b
the fieldfα2.

Figure 3: An Elementary Mode Transition

Note that the state behavior is ‘left-closed’, i.e., eac
of the abutting intervals of continuous behavior includes i
starting point. This satisfies causality requirements (Moste
man 1999a). In general, this left-closedness may (have
be relaxed, though.

3.2 Discontinuous State Changes

The elementary mode transition behavior in Fig. 3 ma
become more complex when discontinuous changes inx

are present. Instead of only explicitly prescribed jumps inx,
in this work discontinuites may also result from changes
the complexity of continuous behavior and the correspondi
constraints this puts on the state space accessibility.

In Fig. 3, the domains inα1 andα2 wherex is accessible
are marked by the rectangular surfaces that contain the en
state space. In Fig. 4 a situation arises where inα2 only
a subspace is accessible. Effectively, the two-dimension
generalized state space reduces to a one-dimensional m
ifold.

When such a collapse of the state space occurs,
original state has to make a discontinuous change to be
the reduced actual state space. In Fig. 4, the state evol
continuously in modeα1 till it reaches the boudary defined
by γ α2

α1 . The value at this boundary,xα1, is then transferred
to α2 but now a discontinuous change fromx−α2

to xα2 is
required before the state can continue to evolve continuou
in modeα2 as governed byfα2.

This discontinuous change is determined by aprojection
that takes place in theinstantaneous spaceof α2 as opposed
to the dynamic spaceof α2 that is indicated by the solid
line. In Section 4 it will be shown how for a class of
linear systems the instantaneous and dynamic spaces
be derived from a matrix pencil,λE + A.
e

)

e

l
n-

e

s

n

Figure 4: A Mode Transition With Projection

To circumvent the difficulties introduced by the gen
erality of the nonlinearness, a possible implementation
derive the projection may rely on repeated linearizati
around a point on the projection trajectory, starting atx−α2

,
till xα2 is arrived at.

3.3 A Sequence of Mode Transitions

So far, the discrete part of the hybridness has been a sin
transition between modes. In general, though, a seque
of transitions may occur (Mosterman and Biswas 199
Two classes of possible behaviors are illustrated in Fig.

(a) Mythical

(b) Pinnacle

Figure 5: Sequences of Mode Transitions
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In previous work, the phenomena ofmythical
modes(Nishida and Doshita 1987, Mosterman and Bisw
1996) has been investigated. They emerge when the s
reaches a patch boundary and is transitioned into a n
mode with a patch that does not include the transferr
state. This class of behavior is shown in Fig. 5(a) where t
state is initialized inside the patch of modeα1. The state
evolves continuously as governed byfα1 till it reaches the
patch boundary defined byγ α2

α1 . The state is transferred to
modeα2 but here the mode transitionγ α3

α2 is immediately
invoked and so modeα2 never becomes ‘real’, i.e., it does
not affect the energy distribution (Mosterman and Bisw
1998).

Another class of behaviors occurs when the state
transitioned to a point inside the patch of the new mod
but before it can proceed to evolve continuously, a co
secutive mode transition is invoked. This is illustrated
Fig. 5(b). The reduced state space requiresx−α2

to change
discontinuously toxα2. This discontinuous change crosse
the patch boundary, though, andγ α3

α2 becomes active. In
order to properly transfer the state betweenα2 and α3,
the point where the patch boundary is crossed needs to
computed and this value,xα2, needs to be transferred to
xα3.

This behavior is called apinnacleas it represents an
isolated point in the state trajectory (Mosterman, Zha
and Biswas 1998). Note that several such pinnacles m
follow one another in time before the inside of a patch in
modeαi is reached that is also contained by the dynam
space of the fieldfαi .

Physically, such a sequence of pinnacles cannot oc
at the same point in time but when they follow one anoth
in time, the point-interval partitioning of the time line fails
This leads to the system not being defined over infinitesim
periods of time, and gross behavior may violate physic
laws such as conservation of momentum.

