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ABSTRACT

Physical system modeling benefits from the use of implicit
equations because it is often an intuitive way to describe
physical constraints and behaviors. To achieve efficient
models, model abstraction may lead to idealized compo-
nent behavior that switches between modes of operation
(e.g., an electrical diode may be on or off) based on in-
equalities (e.g., voltage 0). In an explicit representation,
the combination of these local mode switches leads to a
combinatorial explosion of the number of global modes.
It is shown how an implicit formulation can be used to
formulate these mode switches, thereby circumventing the
combinatorial problem. This leads to the use of differen-
tial and algebraic equations (DAESs) for each of the modes.
In case these DAEs are of high index, jumps in general-
ized state variables may occur. In combination with the
inequalities that define mode switching, this leads to rich
and complex mode transition behavior. An overview of this
mode switching behavior and an ontology is presented.

1 INTRODUCTION

domains. To model the plant, differential and algebraic
equations (DAESs) are the method of choice. The controller,
on the other hand, is typically modeled by a discrete time
or discrete event formalism. In early design stages, contin-
uous models may be preferred because of the analysis and
synthesis benefits, but when moving to a software imple-
mentation, at one point a discretized version has to be de-
rived. The combined controller/plant analysis then requires
mixed continuous/discrete formalisms, or so-caltedbrid
dynamic system¢Benedetto and Sangiovanni-Vincentelli
2001, Lynch and Krogh 2000, Vaandrager and van Schup-
pen 1999).

In addition, hi-fidelity plant models often include highly
nonlinear behaviors that complicate analyses. In a more ef-
ficient model, these nonlinearities may be linearized around
one or more operating points. Switching between these
linearized models then requires a discrete mode switching
control structure combined with the continuous models in
each of the modes, leading to a hybrid dynamic system as
well.

Another ground for using discrete switching effects in
plant models is to model perceived physical discontinu-
ities such as valves, overflows, and collisions. In many

Modern engineered systems have reached a complexity thatcases, it is more convenient to model such phenomena as
requires systematic design methodologies and model baseddiscontinuities although it may require quite some addi-
approaches to ensure correct and competitive realization. In tional conceptual investment compared to a more detailed

addition, the use of digital controllers has become critical.
Embedded software, however, has proven to be difficult to
manage since small errors may lead to catastrophic fail-

continuous model (Breedveld 1996).
There is a distinct difference between hybrid dynamic
systems that arise from combining controller models with

ures. Furthermore, the interdependencies in software that plant models and those that emerge because of including

implements the control algorithms are difficult to oversee,
which only exacerbates with the increasing size of em-

discontinuities in the plant models of physical systems.
Controller models are by design of an explicit nature. Plant

bedded software. Similarly, the interdependencies between models, on the other hand, often contain implicit constraints

controllers scattered about the control system are difficult
to distill. Their effects as well as the subtle interaction be-
tween controllers and the physical environment are difficult
to analyze.

Modeling can be the mortar to combine the controller
software and hardware of the controlled system,lat,
but different modeling paradigms are used for the different
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that should be satisfied, without explicitly stating how these
are used to generate behavior. For example, Newton’s
collision law says that the difference of velocities of two
colliding bodies after a collisiomv, equals their difference
before, Av™, given some coefficient of restitution,

Av = —€Av~ N}
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This is a general constraint that does not prescribe how the
velocities are to be computed.

In contrast to the hybrid dynamic systems that are
applied in the control system realm, those that are of an
implicit form as found in plant models have much richer
behavior, especially with respect to the interaction between
the continuous and discrete model parts.

This paper gives a cursory overview of classes of be-
havior as found in hybrid dynamic systems in general. To
this end, Section 2 first presents the modeling of physi-
cal systems and how modeled discontinuities may result in
complications. Section 3 presents the classes of behavior in

a geometric representation. Section 4 then presents these in

more detail for linear systems in an algebraic representation.
Finally, Section 5 presents the conclusions of this work.