3.4 Revisiting Modes

Once sequences of mode changes may occur, models ca
constructed that contain loops of changes, i.e., a previou
visited mode is re-visited.

Two classes of behavior are illustrated in Fig. 6. I
Fig. 6(a), the pathological case is shown that violates t
divergence of timeprinciple (Mosterman and Biswas 1998)
Here, the state is initialized inside of the patch in modeα1.
It evolves continuously till it reaches the patch bounda
as defined byγ α2

α1 . When the statexα1 is then transferred
to modeα2, it is outside of the patch as defined byγ α1

α2

(note the exchange in subscripts ofα). This causes the
state to be transferred back toα1 where it is outside of the
patch as defined byγ α2

α1 . Thus, a loop of discrete change
between modes arises. Note that a loop may involve a
finite number of modes. Because these are instantane
s
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no time elapses, and, therefore, the model stops evolv
in time. In other words, time does not diverge. Since th
behavior is not observed in physical systems, such mod
are considered anomalous.

(a) Non-divergent

(b) Sliding

Figure 6: Loops of Mode Transitions

Similar but different behavior is illustrated in Fig. 6(b)
Here, after reaching the patch boundary inα1, the state
transfers onto the patch boundary inα2 as defined byγ α1

α2

(note again the exchange in subscripts ofα). Because it is
the patch boundary, the state transfers back toα1 after an
infinitesimal step in time. This step results in a valuexα1 that
may be immediately inside the patch inα1 as defined byγ α2

α1

and so another infinitesimal step will transfer the state ba
to α2. Note how left-closedness is violated in this particula
instance of behavior. In general, an infinitesimal ‘hysteres
effect may be present to guarantee left-closedness aga

Far-fetched and pathological as it may seem, this b
havior, referred to aschatteringor sliding modebehavior,
is actually aimed for by robust control design methodol
gies (Utkin 1992) as it is relatively insensitive to plant mod
parameter variations (e.g., it is used in anti-lock brakin
systems). Unlike the behavior in Fig. 6(a), here the sta
does continue to evolve in time and the divergence of tim
principle is satisfied. To efficiently derive the actual beha
ior along theswitching surfaceas defined by the patches
in modeα1 andα2 two methods exist: (i) equivalence o
control (Utkin 1992) and (ii) equivalence of dynamics (Fil
ippov 1960, Mosterman, Zhao, and Biswas 1999). Thou
there are classes of models for which these ‘regularizatio
result in the same behavior, in general they may differ.

Finally, another class of pathological behaviors can
identified, namely Zeno behavior, named after the Gre
philosopher Zeno who studied the relation between poin
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and intervals, i.e., is an interval an infinite collection of
points. Behaviors that are Zeno do progress in time b
a non-infinitesimal value each time a mode transition oc
curs. However, this time reduces upon each transition as
converging series. For example, in case the time is halve
upon each transition, the transition series converges to
limit value tf = 6i2−i . Therefore, though time diverges
locally, it does not do so globally.

It is now possible to compare the three mode re-visitin
behaviors.

• Divergence of time: infinitely many discrete steps
in zero time. Time remains the same.

• Chattering: infinitely small time steps. Evolves
past any value in time.

• Zeno: infinitely many time steps in a finite, nonzero,
time interval. Does not evolve past a limit point
in time.

Unfortunately, the general hybrid dynamic systems literatur
is loose in its use of these terms (e.g., behavior that is local
not divergent in time is often called Zeno as well).

4 AN ALGEBRAIC VIEW

The general geometric overview in Section 3 will now be
restricted to linear systems and illustrated by studying th
behavior of the hydraulic cylinder presented in Section 2

4.1 Projection Equations

The generalized state space of the cylinder model is tw
dimensional with states the flow through the relief valve
frel , and the velocity of the cylinder piston,vp. Because
the small oil parameters have been abstracted away, wh
at least one of the two valves is open the system ha
only one degree of freedom, i.e., the actual state space
one-dimensional. The subspace that consitutes this on
dimensional state space may change between the modes
case both valves are closed, there is no flow of oil possib
nor movement of the piston, and, therefore, the state spa
becomes of zero order.