2 PLANT MODELING

To introduce hybrid dynamic systems that result from mod-
eling of physical systemglant modeling the cylinder of

a hydraulic actuator is modeled. Hydraulic actuators are
typically used in civil aircraft to position the control sur-
faces for pitch, yaw, and roll. A simplified representation
of such a cylinder is shown in Fig. 1, annotated with the
modeled physical phenomena (in circles). At the top, the
supply pressurep;,, provides a flow of oil through the
intake line, f;,. This flow can be interrupted by a valve
with resistanceR;,.

o)
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Figure 1: Model Parameters of a Hydraulic
Actuator

The oil in the cylinder chamber is modeled by its
elasticity, C,;;, and its viscosity,R,;;, which resembles a
spring/damper effect in the mechanical domain. Elasticity
can also be attributed to air in the circuit. The chamber
pressure works on the cylinder piston with inertig,, and
velocity,v,. The piston is connected to the particular control
surface by means of a mechanical linkage (not shown) and
so the flow of oil into the cylinder controls the position of
the surface.

A relief path is present for a flow of oilf,.;, back
to the sump with reference pressuyg,,, = 0. This pre-
vents possibly damaging high pressures inside the cylinder
chamber. The relief valve is modeled by its resistance,

624

R,.;, and inertia,l,.;. The inertia is included because of
the size of the relief line. In case of a small fluid flow
path, the inertia of the moving fluid has to be accounted
for (compare spraying with a garden hose by making its
opening smaller).

These basic physical phenomena represent a set of
constraints that comprise the cylinder model:

Pin(fin, PR;y > sin) =0
SRyt Roil = PRy
Coilpcafl = fRa,'l

mpi}p = Dcyl

Prel ('frela PR,o» Srel) =0
Irelfrel = Prel

Joit = fin — fret — Up
DPrel = —PRyq T Doyl
PRiy = Pin — Pcyl

Deyl = PRy + PCoit

)

These equations are not written in an explicit form, or,
computational causality has not yet been assigned. For
example, the equation for the viscosity of the gi,,, Ryi1 =
DR,;» does not capture whether the pressure is computed
from the flow or the other way around. This has the distinct
advantage that causal changes between modes do not have
to be accounted for by the model designer. Plant modeling
tools (Andersson 1994) apply sophisticated equation sorting
methods to determine the computational causality of the
equations, given that the exogeneous variables (pgre
and states (her¢,..; andv,) are known.

Given the problem that the model should address, the
small oil parameters (stiffness;,;;, and viscosity,R,;;)
may be abstracted away. Their presence may lead to stiff
gradients that operate on a time scale much smaller than the
overall behavior to be studied. For example, if the aircraft
behavior of interest is the effect of an actuator switch in
response to a failure, too detailed an actuator model leads to
prohibitively long simulation times (Mosterman, Remelhe,
Engell, and Otter 2002).

Note that the two valves are modeled by nonlinear rela-
tions, ¢;, and¢,.;, with additional arguments;, ands,;,
to capture the dimension that determines whether the valves
are open or closed. Details of these nonlinear characteristics
can be found elsewhere (Mosterman and Biswas 2000b).

Such nonlinear behaviors often cause difficulty in sim-
ulation because they may result in stiffness as well. For
example, the relief valve changes from enforcifigg ~ 0
to prer = psn, OVer a very short range of..; and p,.;. This
causes a very small step size of numerical solvers.

More efficient models replace the nonlinear behavior
by a piecewise linear approximation. For example, the
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pressure relief valve characteristig,.;, can be modeled by
the following piecewise linear approximation

freerel = PRya (3)
Ryor = if 5p then Ryel,l else Ryel.h
whereR,;  is a high resistance when the valve is closed,
whereasR,.;; is a low resistance when the valve is open
(e.9., Rrer; = 0). The Modelica (EImqgvist et al. 1999)
notation is used to assign a unique valueRg;, either
Rrel1 OF Ry depending on whether.,; is true or false,
respectively. Note that this still results @ behavior of the
overall system, i.e., the behavior trajectories are continuous
but they may not be smooth anymore (the first and higher
order derivatives with respect to time may not exist at the
switching points). The control signa},; becomes true as
soon as|pre| > p:n @and remains true from then on, i.e.,

Note how the change in equations in Eq. (4) is specified
locally and in an implicit form, so it can be automatically
handled by an implicit solver without the need for re-ordering
(sorting) the equations (Mosterman 2002).

To illustrate changes in the complexity of the DAEs
that may occur, consider the model so derived:

0= if si, then p;, — PRin — Peyl else fi,

finRin = PRin

MpVp = Peyi

frel I‘erel = PRra (6)
Irelfrel = Prel

Vp = fin — frel

0= if s then Prel + PR.oy — Peyl elsefrel

It contains twogeneralizedstate variables (Verghese, Lévy,
and Kailath 1981)f,.; andv,. These are generalized state

the relief valve remains open once the threshold pressure variables as they may not be true states because algebraically

has been exceeded until it is reset.
This may still lead to an inefficient simulation model,
in particular whenr,; , is a relatively large value it may

related to one another.
To clarify, consider the mode where the relief valve
is open and the intake valve is not. Sg, = 0, and,

cause time constants that are several orders of magnitudeconsequentlyy, = f..;. Therefore, these are not indepen-

faster than what is present in the model otherwise.
In a further approximation the valve can be modeled
as an ideal switch by

frelR.rel = PRy (4)
0= if 5o then DPrel + PRy — Deyl elsefrel

which replaces

Orei(freis PR.or» Sre1) =0

5
Prel = —PR.o + Pyl ( )

in Eq. (2). This, however, may lead to changes in the
computational causality during run-time when; is forced

dent states, and instead of a second order system, it is of
first order. However, since both, as well asf,.; are in

the system of equations as time-derivatives, a modeling &
simulation tool has to manipulate the model to arrive at a
form where only one state is present. In effect, the gener-
alized state space is of dimension two, but in this mode the
system ‘lives’ in a one-dimensional subspace. This notion
of generalized state space and reduced subspaces in which
the system evolves is an intrinsic part of plant modeling and
constitutes a large part of the continuous/discrete interaction
discussed in the rest of this paper.

3 A GEOMETRIC VIEW

to be 0, and, therefore at times needs to be treated as anan overview of different classes of behavior in hybrid

exogeneous variable. So, this approximation eliminates the
stiff gradients otherwise found in the model, but it adds

complexity as it now needs to be dealt with the changes
in computational causality and possibly even changes in

dynamic systems is given in geometric terms.

3.1 The Elementary Case

the complexity of the system of differential and algebraic A nyprid dynamic system evolves continuously in time in

equations (DAES).
In Fig. 2 the three different types of valve models are
illustrated.

® f ® f ® f

Pn P P P P D
(a) Nonlinear (b) €° Hybrid (c) Hybrid
Model Model Model
Figure 2: Levels of Abstraction of a Cylinder
End-stop
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a modeg;, according to a fieldf,,, that defines a relation
fo; (X, x, u, t) = 0 between the state, its time derivative,
x, the inputu, and the timey.

A mode transition relatiomfj*l(x, u,t) > 0 defines
the change from mode; to «;+1 when true. The state
space in a mode; consists of two parts: (i) the domain
where f,,. is properly defined and (i) patch wherey,'
does not invoke a mode change.

Without loss of generality it is first assumed that
the explicitly defined state transition function,, , =

gor ™ (Xey Ugy» 1), IS the identity function, i.€.x4,,; = Xq,-
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This is illustrated in Fig. 3 where a trajectory in a
hybrid state space is shown. The patches where the state
can evolve continuously in each of the modes are shown
as white areas. After initialization in mode,, the state
evolves till the boundary of the patch of; is reached.