To compute the projections between the different re
duced dimension state spaces the following procedure
applied (Mosterman 2001, Mosterman 2000). For a gener
system of equations of the form

Eẋ + Ax + Bu = 0, (7)

transformation derives a pseudo Weierstrass normal for
to index 2 (since the nilpotency of the submatrix[

0 Ē22,12
0 0

]

-
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is 2)

0=
 Ē11 0 0

0 0 Ē22,12
0 0 0

 ˙̄x1˙̄x2,1˙̄x2,2

+ Ā11 Ā12,1 Ā12,2

0 Ā22,11 Ā22,12

0 0 Ā22,22

 x̄1
x̄2,1
x̄2,2

+
 B̄1

B̄2,1

B̄2,2

[ u ]
(8)

where Ē11,11, Ā22,11, and Ā22,22 are of full rank. This
allows computation of the initial conditions as

x̄1 = x̄−1 + Ē−1
11 Ā12,1Ā

−1
22,11Ē22,12(x̄2,2− x̄−2,2)

x̄2,1 = −Ā−1
22,11(B̄2,1u+ Ē22,12 ˙̄x2,2+ Ā22,12x̄2,2)

x̄2,2 = −Ā−1
22,22B̄2,2u

(9)

where x̄− are the final values that are achieved in the
previous mode. The values forx̄ can then be transformed
back to obtain initial values forx that are consistent with the
subspace of the dynamic behavior, and thus the projectio
is determined.

4.2 The Hydraulic Cylinder

A model of the hydraulic cylinder is given in Eq. (6). Mode
changes occur when the logical variables that model th
state of the valves (either open or closed),sin and srel ,
change their verity. As there are two valves, four mode
ensue: inα00 both valves are closed, inα01 the relief valve
is open and the intake valve is closed, inα10 the relief
valve is closed and the intake valve is open, and inα11 both
valves are open.

The projections in each of the modes can be symbolicall
computed. For example, when the intake valve is close
and the relief valve is open, modeα01, there is an algebraic
dependency between the generalized statesvp and frel ,
−vp − frel = 0. This constitutes a subspace into which
the state has to be projected if−vp − frel 6= 0 and it is
switched to this mode. The corresponding discontinuou
change invp then becomes

vp = 1

mp + Irel (mpv
−
p − Irelf−rel). (10)

The other projections are listed in Table 1.
The discontinuous change in modeα00, however, may

require an additional explicit change in state (Mosterma
and Biswas 2000b). Consider the scenario illustrated i
Fig. 7 where an initial control pressure,pin, is applied and
the piston starts moving. At a time,ts , the intake valve
closes and in the detailed model with the oil parameters (Roil
andCoil), a quick pressure build-up results. This behavio
operates on a time scale much faster than gross behavi
hence the double arrow heads in Fig. 7. The initial jump in
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Table 1: Mode Specification Table
mode projection

α00
vp = 0
frel = 0

α01
vp = 1

mp+Irel (mpv
−
p − Irelf−rel)

frel = 1
mp+Irel (mpv

−
p − Irelf−rel)

α10 frel = 0
α11

pressure atvp = 4 [m/s] is due to the abrupt change of oi
flow into the cylinder when the flow through the intake valv
jumps to 0. After this, the oil elasticity results in a furthe
quick pressure build-up. This pressure build-up affects t
velocity of the piston which ultimately would become
(conform the projections in Table 1). However, durin
the fast transient, the pressure may exceed the thresh
pressure,pth, and the relief valve may open.

Figure 7: The Detailed Fast Transient May
Cause a Further Mode Switch

In case the small oil parameters are abstracted away,
detailed information about whether the threshold is cross
and how much this affectsvp is not present anymore.
Therefore, it has to be explicitly captured in a discontinuo
state change function.