At this point, xo,, @ mode transition as defined ? is
invoked. In the new mode, a patch definedy is entered

in which the state can continue to evolve, now governed by
the field fy,.

Figure 4: A Mode Transition With Projection

To circumvent the difficulties introduced by the gen-

— erality of the nonlinearness, a possible implementation to

a’_

Figure 3: An Elementary Mode Transition

Note that the state behavior is ‘left-closed’, i.e., each
of the abutting intervals of continuous behavior includes its
starting point. This satisfies causality requirements (Moster-
man 1999a). In general, this left-closedness may (have to)
be relaxed, though.

3.2 Discontinuous State Changes

The elementary mode transition behavior in Fig. 3 may
become more complex when discontinuous changes in
are present. Instead of only explicitly prescribed jumps,in

in this work discontinuites may also result from changes in
the complexity of continuous behavior and the corresponding
constraints this puts on the state space accessibility.

In Fig. 3, the domains in; anda> wherex is accessible
are marked by the rectangular surfaces that contain the entire
state space. In Fig4 a situation arises where wp only
a subspace is accessible. Effectively, the two-dimensional
generalized state space reduces to a one-dimensional man-
ifold.

When such a collapse of the state space occurs, the
original state has to make a discontinuous change to be in
the reduced actual state space. In Fig. 4, the state evolves
continuously in mode; till it reaches the boudary defined
by va. The value at this boundary,,, is then transferred
to a2 but now a discontinuous change fraty, t0 xq, is
required before the state can continue to evolve continuously
in modewy as governed byfy,.

This discontinuous change is determined lpyaection
that takes place in thestantaneous spaa# o2 as opposed
to the dynamic spacef oy that is indicated by the solid
line. In Section 4 it will be shown how for a class of
linear systems the instantaneous and dynamic spaces can
be derived from a matrix pencibE + A.
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derive the projection may rely on repeated linearization

- around a point on the projection trajectory, starting: gt
: / till x,, is arrived at.
'Yq; |
a, e X 3.3 A Sequence of Mode Transitions

So far, the discrete part of the hybridness has been a single
transition between modes. In general, though, a sequence
of transitions may occur (Mosterman and Biswas 1998).
Two classes of possible behaviors are illustrated in Fig. 5.

(a) Mythical

(b) Pinnacle
Figure 5: Sequences of Mode Transitions
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In previous work, the phenomena omythical no time elapses, and, therefore, the model stops evolving
modes(Nishida and Doshita 1987, Mosterman and Biswas in time. In other words, time does not diverge. Since this
1996) has been investigated. They emerge when the statebehavior is not observed in physical systems, such models
reaches a patch boundary and is transitioned into a new are considered anomalous.
mode with a patch that does not include the transferred

state. This class of behavior is shown in Fig. 5(a) where the

state is initialized inside the patch of mode. The state <
evolves continuously as governed gy, till it reaches the o ] :
patch boundary defined by;2. The state is transferred to ’ ;
modeay but here the mode transitiop;; is immediately @ ;

H ‘ [ H ’YgI@yL[

invoked and so mode, never becomes ‘real’, i.e., it does 2 ! .
not affect the energy distribution (Mosterman and Biswas a, !
1998).

Another class of behaviors occurs when the state is (@) Non-divergent

transitioned to a point inside the patch of the new mode,
but before it can proceed to evolve continuously, a con-
secutive mode transition is invoked. This is illustrated in
Fig. 5(b). The reduced state space requirgsto change !
discontinuously tox,,. This discontinuous change crosses o, : :
the patch boundary, though, ang? becomes active. In ;
order to properly transfer the state between and ag, Y?ﬁé@”@? Q_/%
the point where the patch boundary is crossed needs to be “ 24
computed and this values,,, needs to be transferred to :
Xag- (b) Sliding
This behavior is called @innacleas it represents an Figure 6: Loops of Mode Transitions
isolated point in the state trajectory (Mosterman, Zhao,
and Biswas 1998). Note that several such pinnacles may  gimjlar but different behavior is illustrated in Fig. 6(b).
follow one another in time before the inside of a patchina pere  after reaching the patch boundarydn the state
modec; is rea_ched that is also contained by the dynamic {ansfers onto the patch boundarydp as defined by
space of the fieldfy, . _ (note again the exchange in subscriptsxpf Because it is
Physically, such a sequence of pinnacles cannot oCCuUr the patch boundary, the state transfers backjtafter an
at the same point in time but when they follow one another ixfinitesimal step intime. This step results in a vatyethat
in time, the point-interval partitioning of the time line fails. may be immediately inside the patchipas defined by
This leads to the system not being defined over infinitesimal 54 50 another infinitesimal step will transfer the state back
periods of time, and gross behavior may violate physical (g 4, Note how left-closedness is violated in this particular

laws such as conservation of momentum. instance of behavior. In general, an infinitesimal ‘hysteresis’
L effect may be present to guarantee left-closedness again.
3.4 Revisiting Modes Far-fetched and pathological as it may seem, this be-

havior, referred to ashatteringor sliding modebehavior,

Once sequences of mode changes may occur, models can bgs actyally aimed for by robust control design methodolo-
constructed that contain loops of changes, i.e., a previously gies (Utkin 1992) as itis relatively insensitive to plant model
visited mode is re-visited. . o parameter variations (e.g., it is used in anti-lock braking

~ Two classes of behavior are illustrated in Fig. 6. In  gystems). Unlike the behavior in Fig. 6(a), here the state
Fig. 6(a), the pathological case is shown that violates the qpes continue to evolve in time and the divergence of time
divergence of timerinciple (Mosterman and Biswas 1998).  yrinciple is satisfied. To efficiently derive the actual behav-
Here, the state is |n|t|al|zt_ad_|n3|de of the patch in made ior along theswitching surfaceas defined by the patches
It evolves continuously till it reaches the patch boundary ;, modea; anda, two methods exist: (i) equivalence of
as defined byy. When the statey, is then transferred  contro) (Utkin 1992) and (ji) equivalence of dynamics (Fil-
to modea,, it is outside of the patch as defined by, ippov 1960, Mosterman, Zhao, and Biswas 1999). Though

(note the exchange in subscripts @f. This causes the  here are classes of models for which these ‘regularizations’
state to be transferred backdg where it is outside of the result in the same behavior, in general they may differ.

: o .
patch as defined by.;’. Thus, a loop of discrete changes Finally, another class of pathological behaviors can be
between modes arises. Note that a loop may involve any jgentified, namely Zeno behavior, named after the Greek
finite number of modes. Because these are |nstantaneous,phnosopher Zeno who studied the relation between points
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and intervals, i.e., is an interval an infinite collection of
points. Behaviors that are Zeno do progress in time by
a non-infinitesimal value each time a mode transition oc-
curs. However, this time reduces upon each transition as a
converging series. For example, in case the time is halved
upon each transition, the transition series converges to a
limit value 1 = %;27. Therefore, though time diverges
locally, it does not do so globally.

It is now possible to compare the three mode re-visiting
behaviors.
Divergence of timeinfinitely many discrete steps
in zero time. Time remains the same.
Chattering infinitely small time steps. Evolves
past any value in time.
Zena infinitely many time steps in a finite, nonzero,
time interval. Does not evolve past a limit point
in time.
Unfortunately, the general hybrid dynamic systems literature
is loose in its use of these terms (e.g., behavior that is locally
not divergent in time is often called Zeno as well).

4 AN ALGEBRAIC VIEW

The general geometric overview in Section 3 will now be
restricted to linear systems and illustrated by studying the
behavior of the hydraulic cylinder presented in Section 2.