In addition, the switching logic has to be adapted
the pressure in the cylinder becomes of an impulsive nat
when the detailed oil phenomena are abstracted away
there is a discontinuous change invp sincempv̇p = pcyl .

These modified specifications can be derived from t
more detailed model with the oil parameters. The switchi
area inα00 was computed using the Symbolic Math Toolbo
of Matlab® (Matlab 2003) and is shown in Fig. 8. First
a Taylor series approximation of the detailed 2nd order
continuous behavior was derived and then the maxima
this function were found. If the maximum absolute pressu
exceeded the threshold,pth, the switch occurred. This
was done for a number ofp−cyl and v−p data points to
derive the patch sketched in Fig. 8. The actual functi
vp = g

α01
α00(v

−
p , p

−
cyl) to computevp from v−p and p−cyl is

given in previous work (Mosterman and Biswas 2000
and will not be re-iterated here. This relation is depicte
in the phase space in Fig. 8. An interesting phenome
in this model is that the state transition function,gα01

α00,
e

old
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e
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)
d
a

does not equal the identity function (as assumed througho
Section 3).

Figure 8: The Area in Whichγ α01
α00 > 0

Note that this implies the user defined discontinuou
change in state,vp, takes place while the system is not in
a patch. This differs from implicit discontinuities that have
their jumps aborted when the patch boundary is crosse
In previous work (Mosterman and Biswas 2000a), the di
ference between these phenomena has been attributed
two different abstraction types: (i)time scaleabstraction
collapses the behavior during a relatively short period o
time into a point of discontinuous change, (ii)parameter
abstraction simply removes very small or large paramete
The explicitly defined discontinuous change then is the resu
of a time scale abstraction where the implicit discontinuit
results from a parameter abstraction.

Once in modeα01, there is an algebraic dependency be
tweenvp andfrel , and the system lives in a one-dimensiona
state space again. However, the value for the state,x−α01

,
as computed by the functiongα01

α00 may not be in this space
and so a projection is required.

4.3 Semantics ofx−

In general, the use ofx− for re-initialization requires careful
implementation and well-defined semantics. Typically,x−
is considered thea priori value around a discontinuous
change and used as part of the input in Eq. (8). When
discontinuous change occurs,x− equals the current value.

In order to design models with proper behavior, a mod
with re-initialization usingx− should be immediately de-
parted since no proper continuous behavior can be genera

4.4 Putting it Together

The complete mode transition behavior can now be graph
cally depicted as illustrated in Fig. 9. Note that the pressu
pcyl is impulsive whenvp changes abruptly in the idealized
model of Eq. (6). These impulses are not shown in Fig.
and so the valuepcyl = −1000 that is shown is never
achieved. However, it provides the conceptual mappin
between Fig. 9 and Fig. 7.

This scenario illustrates how several modes may b
traversed before the state can proceed to evolve contin
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ously. It also illustrates how user defined discontinuou
state changes may be part of a model and how these in
act with the implicit discontinuous state changes that res
from the required projections.

Figure 9: The Fast Transients as Instanta-
neous Changes

5 CONCLUSIONS

All this exemplifies the richness and complexity of mod
transition behavior in hybrid dynamic systems. It illustrate
that though an explicit representation such as hybrid a
tomata (Alur, Courcoubetis, Henzinger, and Ho 1993) ma
be a powerful vehicle for analyses, it is by no means trivial t
design such a hybrid automata for complex physical syste
models. It means that the expressiveness of the formali
is achieved by a rather significant conceptual investment
the model designer. As such, part of the analyses burden
put squarely on the shoulders of the model designer, ma
ing it difficult to gain acceptance in communities where th
featured classes of complex behaviors are being dealt w
on a day to day basis.

To eliminate this reluctance, future research effor
should focus on automated model complexity reductio
and transformation into an underlying hybrid automata re
resentation that may be hidden from the user.
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