4.1 Projection Equations

The generalized state space of the cylinder model is two
dimensional with states the flow through the relief valve,
fret, and the velocity of the cylinder pistom,,. Because

the small oil parameters have been abstracted away, when
at least one of the two valves is open the system has
only one degree of freedom, i.e., the actual state space is
one-dimensional. The subspace that consitutes this one-

dimensional state space may change between the modes. In_

case both valves are closed, there is no flow of oil possible
nor movement of the piston, and, therefore, the state space
becomes of zero order.

To compute the projections between the different re-
duced dimension state spaces the following procedure is
applied (Mosterman 2001, Mosterman 2000). For a general
system of equations of the form

Ex + Ax + Bu =0, @)
transformation derives a pseudo Weierstrass normal form
to index 2 (since the nilpotency of the submatrix

0 Exi
0 0
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is 2)
En X1
0=| O 0 E22 12 ¥21 |+
0 0 )ch,z
A1 A121 A122 x1 B
0 Axpn 422,12 X21 | +| Bai [u]
0 0 Axno» X2,2 Bo>

(8)
where E1111, A2211, and Az 22 are of full rank. This
allows computation of the initial conditions as

X1=1Xx; + E11 A1z 1A2211E22 12(X2,2 — X5 5)
X21= —A22 11(32 1+ E2212%2 2 + A2212%22)
%22 = —Ag50B20u

9)

where x~ are the final values that are achieved in the
previous mode. The values farcan then be transformed
back to obtain initial values for that are consistent with the
subspace of the dynamic behavior, and thus the projection
is determined.

4.2 The Hydraulic Cylinder

A model of the hydraulic cylinder is given in Eq. (6). Mode
changes occur when the logical variables that model the
state of the valves (either open or closes}), and s,.;,
change their verity. As there are two valves, four modes
ensue: inxgg both valves are closed, i, the relief valve

is open and the intake valve is closed, amg the relief
valve is closed and the intake valve is open, andsinboth
valves are open.

The projectionsin each of the modes can be symbolically
computed. For example, when the intake valve is closed
and the relief valve is open, modsg;, there is an algebraic
dependency between the generalized statesand f;.,
vp — fre = 0. This constitutes a subspace into which
the state has to be projected-fv, — fro; # 0 and it is
switched to this mode. The corresponding discontinuous
change inv, then becomes

(mpv - relfre[) (10)

Vp =

mp + el

The other projections are listed in Table 1.

The discontinuous change in modgy, however, may
require an additional explicit change in state (Mosterman
and Biswas 2000b). Consider the scenario illustrated in
Fig. 7 where an initial control pressurg;,, is applied and
the piston starts moving. At a time,, the intake valve
closes and in the detailed model with the oil parametRys (
and C,;;), a quick pressure build-up results. This behavior
operates on a time scale much faster than gross behavior,
hence the double arrow heads in Fig. 7. The initial jump in
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Table 1: Mode Specification Table does not equal the identity function (as assumed throughout
[ mode | projection | Section 3).
v, =0
00 frel =0 500
1 — —
o1 Up = mp+1rel (mPvp - ]""[frel)
1 _ —
Sret = m(mpvp - Irelf,d) Peyi |
@10 free =0 10001
o11

pressure at, = 4 [m/s] is due to the abrupt change of oil
flow into the cylinder when the flow through the intake valve
jumps to 0. After this, the oil elasticity results in a further
quick pressure build-up. This pressure build-up affects the
velocity of the piston which ultimately would become 0
(conform the projections in Table 1). However, during
the fast transient, the pressure may exceed the threshold
pressurep,,, and the relief valve may open.

Figure 8: The Area in Which,g > 0

Note that this implies the user defined discontinuous
change in statey,, takes place while the system is not in
a patch. This differs from implicit discontinuities that have
their jumps aborted when the patch boundary is crossed.
In previous work (Mosterman and Biswas 2000a), the dif-
ference between these phenomena has been attributed to
two different abstraction types: (fjme scaleabstraction
collapses the behavior during a relatively short period of
time into a point of discontinuous change, (fiarameter
abstraction simply removes very small or large parameters.

500-R(VR)

Pyt The explicitly defined discontinuous change then is the result
-10004 of a time scale abstraction where the implicit discontinuity
1500 L results from a parameter abstraction.
1 2 3V, 4 Once in modeyos, there is an algebraic dependency be-
Figure 7: The Detailed Fast Transient May tweenv, and f,.;, and the system lives in a one-dimensional
Cause a Further Mode Switch state space again. However, the value for the stete,

as computed by the functiogfds may not be in this space
In case the small oil parameters are abstracted away, theand so a projection is required.

detailed information about whether the threshold is crossed
and how much this affects, is not present anymore. 4.3 Semantics ofc~
Therefore, it has to be explicitly captured in a discontinuous

state change function. In general, the use af~ for re-initialization requires careful
In addition, the switching logic has to be adapted as jmplementation and well-defined semantics. Typicatly,
the pressure in the cylinder becomes of an impulsive nature is considered the priori value around a discontinuous
when the detailed oil phenomena are abstracted away andchange and used as part of the input in Eq. (8). When no
there is a discontinuous changeup sincem,v, = pecy. discontinuous change occurs, equals the current value.
These modified Specifications can be derived from the In order to design models with proper behavior, a mode
more detailed model with the oil parameters. The SWitChing with re-initialization usingx_ should be |mmed|a‘[e|y de-
area inxgp was computed using the Symbolic Math Toolbox  parted since no proper continuous behavior can be generated.
of Mat | ab® (Mat | ab 2003) and is shown in Fig. 8. First,
a Taylor series approximation of the detailet 2order 4.4 Putting it Together
continuous behavior was derived and then the maxima of
this function were found. If the maximum absolute pressure The Comp|ete mode transition behavior can now be graphi-
exceeded the thresholgy,, the switch occurred. This  cally depicted as illustrated in Fig. 9. Note that the pressure
was done for a number op., and v, data points to  , , isimpulsive when, changes abruptly in the idealized
derive the patch sketched in Fig. 8. The actual function model of Eq. (6) These impu|ses are not shown in F|g 9
Vp = ago(V} Pyy) 10 cCOMputev,, from v and p_, is and so the valuep.,; = —1000 that is shown is never
given in previous work (Mosterman and Biswas 2000b) achieved. However, it provides the conceptual mapping
and will not be re-iterated here. This relation is depicted petween Fig. 9 and Fig. 7.
in the phase space in Fig. 8. An interesting phenomena  This scenario illustrates how several modes may be

in this model is that the state transition functioghg, traversed before the state can proceed to evolve continu-
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ously. It also illustrates how user defined discontinuous

state changes may be part of a model and how these inter-
act with the implicit discontinuous state changes that result

from the required projections.

p(vp)

500

o
pcyl 8

°
OLOI# -
.

Q00 -2 @D

-1500 T T T T T T
1 2

Figure 9: The Fast Transients as Instanta-
neous Changes

5 CONCLUSIONS

All this exemplifies the richness and complexity of mode
transition behavior in hybrid dynamic systems. ltillustrates
that though an explicit representation such as hybrid au-
tomata (Alur, Courcoubetis, Henzinger, and Ho 1993) may
be a powerful vehicle for analyses, it is by no means trivial to
design such a hybrid automata for complex physical system
models. It means that the expressiveness of the formalism
is achieved by a rather significant conceptual investment by
the model designer. As such, part of the analyses burden is
put squarely on the shoulders of the model designer, mak-
ing it difficult to gain acceptance in communities where the
featured classes of complex behaviors are being dealt with
on a day to day basis.

To eliminate this reluctance, future research efforts
should focus on automated model complexity reduction
and transformation into an underlying hybrid automata rep-
resentation that may be hidden from the user.
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